This notebook regroups the code sample of the video below, which is a part of the Hugging Face course.
#@title
from IPython.display import HTML
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/Dh9CL8fyG80?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
Install the Transformers and Datasets libraries to run this notebook.
! pip install datasets transformers[sentencepiece]
from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("glue", "mrpc")
checkpoint = "bert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(["sentence1", "sentence2", "idx"])
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
tokenized_datasets.set_format("torch")
data_collator = DataCollatorWithPadding(tokenizer)
Reusing dataset glue (/home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad) Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-8174fd92eed0af98.arrow Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-8c99fb059544bc96.arrow Loading cached processed dataset at /home/sgugger/.cache/huggingface/datasets/glue/mrpc/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-e625eb72bcf1ae1f.arrow
from torch.utils.data import DataLoader
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, batch_size=8, collate_fn=data_collator
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], batch_size=8, collate_fn=data_collator
)
for batch in train_dataloader:
break
print({k: v.shape for k, v in batch.items()})
{'attention_mask': torch.Size([8, 63]), 'input_ids': torch.Size([8, 63]), 'labels': torch.Size([8]), 'token_type_ids': torch.Size([8, 63])}
from transformers import AutoModelForSequenceClassification
checkpoint = "bert-base-cased"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias'] - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
outputs = model(**batch)
print(outputs.loss, outputs.logits.shape)
tensor(0.7512, grad_fn=<NllLossBackward>) torch.Size([8, 2])
from transformers import AdamW
optimizer = AdamW(model.parameters(), lr=5e-5)
loss = outputs.loss
loss.backward()
optimizer.step()
# Don't forget to zero your gradients once your optimizer step is done!
optimizer.zero_grad()
from transformers import get_scheduler
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
print(device)
cuda
optimizer = AdamW(model.parameters(), lr=5e-5)
from tqdm.auto import tqdm
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
HBox(children=(FloatProgress(value=0.0, max=1377.0), HTML(value='')))
from datasets import load_metric
metric= load_metric("glue", "mrpc")
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
metric.compute()
{'accuracy': 0.8284313725490197, 'f1': 0.8809523809523808}