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Filtering problem

State-space model:

Dynamical model – transition kernel: xt+1 ∼ πXt+1 | Xt(· | xt)
Observation model – likelihood model: yt ∼ πYt | Xt(· | xt)

Goal: Characterize the filtering distribution

Sequentially estimate the state Xt given the observations y⋆1 , y⋆2 , . . . , y⋆t . i.e. the
filtering density πt | t = πXt | Y1:t:=y⋆1:t

Challenges:

• Nonlinear state-space model→ non-Gaussian transition kernel and likelihood model
• High-dimensions
• Sparsity in space/time
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Generic ensemble filtering algorithm

Ensemble filters approximate πt | t by updating a set of M state realizations {x(1), . . . , x(M)}.

At each assimilation cycle, they apply

1. Forecast step: Filtering dist. at time t− 1, πt−1 | t−1 −→ Forecast dist. πt | t−1
Samples are propagated through the dynamical model.
We obtain samples {x(1), . . . , x(M)} ∼ πt | t−1

2. Analysis step: Forecast dist. πt | t−1 −→ Filtering dist. πt | t
Update the forecast samples with the new observation y⋆t .
We obtain samples {x(1), . . . , x(M)} ∼ πt | t

→ This talk will focus on the analysis step.
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A “transformative” view of the analysis step

πY,X πX | Y=y⋆

Ty⋆(y, x)

Analysis step: Analysis map Ty⋆ that maps π(Yt,Xt) | Y1:t−1=y⋆1:t−1
to πXt | Y1:t=y⋆1:t

The analysis map of the Kalman filter Ty⋆,KF:

Ty⋆,KF(y, x) = x−ΣXt,YtΣ
−1
Yt (y− y⋆) = x− Kt(y− y⋆)

The ensemble Kalman filter (EnKF) (Evensen, 1994) estimates Kt ∈ Rn×d from samples
{x1, . . . , xM} of the forecast distribution πt | t−1.
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Preservation of invariants

Physical systems have important invariants, i.e., preserved quantities, H : Rn → Rr:

• Mass, H(x) = U⊤
⊥x

• Energy, H(x) = x⊤Ax
• Hamiltonian, e.g., H(x) = 0.5m||x||2 + V(x)
• Stoichiometric balance of chemical species, H(x) = U⊤

⊥x

Fact: Modern solvers ensure that discrete solutions preserve invariants of the system.
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To update or to not update invariants?

Do we want to update the invariants of the system with incoming observations?

Scenario 1: The value of the invariant H is known, i.e., H♯πX is a Dirac centered at C ∈ Rr.
→ Bayes’ rule should not modify the value of the invariant.

Scenario 2: The value of the invariant H is uncertain, i.e., H♯πX is not singular.
→ We want to update the invariant as we are gathering information about the true
system.
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A preservation property of Bayes’ rule

Theorem

• Consider a prior πX, a likelihood model πY | X, and an invariant H : Rn → Rr.
• Assume that the invariant is constant over the prior πX, i.e.,
H(x) = C ∈ Rr for any realization x of X.

• Then the invariant is preserved by Bayes’ rule and constant over the posterior πX | Y

Proof. supp(πX | Y) ⊆ supp(πX) ⊆ {x ∈ Rn|H(x) = C}.

Takeaway

If the invariants are constant over the prior, violations of invariants can be fully
attributed to the discrete approximation of Bayes’ rule.
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Oscillating pendulum

l

mg

m

θ

Hamiltonian structure: H(θ, θ̇) = ml2θ̇2
2 +mgl(1− cos(θ))

The Hamiltonian H is preserved over time:

dH(θ, θ̇)
dt = 0
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Oscillating pendulum

𝜃
− 2𝜋 − 𝜋 0 𝜋 2𝜋

𝜃
̇

−2

0

2

Full oscillation

Figure 1: Level sets of H(θ, θ̇)
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Figure 2: Time evolution of H(θt, θ̇t)

• Closed level sets correspond to oscillations.
• Open levels sets correspond to full rotations.
• Symplectic solver preserves H.
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Data assimilation for the oscillating pendulum
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Figure 3: Level sets of H(θ, θ̇)
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Figure 4: Time evolution of H(θt, θ̇t)

→ Perform data assimilation with EnKF.
• Initialize ensemble with true Hamiltonian.
• The EnKF does not preserve H.
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To update or not update invariants?

Takeaway

Discrete approximations of Bayes’ rule can cause spurious updates or break known
invariants.

• We advocate for a conservative view on the update of invariants.
• We want to design discrete algorithms that respect this preservation property of
Bayes’ rule.
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Preservation of linear invariants

In this talk, we focus on the preservation of linear invariants, i.e., H(x) : Rn → Rr, x 7→ U⊤
⊥x.

