tKey = 'YOUR_TIINGO_KEY'
%matplotlib inline
import pandas as pd
import pandas_datareader.tiingo as tiingo
import datetime
# last trade day from previous year
# TODO: auto calculate
dStrLastYearClose = '12/31/2018'
# get the current date
d = datetime.datetime.today()
# convert to string format
dStrToday = d.strftime('%m/%d/%Y')
dStrYearStart = d.strftime('01/01/%Y')
# tickers of all peers
peers = ['CRZO','CDEV','DNR','LPI','OAS','PDCE','PE','RRC','SM','SWN','WLL','WPX','XEC']
# fetch the stock data
dr = tiingo.TiingoDailyReader(symbols=peers, start=dStrLastYearClose, end=dStrToday, api_key=tKey)
df = dr.read()
dr.close()
# show some stats on the data
df.describe()
adjClose | adjHigh | adjLow | adjOpen | adjVolume | close | divCash | high | low | open | splitFactor | volume | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 520.000000 | 520.000000 | 520.000000 | 520.000000 | 5.200000e+02 | 520.000000 | 520.000000 | 520.000000 | 520.000000 | 520.000000 | 520.0 | 5.200000e+02 |
mean | 18.074767 | 18.411541 | 17.668075 | 18.006340 | 6.159148e+06 | 18.085019 | 0.000346 | 18.421913 | 17.678127 | 18.016529 | 1.0 | 6.159148e+06 |
std | 18.095398 | 18.330301 | 17.768455 | 18.011581 | 5.056756e+06 | 18.125904 | 0.007894 | 18.361045 | 17.798370 | 18.041850 | 0.0 | 5.056756e+06 |
min | 1.710000 | 1.780000 | 1.600000 | 1.650000 | 6.352690e+05 | 1.710000 | 0.000000 | 1.780000 | 1.600000 | 1.650000 | 1.0 | 6.352690e+05 |
25% | 5.892500 | 6.032500 | 5.760000 | 5.847500 | 2.570019e+06 | 5.892500 | 0.000000 | 6.032500 | 5.760000 | 5.847500 | 1.0 | 2.570019e+06 |
50% | 12.525000 | 12.782500 | 12.275000 | 12.480000 | 4.724221e+06 | 12.525000 | 0.000000 | 12.782500 | 12.275000 | 12.480000 | 1.0 | 4.724221e+06 |
75% | 19.635000 | 19.902275 | 19.067500 | 19.475000 | 8.279120e+06 | 19.635000 | 0.000000 | 19.902275 | 19.067500 | 19.475000 | 1.0 | 8.279120e+06 |
max | 76.420000 | 76.915083 | 75.189233 | 76.166882 | 3.783066e+07 | 76.420000 | 0.180000 | 77.100000 | 75.370000 | 76.350000 | 1.0 | 3.783066e+07 |
# show column info
df.columns
Index(['adjClose', 'adjHigh', 'adjLow', 'adjOpen', 'adjVolume', 'close', 'divCash', 'high', 'low', 'open', 'splitFactor', 'volume'], dtype='object')
# filter data down to adjusted close price
df_close = df.loc[peers,['adjClose']]
df_close.head()
adjClose | ||
---|---|---|
symbol | date | |
CRZO | 2018-12-31 | 11.29 |
2019-01-02 | 11.51 | |
2019-01-03 | 11.45 | |
2019-01-04 | 12.18 | |
2019-01-07 | 12.54 |
