A Sage package for checking the feasibility of distance-regular graph parameter sets. A more detailed description, along with some results, is available in a manuscript currently available on arXiv.
%display latex
import drg
p = drg.DRGParameters([80, 63, 12], [1, 12, 60])
p.check_feasible()
You can also give an intersection array with parameters.
r = var("r")
fam = drg.DRGParameters([2*r^2*(2*r + 1), (2*r - 1)*(2*r^2 + r + 1), 2*r^2], [1, 2*r^2 , r*(4*r^2 - 1)])
fam.check_feasible()
fam1 = fam.subs(r == 1)
fam1
fam2 = fam.subs(r == 2)
fam2
fam2.check_feasible()
--------------------------------------------------------------------------- InfeasibleError Traceback (most recent call last) <ipython-input-5-58e3e45d7a79> in <module>() ----> 1 fam2.check_feasible() /home/janos/repos/git/sage-drg/drg/assoc_scheme.pyc in check_feasible(self, checked, skip, derived, levels, queue, part) 823 for name, check in lvl: 824 if name not in skip: --> 825 check(self) 826 if i > 1: 827 skip.add(name) /home/janos/repos/git/sage-drg/drg/assoc_scheme.pyc in check_family(self) 1361 nonexistence has been shown as a part of an infinite family. 1362 """ -> 1363 self._check_family() 1364 1365 @check(2) /home/janos/repos/git/sage-drg/drg/assoc_scheme.pyc in _check_family(self) 1626 if any(checkConditions(cond, sol) for sol in sols 1627 if is_integral(sol)): -> 1628 raise InfeasibleError(refs=ref) 1629 1630 def _check_multiplicity(self, k, i): InfeasibleError: nonexistence by JurišićVidali12
jupyter
¶A collection of sample Jupyter notebooks giving some nonexistence results.
Demo.ipynb
- demonstration of the sage-drg
packageDRG-104-70-25-1-7-80.ipynb
- proof of nonexistence of a distance-regular graph with intersection array $\{104, 70, 25; 1, 7, 80\}$ with $1470$ verticesDRG-135-128-16-1-16-120.ipynb
- proof of nonexistence of a distance-regular graph with intersection array $\{135, 128, 16; 1, 16, 120\}$ with $1360$ verticesDRG-234-165-12-1-30-198.ipynb
- proof of nonexistence of a distance-regular graph with intersection array $\{234, 165, 12; 1, 30, 198\}$ with $1600$ verticesDRG-55-54-50-35-10-bipartite.ipynb
- proof of nonexistence of a bipartite distance-regular graph with intersection array $\{55, 54, 50, 35, 10; 1, 5, 20, 45, 55\}$ with $3500$ verticesDRG-d3-2param.ipynb
- proof of nonexistence of a family of distance-regular graphs with intersection arrays $\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\}$ ($r, t \ge 1$)QPoly-24-20-36_11-1-30_11-24.ipynb
- proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{24, 20, 36/11; 30/11, 24\}$ with $225$ verticesQPoly-d3-1param-odd.ipynb
- proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{2r^2-1, 2r^2-2, r^2+1; 1, 2, r^2-1\}$ and $r$ oddQPoly-d4-LS-odd.ipynb
- proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{m, m-1, m(r^2-1)/r^2, m-r^2+1; 1, m/r^2, r^2-1, m\}$ and $m$ oddQPoly-d4-tight4design.ipynb
- proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{r^2-4, r^2-9, 12(s-1)/s, 1; 1, 12/s, r^2-9, r^2-4\}$ ($s \ge 4$)QPoly-d5-1param-3mod4.ipynb
- proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{(r^2+1)/2, (r^2-1)/2, (r^2+1)^2/(2r(r+1)), (r-1)(r^2+1)/(4r), (r^2+1)/(2r); 1, (r-1)(r^2+1)/(2r(r+1)), (r+1)(r^2+1)/(4r), (r-1)(r^2+1)/(2r), (r^2+1)/2\}$ and $r \equiv 3 \pmod{4}$A conference presentation is also available as a RISE slideshow.
FPSAC-sage-drg.ipynb
- Computing distance-regular graph and association scheme parameters in SageMath with sage-drg
software presentation at FPSAC 2019, Ljubljana, SloveniaIf you use sage-drg
in your research, please cite both the paper and the software:
J. Vidali. Using symbolic computation to prove nonexistence of distance-regular graphs. Electron. J. Combin., 25(4)#P4.21, 2018. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21
.
J. Vidali. jaanos/sage-drg
: sage-drg
v0.9, 2019. https://github.com/jaanos/sage-drg/
, doi:10.5281/zenodo.1418409
.
You may also want to cite other documents containing descriptions of features that were added since the above paper was written:
J. Vidali. Computing distance-regular graph and association scheme parameters in SageMath with sage-drg
. Sém. Lothar. Combin. 82B#105, 2019. https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2019/105.pdf
A. L. Gavrilyuk, J. Vidali, J. S. Williford. On few-class Q-polynomial association schemes: feasible parameters and nonexistence results, 2019. arXiv:1908.10081
.
The above citations are given here in BibTeX format.
@article{v18,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {Using symbolic computation to prove nonexistence of distance-regular graphs},
JOURNAL = {Electron. J. Combin.},
FJOURNAL = {Electronic Journal of Combinatorics},
VOLUME = {25},
NUMBER = {4},
PAGES = {P4.21},
NOTE = {\url{http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21}},
YEAR = {2018},
}
@software{v19a,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {{\tt jaanos/sage-drg}: {\tt sage-drg} v0.9},
NOTE = {\url{https://github.com/jaanos/sage-drg/},
\href{https://doi.org/10.5281/zenodo.1418409}{\texttt{doi:10.5281/zenodo.1418409}}},
YEAR = {2019},
}
@article{v19b,
AUTHOR = {Vidali, Jano\v{s}},
TITLE = {Computing distance-regular graph and association scheme parameters in SageMath with {\tt sage-drg}},
JOURNAL = {S\'{e}m. Lothar. Combin.},
FJOURNAL = {S\'{e}minaire Lotharingien de Combinatoire},
VOLUME = {82B},
PAGES = {#105},
NOTE = {\url{https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2019/105.pdf}},
YEAR = {2019},
}
@article{gvw21,
AUTHOR = {Gavrilyuk, Alexander L. and Vidali, Jano\v{s} and Williford, Jason S.},
TITLE = {On few-class $Q$-polynomial association schemes: feasible parameters and nonexistence results},
JOURNAL = {Ars Math. Contemp.},
FJOURNAL = {Ars Mathematica Contemporanea},
NOTE = {\href{https://doi.org/10.26493/1855-3974.2101.b76}{\texttt{doi:10.26493/1855-3974.2101.b76}}},
YEAR = {2021},
}
Additionally, sage-drg
has been used in the following research:
doi:10.1007/s00493-019-4115-z
.If you would like your research to be listed here, feel free to open an issue or pull request.