Copyright (C) 2020 Andreas Kloeckner
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt
Here are a few functions:
if 1:
def f(x):
return np.sin(5*x)
def df(x):
return 5*np.cos(5*x)
elif 0:
gamma = 0.15
def f(x):
return np.sin(1/(gamma+x))
def df(x):
return -np.cos(1/(gamma+x))/(gamma+x)**2
else:
def f(x):
return np.abs(x-0.5)
def df(x):
# Well...
return -1 + 2*(x<=0.5).astype(np.float)
x_01 = np.linspace(0, 1, 1000)
pt.plot(x_01, f(x_01))
[<matplotlib.lines.Line2D at 0x7f5f98d5dd30>]
degree = 4
h = 1
nodes = 0.5 + np.linspace(-h/2, h/2, degree+1)
nodes
array([0. , 0.25, 0.5 , 0.75, 1. ])
Build the gen. Vandermonde matrix and find the coefficients:
V = np.array([
nodes**i
for i in range(degree+1)
]).T
#clear
coeffs = la.solve(V, f(nodes))
Evaluate the interpolant:
x_0h = 0.5+np.linspace(-h/2, h/2, 1000)
interp_0h = 0*x_0h
for i in range(degree+1):
interp_0h += coeffs[i] * x_0h**i
pt.plot(x_01, f(x_01), "--", color="gray", label="$f$")
pt.plot(x_0h, interp_0h, color="red", label="Interpolant")
pt.plot(nodes, f(nodes), "or")
pt.legend(loc="best")
<matplotlib.legend.Legend at 0x7f5f98d180f0>
Now build the gen. Vandermonde matrix $V'=$Vprime
of the derivatives:
#clear
def monomial_deriv(i, x):
if i == 0:
return 0*x
else:
return i*nodes**(i-1)
Vprime = np.array([
monomial_deriv(i, nodes)
for i in range(degree+1)
]).T
Compute the value of the derivative at the nodes as fderiv
:
#clear
fderiv = Vprime @ la.inv(V) @ f(nodes)
And plot vs df
, the exact derivative:
pt.plot(x_01, df(x_01), "--", color="gray", label="$f$")
pt.plot(nodes, fderiv, "or")
pt.legend(loc="best")
<matplotlib.legend.Legend at 0x7f5f98bc9d68>
#clear
print(np.max(np.abs(df(nodes) - fderiv)))
1.8560489763862222
(
Vprime @ la.inv(V)
).round(3)
array([[ -8.333, 16. , -12. , 5.333, -1. ], [ -1. , -3.333, 6. , -2. , 0.333], [ 0.333, -2.667, 0. , 2.667, -0.333], [ -0.333, 2. , -6. , 3.333, 1. ], [ 1. , -5.333, 12. , -16. , 8.333]])
nodes
array([0. , 0.25, 0.5 , 0.75, 1. ])