# pivot the data
df_pivot = pd.pivot_table(df_close, index='date', columns='symbol',values="adjClose")
df_pivot.head(10)
symbol | CDEV | CRZO | DNR | LPI | OAS | PDCE | PE | RRC | SM | SWN | WLL | WPX | XEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||
2018-12-31 | 11.02 | 11.29 | 1.71 | 3.62 | 5.53 | 29.76 | 15.98 | 9.57 | 15.48 | 3.41 | 22.69 | 11.35 | 61.502139 |
2019-01-02 | 11.30 | 11.51 | 1.96 | 3.74 | 5.54 | 30.42 | 16.22 | 9.96 | 15.34 | 3.72 | 22.69 | 11.63 | 62.559596 |
2019-01-03 | 11.28 | 11.45 | 1.97 | 3.66 | 5.64 | 30.96 | 16.15 | 9.95 | 15.32 | 3.64 | 22.80 | 11.54 | 61.691683 |
2019-01-04 | 11.81 | 12.18 | 2.19 | 3.99 | 6.04 | 32.71 | 16.88 | 10.69 | 16.63 | 3.90 | 24.77 | 12.13 | 64.774272 |
2019-01-07 | 12.68 | 12.54 | 2.20 | 4.12 | 6.18 | 34.25 | 18.12 | 11.13 | 17.48 | 4.07 | 26.65 | 12.87 | 66.200842 |
2019-01-08 | 12.89 | 12.49 | 2.19 | 4.17 | 6.42 | 34.02 | 18.74 | 11.00 | 17.96 | 4.11 | 27.18 | 12.93 | 67.268276 |
2019-01-09 | 13.22 | 12.93 | 2.23 | 4.19 | 6.58 | 34.04 | 19.19 | 11.60 | 18.78 | 4.37 | 28.63 | 13.06 | 68.545206 |
2019-01-10 | 13.21 | 12.64 | 2.29 | 4.18 | 6.59 | 33.99 | 19.01 | 11.44 | 19.44 | 4.30 | 28.67 | 13.18 | 70.291009 |
2019-01-11 | 13.03 | 12.24 | 2.17 | 4.01 | 6.33 | 33.57 | 18.72 | 11.50 | 19.31 | 4.35 | 27.47 | 12.85 | 70.470577 |
2019-01-14 | 13.30 | 12.34 | 2.15 | 4.03 | 6.41 | 33.57 | 18.46 | 11.87 | 19.34 | 4.38 | 27.87 | 12.72 | 71.857243 |
# Close price at end of previous year
df_pivot.iloc[0,:]
symbol CDEV 11.020000 CRZO 11.290000 DNR 1.710000 LPI 3.620000 OAS 5.530000 PDCE 29.760000 PE 15.980000 RRC 9.570000 SM 15.480000 SWN 3.410000 WLL 22.690000 WPX 11.350000 XEC 61.502139 Name: 2018-12-31 00:00:00, dtype: float64
# Latest price at close
df_pivot.iloc[-1,:]
symbol CDEV 9.66 CRZO 11.30 DNR 2.05 LPI 3.48 OAS 5.91 PDCE 37.14 PE 18.62 RRC 10.36 SM 16.65 SWN 4.29 WLL 25.01 WPX 12.59 XEC 72.64 Name: 2019-02-27 00:00:00, dtype: float64
# Calculate YTD performance
perf_ytd = (df_pivot / df_pivot.iloc[0,:]) - 1
perf_ytd
symbol | CDEV | CRZO | DNR | LPI | OAS | PDCE | PE | RRC | SM | SWN | WLL | WPX | XEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||
2018-12-31 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
2019-01-02 | 0.025408 | 0.019486 | 0.146199 | 0.033149 | 0.001808 | 0.022177 | 0.015019 | 0.040752 | -0.009044 | 0.090909 | 0.000000 | 0.024670 | 0.017194 |
2019-01-03 | 0.023593 | 0.014172 | 0.152047 | 0.011050 | 0.019892 | 0.040323 | 0.010638 | 0.039707 | -0.010336 | 0.067449 | 0.004848 | 0.016740 | 0.003082 |