Linear invariants are omnipresent in science and engineering, e.g.,

• Stochiometric balance of chemical reactions
• Mass conservation in conservation laws
• Divergence-free condition in incompressible fluid mechanics
• Kirchhoff’s current laws in electrical networks
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Example 1: Chemical reaction

Consider the reversible chemical reaction

O+ NO⇌ NO2, with reaction rates (k+, k−)

The associated ODE system is

d[O]
dt = −k+[O][NO] + k−[NO2]

d[NO]
dt = −k+[O][NO] + k−[NO2]

d[NO2]
dt = k+[O][NO]− k−[NO2]

Conservation of nitrogen and oxygen elements: H(x) = U⊤
⊥x with U⊥ =

0 1
1 1
1 2

,
13



Preservation of linear invariants

Objective

Introduce a class of analysis maps preserving linear invariants (Lin-PAMs) in the
strong sense, i.e.,

If (y(i), x(i)) ∼ π(Yt,Xt) | Y1:t−1=y⋆1:t−1
with H(x(i)) = Ci ∈ Rr,

then we want xa(i) = T̃y⋆t (y
(i), x(i)) ∼ πXt | Y1:t=y⋆1:t such that H(xa

(i)) = Ci.

Idea: Use tools from measure transport

14



Transport map between two probability distributions

Idea

• Target dist. π = Transformation of a reference dist. η by a map S, i.e., S♯π = η.

• With S, sampling and density estimation are easy.

Densities

S♯πS♯η

Target π

Reference η

Samples

S(x)S−1(z)

15



Looking for a map suited for conditional inference (Marzouk et al., 2016)

We consider the Knothe-Rosenblatt (KR) rearrangement S between π and η, defined as
the unique lower triangular and monotone map s.t. S♯π = η.

S(x) = S(x1, x2, · · · , xm) =


S1 (x1)
S2 (x1, x2)
...
Sm (x1, x2, . . . , xm)

 .

The KR has nice features for Bayesian inference:

• The 1D map ξ 7→ Sk(x1, x2, . . . , xk−1, ξ) characterizes the marginal conditional
πXk | X1:k−1=x1:k−1(ξ).

• S is easy to invert and det∇S(x) is fast to evaluate.

Gaussian case

Consider X ∼ π = N (µ,Σ) and let LL⊤ = Σ−1 be the Cholesky factorization of Σ−1.
Then S(x) = L(x− µ) is the KR that pushes forward π to η = N (0n, In).

16



Looking for a map suited for conditional inference (Marzouk et al., 2016)

We consider the Knothe-Rosenblatt (KR) rearrangement S between π and η, defined as
the unique lower triangular and monotone map s.t. S♯π = η.

S(x) = S(x1, x2, · · · , xm) =


S1 (x1)
S2 (x1, x2)
...
Sm (x1, x2, . . . , xm)

 .

The KR has nice features for Bayesian inference:

• The 1D map ξ 7→ Sk(x1, x2, . . . , xk−1, ξ) characterizes the marginal conditional
πXk | X1:k−1=x1:k−1(ξ).

• S is easy to invert and det∇S(x) is fast to evaluate.

Gaussian case

Consider X ∼ π = N (µ,Σ) and let LL⊤ = Σ−1 be the Cholesky factorization of Σ−1.
Then S(x) = L(x− µ) is the KR that pushes forward π to η = N (0n, In).

16



Looking for a map suited for conditional inference (Marzouk et al., 2016)

We consider the Knothe-Rosenblatt (KR) rearrangement S between π and η, defined as
the unique lower triangular and monotone map s.t. S♯π = η.

S(x) = S(x1, x2, · · · , xm) =


S1 (x1)
S2 (x1, x2)
...
Sm (x1, x2, . . . , xm)

 .

The KR has nice features for Bayesian inference:

• The 1D map ξ 7→ Sk(x1, x2, . . . , xk−1, ξ) characterizes the marginal conditional
πXk | X1:k−1=x1:k−1(ξ).

• S is easy to invert and det∇S(x) is fast to evaluate.

Gaussian case

Consider X ∼ π = N (µ,Σ) and let LL⊤ = Σ−1 be the Cholesky factorization of Σ−1.
Then S(x) = L(x− µ) is the KR that pushes forward π to η = N (0n, In).

16



Construction of the analysis map (Spantini et al., 2022)

Consider the KR rearrangement S s.t. S♯πY,X = ηY ⊗ ηX

S(y, x) =
[
SY(y)
SX (y, x)

]
,

• The map ξ 7→ SX (y, ξ) pushes forward πX | Y(· | y) to ηX for any y.

