import matplotlib.pyplot as plt
import numpy as np
from plots import plot_pf
from simulators import robot
_, ax = plt.subplots(figsize=(8, 4))
np.random.seed(2)
robot.robot_pf(ax, N=5000)
ax.set(xlim=(0, 20), ylim=(0, 20))
final position error, variance: [-0.10621456 0.1061402 ] [0.00859646 0.00757081]
[(0.0, 20.0), (0.0, 20.0)]
_, ax = plt.subplots(figsize=(8, 4))
np.random.seed(2)
robot.robot_pf(ax, N=5000, iters=8, show_particles=True)
ax.set(xlim=(0, 8), ylim=(0, 8))
final position error, variance: [-0.01868509 -0.00526306] [0.00515279 0.00559609]
[(0.0, 8.0), (0.0, 8.0)]
_, ax = plt.subplots(figsize=(8, 4))
robot.robot_pf(ax, N=5000, show_particles=True, initial_x=(1, 1, np.pi / 4))
ax.set(xlim=(0, 20), ylim=(0, 20))
final position error, variance: [ 0.18184194 -0.09609328] [0.0065123 0.00760191]
[(0.0, 20.0), (0.0, 20.0)]
a = [0.1, 0.2, 0.3, 0.4, 0.2, 0.3, 0.1]
plot_pf.show_resample_multinomial(a, figsize=(6, 1.5))
# plt.savefig("../images/resample_multinomial.png")
plot_pf.show_resample_residual(a, figsize=(6, 1.5))
# plt.savefig("../images/resample_residual.png")
plot_pf.show_resample_stratified(a, figsize=(6, 1.5))
# plt.savefig("../images/resample_stratified.png")
plot_pf.show_resample_systematic(a, figsize=(6, 1.5))
# plt.savefig("../images/resample_systematic.png")