2019-01-04 | 0.071688 | 0.078831 | 0.280702 | 0.102210 | 0.092224 | 0.099126 | 0.056320 | 0.117032 | 0.074289 | 0.143695 | 0.091670 | 0.068722 | 0.053204 |
2019-01-07 | 0.150635 | 0.110717 | 0.286550 | 0.138122 | 0.117541 | 0.150874 | 0.133917 | 0.163009 | 0.129199 | 0.193548 | 0.174526 | 0.133921 | 0.076399 |
2019-01-08 | 0.169691 | 0.106289 | 0.280702 | 0.151934 | 0.160940 | 0.143145 | 0.172716 | 0.149425 | 0.160207 | 0.205279 | 0.197885 | 0.139207 | 0.093755 |
2019-01-09 | 0.199637 | 0.145261 | 0.304094 | 0.157459 | 0.189873 | 0.143817 | 0.200876 | 0.212121 | 0.213178 | 0.281525 | 0.261789 | 0.150661 | 0.114517 |
2019-01-10 | 0.198730 | 0.119575 | 0.339181 | 0.154696 | 0.191682 | 0.142137 | 0.189612 | 0.195402 | 0.255814 | 0.260997 | 0.263552 | 0.161233 | 0.142903 |
2019-01-11 | 0.182396 | 0.084145 | 0.269006 | 0.107735 | 0.144665 | 0.128024 | 0.171464 | 0.201672 | 0.247416 | 0.275660 | 0.210665 | 0.132159 | 0.145823 |
2019-01-14 | 0.206897 | 0.093003 | 0.257310 | 0.113260 | 0.159132 | 0.128024 | 0.155194 | 0.240334 | 0.249354 | 0.284457 | 0.228294 | 0.120705 | 0.168370 |
2019-01-15 | 0.225045 | 0.110717 | 0.280702 | 0.104972 | 0.175407 | 0.125672 | 0.170213 | 0.226750 | 0.282300 | 0.293255 | 0.270604 | 0.133040 | 0.189294 |
2019-01-16 | 0.248639 | 0.073516 | 0.269006 | 0.099448 | 0.182640 | 0.113239 | 0.187735 | 0.223615 | 0.293282 | 0.287390 | 0.270163 | 0.123348 | 0.199027 |
2019-01-17 | 0.262250 | 0.051373 | 0.274854 | 0.027624 | 0.198915 | 0.105511 | 0.192115 | 0.203762 | 0.313307 | 0.304985 | 0.282503 | 0.119824 | 0.188159 |
2019-01-18 | 0.288566 | 0.109832 | 0.309942 | 0.077348 | 0.226040 | 0.127352 | 0.204631 | 0.206897 | 0.365633 | 0.346041 | 0.313795 | 0.153304 | 0.212328 |
2019-01-22 | 0.196915 | 0.067316 | 0.192982 | -0.011050 | 0.110307 | 0.126008 | 0.168335 | 0.136886 | 0.293928 | 0.252199 | 0.204936 | 0.081057 | 0.191727 |
2019-01-23 | 0.174229 | 0.005314 | 0.169591 | -0.024862 | 0.095841 | 0.135753 | 0.136421 | 0.106583 | 0.239664 | 0.234604 | 0.163508 | 0.066960 | 0.174047 |
2019-01-24 | 0.160617 | 0.014172 | 0.181287 | 0.000000 | 0.124774 | 0.127016 | 0.135169 | 0.129572 | 0.235788 | 0.275660 | 0.205818 | 0.077533 | 0.188483 |
2019-01-25 | 0.186025 | 0.004429 | 0.210526 | 0.019337 | 0.132007 | 0.123320 | 0.155194 | 0.177638 | 0.258398 | 0.328446 | 0.258704 | 0.099559 | 0.227899 |
2019-01-28 | 0.172414 | -0.011515 | 0.152047 | -0.005525 | 0.106691 | 0.075269 | 0.126408 | 0.177638 | 0.247416 | 0.287390 | 0.241075 | 0.069604 | 0.211841 |