• SX (Y, X) ∼ ηX

πY,X πX | Y=y⋆Ty⋆(y, x)
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A broad class of ensemble filters (Le Provost et al., 2023)

Analysis map Ty⋆ : Ty⋆(y, x) = SX (y⋆, ·)−1 ◦ SX (y, x)

This formulation can represent a broad class of ensemble filters by choosing

• the reference density ηX,
• the class of functions to approximate SX or Ty⋆ ,
• and the estimation of SX or Ty⋆ from samples

Stochastic EnKF (Evensen, 1994)

• ηX = N (0, I)
• Linear SX

• (Localized) sample covariance estimator Σ̂Xt = ρ ◦ ( 1M
∑M

i=1(x(i) − µ̂X)(x(i) − µ̂X)
⊤)

18
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How to construct analysis maps Ty⋆ preserving linear invariants x 7→ U⊤
⊥x?

Idea: Formulate the analysis map in the right coordinate system.
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A state decomposition

Up to a thin QR factorization of U⊥, assume that U⊥ ∈ Rn×r is sub-unitary, i.e., U⊤
⊥U⊥ = Ir.

We choose U∥ ∈ Rn×(n−r) such that U = [U⊥,U∥] ∈ Rn×n form an orthonormal basis of Rn.

We decompose the state x ∈ Rn as

x = U⊥U⊤
⊥x⊕ U∥U⊤

∥ x,
= U⊥x⊥ ⊕ U∥x∥,

with x⊥ = U⊤
⊥x ∈ Rr and x∥ = U⊤

∥ x ∈ Rn−r.
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Lower triangular maps characterize conditional distributions

Consider the rotation (Y, X) 7→ (Y, [U⊥,U∥]
⊤X) = (Y, X⊥, X∥).

We have the following factorization of πY,X:

πY,X(y, x) = πY,X⊥,X∥(y, x⊥, x∥) = πY(y)πX⊥ | Y(x⊥ | y)πX∥ | Y,X⊥(x∥ | y, x⊥)

If S pushes forward πY,X⊥,X∥ to ηY ⊗ ηX⊥ ⊗ ηX∥ and S is lower triangular, i.e.,

S(y, x⊥, x∥) =

S
Y(y)
SX⊥(y, x⊥)
SX∥(y, x⊥, x∥)

 , then
SY ♯πY = ηY,

SX⊥
♯πX⊥ | Y = ηX⊥ ,

SX∥
♯πX∥ | Y,X⊥ = ηX∥

See (Baptista et al., 2020) for the proof.
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Analysis map Ty⋆ in the rotated space (Y, X⊥, X∥)

The following analysis map T⊥y⋆ pushes forward πY,X⊥ to πX⊥ | Y=y⋆ ,

T⊥y⋆(y, x⊥) = SX⊥(y⋆, ·)−1 ◦ SX⊥(y, x⊥).

The following analysis map T∥y⋆,x⊥,a
pushes forward πY,X⊥,X∥ to πX∥ | Y=y⋆,X⊥=x⊥,a ,

T∥y⋆,x⊥,a
(y, x⊥, x∥) = SX∥(y⋆, T⊥y⋆(y, x⊥), ·)−1 ◦ SX∥(y, x⊥, x∥).

Perform inference in the rotated space by recursive updates:

1. Update coordinate x⊥ with T⊥y⋆
2. Update coordinate x∥ with T∥y⋆,x⊥,a

Analysis map formulated in the original space

Ty⋆(y, x) = U⊥T⊥y⋆(y,U⊤
⊥x) + U∥T∥y⋆(y,U⊤

⊥x,U⊤
∥ x)
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Formulation of linear invariant-preserving analysis map (Lin-PAM)

In the rotated space, the invariants are given by the coordinates x⊥.

To preserve invariants, we set the analysis map T̃
⊥
y⋆ to the identity, i.e., T̃

⊥
y⋆(y, x⊥) = x⊥.

We obtain the constrained analysis map T̃
∥
y⋆ as

T̃
∥
y⋆(y, x⊥, x∥) = SX∥(y⋆, x⊥, ·)−1 ◦ SX∥(y, x⊥, x∥).

The Lin-PAM T̃y⋆ formulated in the original space reads

T̃y⋆(y, x) = U⊥T̃
⊥
y⋆(y,U⊤

⊥x) + U∥T̃
∥
y⋆(y,U⊤

⊥x,U⊤
∥ x)

= U⊥U⊤
⊥x+ U∥T̃

∥
y⋆(y,U⊤

⊥x,U⊤
∥ x).

