from clustergrammer2 import net
clustergrammer2 backend version 0.2.9
import pandas as pd
df = pd.read_csv('../data/CCLE/CCLE.txt.gz', compression='gzip', index_col=0)
from ast import literal_eval as make_tuple
cols = df.columns.tolist()
new_cols = [make_tuple(x) for x in cols]
df.columns = new_cols
# net.load_df(df)
# net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
# net.widget()
# net.load_df(df)
# net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
# net.normalize(axis='row', norm_type='zscore')
# net.widget()
net.load_df(df)
net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
net.normalize(axis='row', norm_type='zscore')
df_z = net.export_df().round(2)
net.load_df(df_z)
# net.filter_N_top(inst_rc='row', N_top=1000, rank_type='var')
# net.normalize(axis='row', norm_type='zscore')
net.widget()
ExampleWidget(network='{"row_nodes": [{"name": "KRT19", "ini": 1000, "clust": 967, "rank": 948, "rankvar": 689…