2019-01-29 | 0.179673 | 0.010629 | 0.181287 | 0.008287 | 0.097649 | 0.065860 | 0.132666 | 0.183908 | 0.271318 | 0.310850 | 0.236227 | 0.070485 | 0.217032 |
2019-01-30 | 0.221416 | 0.101860 | 0.233918 | 0.066298 | 0.139241 | 0.146169 | 0.177096 | 0.228840 | 0.319121 | 0.348974 | 0.297929 | 0.088106 | 0.238767 |
2019-01-31 | 0.195100 | 0.087688 | 0.187135 | 0.049724 | 0.088608 | 0.094422 | 0.162703 | 0.152560 | 0.267442 | 0.281525 | 0.261789 | 0.080176 | 0.222060 |
2019-02-01 | 0.208711 | 0.137290 | 0.210526 | 0.077348 | 0.108499 | 0.113575 | 0.164581 | 0.144201 | 0.275194 | 0.284457 | 0.293521 | 0.102203 | 0.235523 |
2019-02-04 | 0.209619 | 0.154119 | 0.216374 | 0.091160 | 0.110307 | 0.129032 | 0.180851 | 0.137931 | 0.257752 | 0.275660 | 0.325253 | 0.144493 | 0.237307 |
2019-02-05 | 0.170599 | 0.124004 | 0.181287 | 0.058011 | 0.050633 | 0.115591 | 0.150188 | 0.120167 | 0.217700 | 0.243402 | 0.267078 | 0.138326 | 0.226926 |
2019-02-06 | 0.166969 | 0.108946 | 0.152047 | 0.041436 | 0.041591 | 0.108535 | 0.149562 | 0.059561 | 0.209302 | 0.167155 | 0.269282 | 0.135683 | 0.212814 |
2019-02-07 | 0.130672 | 0.031887 | 0.081871 | -0.044199 | 0.010850 | 0.072245 | 0.118273 | 0.009404 | 0.125969 | 0.090909 | 0.187748 | 0.078414 | 0.160746 |
2019-02-08 | 0.112523 | -0.023915 | 0.000000 | -0.049724 | -0.001808 | 0.035618 | 0.103880 | -0.013584 | 0.082687 | 0.114370 | 0.162627 | 0.049339 | 0.145499 |
2019-02-11 | 0.118875 | -0.001771 | 0.046784 | 0.022099 | 0.021700 | 0.044691 | 0.128911 | 0.081505 | 0.127907 | 0.155425 | 0.175408 | 0.072247 | 0.172263 |
2019-02-12 | 0.118875 | 0.029229 | 0.081871 | 0.002762 | 0.043400 | 0.130376 | 0.119524 | 0.087774 | 0.179587 | 0.175953 | 0.200970 | 0.086344 | 0.182482 |
2019-02-13 | 0.116152 | 0.055802 | 0.122807 | 0.046961 | 0.061483 | 0.188172 | 0.140175 | 0.085684 | 0.228682 | 0.187683 | 0.221684 | 0.122467 | 0.205353 |
2019-02-14 | 0.138838 | 0.078831 | 0.216374 | 0.063536 | 0.070524 | 0.227487 | 0.154568 | 0.084639 | 0.217700 | 0.175953 | 0.262230 | 0.147137 | 0.217356 |
2019-02-15 | 0.177858 | 0.123118 | 0.257310 | 0.066298 | 0.124774 | 0.284946 | 0.172090 | 0.135841 | 0.279716 | 0.228739 | 0.293962 | 0.181498 | 0.235567 |
2019-02-19 | 0.170599 | 0.113375 | 0.269006 | 0.038674 | 0.108499 | 0.279906 | 0.177722 | 0.137931 | 0.232558 | 0.222874 | 0.290877 | 0.166520 | 0.220608 |
2019-02-20 | 0.188748 | 0.116032 | 0.309942 | 0.055249 | 0.148282 | 0.319220 | 0.160200 | 0.157785 | 0.271964 | 0.269795 | 0.316439 | 0.180617 | 0.242558 |
