A number of third party libraries defined their own custom display logic. This gives their objcts rich output by default when used in the Notebook.
from IPython.display import display
Pandas is a data analysis library for Python. Its DataFrame
objects have an HTML table representation in the Notebook.
import pandas
Here is a small amount of stock data for APPL:
%%writefile data.csv
Date,Open,High,Low,Close,Volume,Adj Close
2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50
2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26
2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48
2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99
2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12
2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53
Writing data.csv
Read this as into a DataFrame
:
df = pandas.read_csv('data.csv')
And view the HTML representation:
df
Date | Open | High | Low | Close | Volume | Adj Close | |
---|---|---|---|---|---|---|---|
0 | 2012-06-01 | 569.16 | 590.00 | 548.50 | 584.00 | 14077000 | 581.50 |
1 | 2012-05-01 | 584.90 | 596.76 | 522.18 | 577.73 | 18827900 | 575.26 |
2 | 2012-04-02 | 601.83 | 644.00 | 555.00 | 583.98 | 28759100 | 581.48 |
3 | 2012-03-01 | 548.17 | 621.45 | 516.22 | 599.55 | 26486000 | 596.99 |
4 | 2012-02-01 | 458.41 | 547.61 | 453.98 | 542.44 | 22001000 | 540.12 |
5 | 2012-01-03 | 409.40 | 458.24 | 409.00 | 456.48 | 12949100 | 454.53 |
6 rows × 7 columns
SymPy is a symbolic computing library for Python. Its equation objects have LaTeX representations that are rendered in the Notebook.
from sympy.interactive.printing import init_printing
init_printing(use_latex='mathjax')
from __future__ import division
import sympy as sym
from sympy import *
x, y, z = symbols("x y z")
k, m, n = symbols("k m n", integer=True)
f, g, h = map(Function, 'fgh')
Rational(3,2)*pi + exp(I*x) / (x**2 + y)
a = 1/x + (x*sin(x) - 1)/x
a
(1/cos(x)).series(x, 0, 6)
Vincent is a visualization library that uses the Vega visualization grammar to build d3.js based visualizations in the Notebook and on http://nbviewer.ipython.org. Visualization
objects in Vincetn have rich HTML and JavaSrcript representations.
import vincent
import pandas as pd
import pandas.io.data as web
import datetime
all_data = {}
date_start = datetime.datetime(2010, 1, 1)
date_end = datetime.datetime(2014, 1, 1)
for ticker in ['AAPL', 'IBM', 'YHOO', 'MSFT']:
all_data[ticker] = web.DataReader(ticker, 'yahoo', date_start, date_end)
price = pd.DataFrame({tic: data['Adj Close']
for tic, data in all_data.items()})
vincent.initialize_notebook()
line = vincent.Line(price[['AAPL', 'IBM', 'YHOO', 'MSFT']], width=600, height=300)
line.axis_titles(x='Date', y='Price')
line.legend(title='Ticker')
display(line)