This notebook regroups the code sample of the video below, which is a part of the Hugging Face course.
#@title
from IPython.display import HTML
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/DQ-CpJn6Rc4?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
Install the Transformers and Datasets libraries to run this notebook.
! pip install datasets transformers[sentencepiece]
from transformers import pipeline
model_checkpoint = "distillbert-base-cased-distilled-squad"
question_answerer = pipeline("question_answering", model=model_checkpoint)
context = """
🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
"""
question = "Which deep learning libraries back 🤗 Transformers?"
question_answerer(question=question, context=context)
from transformers import pipeline
model_checkpoint = "distillbert-base-cased-distilled-squad"
question_answerer = pipeline("question-answering", model=model_checkpoint)
context = """
🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
"""
question = "Which deep learning libraries back 🤗 Transformers?"
question_answerer(question=question, context=context)
from transformers import pipeline
model_checkpoint = "distilbert-base-cased-distilled-squad"
question_answerer = pipeline("question-answering", model=model_checkpoint)
context = """
🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
"""
question = "Which deep learning libraries back 🤗 Transformers?"
question_answerer(question=question, context=context)