2019-02-21 | 0.120690 | 0.052259 | 0.251462 | -0.008287 | 0.097649 | 0.302083 | 0.122028 | 0.131661 | 0.099483 | 0.255132 | 0.281181 | 0.140969 | 0.192154 |
2019-02-22 | 0.138838 | 0.043401 | 0.251462 | 0.000000 | 0.112116 | 0.313172 | 0.209637 | 0.108673 | 0.091085 | 0.243402 | 0.281181 | 0.131278 | 0.206137 |
2019-02-25 | 0.153358 | 0.029229 | 0.222222 | -0.008287 | 0.101266 | 0.262433 | 0.172716 | 0.150470 | 0.091085 | 0.293255 | 0.249008 | 0.098678 | 0.198658 |
2019-02-26 | -0.107078 | 0.058459 | 0.181287 | -0.033149 | 0.066908 | 0.244624 | 0.143304 | 0.107628 | 0.060724 | 0.272727 | 0.239753 | 0.083700 | 0.180447 |
2019-02-27 | -0.123412 | 0.000886 | 0.198830 | -0.038674 | 0.068716 | 0.247984 | 0.165207 | 0.082550 | 0.075581 | 0.258065 | 0.102248 | 0.109251 | 0.181097 |
perf_ytd.plot(title='Peer YTD Performance', figsize=(20,10))
<matplotlib.axes._subplots.AxesSubplot at 0x7f00114f6630>
# Daily performance
perf_daily = df_pivot.pct_change(1)
perf_daily
symbol | CDEV | CRZO | DNR | LPI | OAS | PDCE | PE | RRC | SM | SWN | WLL | WPX | XEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||
2018-12-31 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2019-01-02 | 0.025408 | 0.019486 | 0.146199 | 0.033149 | 0.001808 | 0.022177 | 0.015019 | 0.040752 | -0.009044 | 0.090909 | 0.000000 | 0.024670 | 0.017194 |
2019-01-03 | -0.001770 | -0.005213 | 0.005102 | -0.021390 | 0.018051 | 0.017751 | -0.004316 | -0.001004 | -0.001304 | -0.021505 | 0.004848 | -0.007739 | -0.013873 |
2019-01-04 | 0.046986 | 0.063755 | 0.111675 | 0.090164 | 0.070922 | 0.056525 | 0.045201 | 0.074372 | 0.085509 | 0.071429 | 0.086404 | 0.051127 | 0.049968 |
2019-01-07 | 0.073666 | 0.029557 | 0.004566 | 0.032581 | 0.023179 | 0.047080 | 0.073460 | 0.041160 | 0.051112 | 0.043590 | 0.075898 | 0.061006 | 0.022024 |
2019-01-08 | 0.016562 | -0.003987 | -0.004545 | 0.012136 | 0.038835 | -0.006715 | 0.034216 | -0.011680 | 0.027460 | 0.009828 | 0.019887 | 0.004662 | 0.016124 |
2019-01-09 | 0.025601 | 0.035228 | 0.018265 | 0.004796 | 0.024922 | 0.000588 | 0.024013 | 0.054545 | 0.045657 | 0.063260 | 0.053348 | 0.010054 | 0.018983 |
2019-01-10 | -0.000756 | -0.022428 | 0.026906 | -0.002387 | 0.001520 | -0.001469 | -0.009380 | -0.013793 | 0.035144 | -0.016018 | 0.001397 | 0.009188 | 0.025469 |
2019-01-11 | -0.013626 | -0.031646 | -0.052402 | -0.040670 | -0.039454 | -0.012357 | -0.015255 | 0.005245 | -0.006687 | 0.011628 | -0.041856 | -0.025038 | 0.002555 |
2019-01-14 | 0.020721 | 0.008170 | -0.009217 | 0.004988 | 0.012638 | 0.000000 | -0.013889 | 0.032174 | 0.001554 | 0.006897 | 0.014561 | -0.010117 | 0.019677 |
2019-01-15 | 0.015038 | 0.016207 | 0.018605 | -0.007444 | 0.014041 | -0.002085 | 0.013001 | -0.010952 | 0.026370 | 0.006849 | 0.034446 | 0.011006 | 0.017909 |
2019-01-16 | 0.019259 | -0.033493 | -0.009132 | -0.005000 | 0.006154 | -0.011045 | 0.014973 | -0.002555 | 0.008564 | -0.004535 | -0.000347 | -0.008554 | 0.008183 |
2019-01-17 | 0.010901 | -0.020627 | 0.004608 | -0.065327 | 0.013761 | -0.006942 | 0.003688 | -0.016225 | 0.015485 | 0.013667 | 0.009715 | -0.003137 | -0.009064 |
2019-01-18 | 0.020848 | 0.055602 | 0.027523 | 0.048387 | 0.022624 | 0.019757 | 0.010499 | 0.002604 | 0.039843 | 0.031461 | 0.024399 | 0.029898 | 0.020341 |
2019-01-22 | -0.071127 | -0.038308 | -0.089286 | -0.082051 | -0.094395 | -0.001192 | -0.030130 | -0.058009 | -0.052507 | -0.069717 | -0.082858 | -0.062643 | -0.016992 |
2019-01-23 | -0.018954 | -0.058091 | -0.019608 | -0.013966 | -0.013029 | 0.008654 | -0.027317 | -0.026654 | -0.041937 | -0.014052 | -0.034382 | -0.013040 | -0.014836 |
2019-01-24 | -0.011592 | 0.008811 | 0.010000 | 0.025496 | 0.026403 | -0.007692 | -0.001101 | 0.020774 | -0.003127 | 0.033254 | 0.036364 | 0.009909 | 0.012296 |
2019-01-25 | 0.021892 | -0.009607 | 0.024752 | 0.019337 | 0.006431 | -0.003280 | 0.017641 | 0.042553 | 0.018296 | 0.041379 | 0.043860 | 0.020442 | 0.033165 |
2019-01-28 | -0.011477 | -0.015873 | -0.048309 | -0.024390 | -0.022364 | -0.042776 | -0.024919 | 0.000000 | -0.008727 | -0.030905 | -0.014006 | -0.027244 | -0.013078 |
2019-01-29 | 0.006192 | 0.022401 | 0.025381 | 0.013889 | -0.008170 | -0.008750 | 0.005556 | 0.005324 | 0.019161 | 0.018223 | -0.003906 | 0.000824 | 0.004283 |
2019-01-30 | 0.035385 | 0.090272 | 0.044554 | 0.057534 | 0.037891 | 0.075347 | 0.039227 | 0.037952 | 0.037602 | 0.029083 | 0.049911 | 0.016461 | 0.017860 |
2019-01-31 | -0.021545 | -0.012862 | -0.037915 | -0.015544 | -0.044444 | -0.045148 | -0.012228 | -0.062075 | -0.039177 | -0.050000 | -0.027844 | -0.007287 | -0.013487 |
2019-02-01 | 0.011390 | 0.045603 | 0.019704 | 0.026316 | 0.018272 | 0.017501 | 0.001615 | -0.007253 | 0.006116 | 0.002288 | 0.025148 | 0.020392 | 0.011017 |
2019-02-04 | 0.000751 | 0.014798 | 0.004831 | 0.012821 | 0.001631 | 0.013881 | 0.013971 | -0.005479 | -0.013678 | -0.006849 | 0.024532 | 0.038369 | 0.001444 |
2019-02-05 | -0.032258 | -0.026094 | -0.028846 | -0.030380 | -0.053746 | -0.011905 | -0.025967 | -0.015611 | -0.031844 | -0.025287 | -0.043898 | -0.005389 | -0.008390 |
2019-02-06 | -0.003101 | -0.013396 | -0.024752 | -0.015666 | -0.008606 | -0.006325 | -0.000544 | -0.054104 | -0.006897 | -0.061321 | 0.001739 | -0.002322 | -0.011502 |
2019-02-07 | -0.031104 | -0.069489 | -0.060914 | -0.082228 | -0.029514 | -0.032737 | -0.027218 | -0.047337 | -0.068910 | -0.065327 | -0.064236 | -0.050427 | -0.042932 |
2019-02-08 | -0.016051 | -0.054077 | -0.075676 | -0.005780 | -0.012522 | -0.034159 | -0.012871 | -0.022774 | -0.038439 | 0.021505 | -0.021150 | -0.026961 | -0.013136 |
2019-02-11 | 0.005710 | 0.022686 | 0.046784 | 0.075581 | 0.023551 | 0.008761 | 0.022676 | 0.096398 | 0.041766 | 0.036842 | 0.010993 | 0.021830 | 0.023364 |
2019-02-12 | 0.000000 | 0.031056 | 0.033520 | -0.018919 | 0.021239 | 0.082020 | -0.008315 | 0.005797 | 0.045819 | 0.017766 | 0.021747 | 0.013147 | 0.008717 |
2019-02-13 | -0.002433 | 0.025818 | 0.037838 | 0.044077 | 0.017331 | 0.051130 | 0.018446 | -0.001921 | 0.041621 | 0.009975 | 0.017248 | 0.033252 | 0.019342 |
2019-02-14 | 0.020325 | 0.021812 | 0.083333 | 0.015831 | 0.008518 | 0.033088 | 0.012623 | -0.000962 | -0.008938 | -0.009877 | 0.033189 | 0.021978 | 0.009958 |
2019-02-15 | 0.034263 | 0.041051 | 0.033654 | 0.002597 | 0.050676 | 0.046811 | 0.015176 | 0.047206 | 0.050928 | 0.044888 | 0.025140 | 0.029954 | 0.014959 |
2019-02-19 | -0.006163 | -0.008675 | 0.009302 | -0.025907 | -0.014469 | -0.003923 | 0.004805 | 0.001840 | -0.036850 | -0.004773 | -0.002384 | -0.012677 | -0.012107 |
2019-02-20 | 0.015504 | 0.002387 | 0.032258 | 0.015957 | 0.035889 | 0.030717 | -0.014878 | 0.017447 | 0.031971 | 0.038369 | 0.019802 | 0.012085 | 0.017983 |
2019-02-21 | -0.057252 | -0.057143 | -0.044643 | -0.060209 | -0.044094 | -0.012990 | -0.032902 | -0.022563 | -0.135602 | -0.011547 | -0.026783 | -0.033582 | -0.040565 |
2019-02-22 | 0.016194 | -0.008418 | 0.000000 | 0.008357 | 0.013180 | 0.008516 | 0.078081 | -0.020314 | -0.007638 | -0.009346 | 0.000000 | -0.008494 | 0.011729 |
2019-02-25 | 0.012749 | -0.013582 | -0.023364 | -0.008287 | -0.009756 | -0.038639 | -0.030523 | 0.037700 | 0.000000 | 0.040094 | -0.025112 | -0.028816 | -0.006201 |
2019-02-26 | -0.225806 | 0.028399 | -0.033493 | -0.025070 | -0.031199 | -0.014107 | -0.025080 | -0.037239 | -0.027827 | -0.015873 | -0.007410 | -0.013633 | -0.015193 |
2019-02-27 | -0.018293 | -0.054393 | 0.014851 | -0.005714 | 0.001695 | 0.002700 | 0.019157 | -0.022642 | 0.014007 | -0.011521 | -0.110914 | 0.023577 | 0.000551 |