Le Provost, M., Glaubitz, J., and Marzouk Y. (2024), “Preserving linear invariants in ensemble filtering
methods.”, arXiv:2404.14328
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A schematic summary

U⊤
⊥x = C

x

Ty⋆(y, x)

T̃y⋆(y, x)

U⊥x⊥

U⊥T⊥y⋆(y, x⊥)

U∥x∥ U∥T̃y⋆
∥
(y, x⊥, x∥)

Rotation by U
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Empirical approximations of a Lin-PAM preserve linear invariants

In practice, we use an empirical estimator T̂y⋆ of the form

T̂y⋆(y, x) = U⊥U⊤
⊥x+ U∥T̂

∥
y⋆(y,U⊤

⊥x,U⊤
∥ x)

where the map T̂
∥
y⋆ is imperfect due to

• Choice of an approximation class, e.g., radial basis functions, polynomials, NN
• Estimation from samples {(y(i), x(i))} of an approximation of the forecast distribution
π̂(Yt,Xt) | Y1:t−1=y⋆1:t−1

• Observation to assimilate y⋆t ∼ π̂Yt

Takeway: Independently of the quality of T̂
∥
y⋆ , T̂y⋆ still preserves the invariants x→ U⊤

⊥x.
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Preservation of linear invariants for the Kalman filter and EnKF

Fact: The vanilla Kalman filter and EnKF preserve linear invariants if they are constant
over the prior πX

Why do we need Lin-PAMs in the Gaussian case?

This result no longer holds when the EnKF is regularized.

Two opposing mechanisms:

• Regularization such as covariance tapering based on the local conditional structure
of πY,X.
→ Essentially discard updates at long distances.

• Most invariants are global, i.e., H(x) depends on all the state components.

→ We show how to reconcile them.
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Lin-PAM in the Gaussian case (i)

Let (Y, X) be jointly Gaussian distributed with[
Y
X

]
∼ N

([
µX
µY

]
,

[
ΣY Σ⊤

X,Y
ΣX,Y ΣX

])
.

The KR rearrangement S that pushes forward πY,X⊥,X∥ to ηY⊗ ηX⊥ ⊗ ηX∥ is given by

S(y, x⊥, x∥) =


SY(y)
SX⊥(y, x⊥)
SX∥(y, x⊥, x∥)

 =


LY(y− µY)

LX⊥ | Y

(
x⊥ − µX⊥ | Y

)
LX∥ | Y,X⊥(x∥ − µX∥ | Y,X⊥)

 .

For Z ∼ N (µZ,ΣZ), Σ−1
Z = LZL⊤Z is the Cholesky factorization of Σ−1

Z .
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Lin-PAM in the Gaussian case (ii)

We obtain the unconstrained analysis maps T⊥y⋆ and T
∥
y⋆

T⊥y⋆(y, x⊥) = SX⊥(y⋆, ·)−1 ◦ SX⊥(y, x⊥) = x⊥ −ΣX⊥,YΣ
−1
Y (y− y⋆),

T∥y⋆(y, x⊥, x∥) = SX∥(y⋆, T⊥y⋆(y, x⊥), ·)−1 ◦ SX∥(y, x⊥, x∥) = x∥ −ΣX∥,YΣ
−1
Y (y− y⋆).

• Kalman filter update in span(U⊥) and span(U∥)

• Despite the recursive update, T∥y⋆(y, x⊥, x∥) does not depend on x⊥.

→ Update of x⊥ and x∥ can be decoupled.
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Lin-PAM in the Gaussian case (iii)

The analysis map in the original space Ty⋆ reads

Ty⋆(y, x) = U⊥T⊥y⋆(y, x⊥) + U∥T∥y⋆(y, x⊥, x∥)
= x−ΣX,YΣ

−1
Y (y− y⋆),

We recover the Kalman filter’s update.

The (constrained) analysis map T̃y⋆ preserving the invariant H(x) = U⊤
⊥x reads

T̃y⋆(y, x) = U⊥x⊥ + U∥T∥y⋆(y, x⊥, x∥)
= x− (I − U⊥U⊤

⊥)ΣX,YΣ
−1
Y (y− y⋆).

We recover a projected formulation of the Kalman filter (Simon, 2010).

Two equivalent treatments in the Gaussian case

For linear constraints in the Gaussian case:
Inference in rotated space = Projection of the Kalman’s update.
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Inference in rotated space = Projection of the Kalman’s update.
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Lin-PAM in the Gaussian case (iii)

The analysis map in the original space Ty⋆ reads

Ty⋆(y, x) = U⊥T⊥y⋆(y, x⊥) + U∥T∥y⋆(y, x⊥, x∥)
= x−ΣX,YΣ

−1
Y (y− y⋆),

We recover the Kalman filter’s update.

The (constrained) analysis map T̃y⋆ preserving the invariant H(x) = U⊤
⊥x reads

T̃y⋆(y, x) = U⊥x⊥ + U∥T∥y⋆(y, x⊥, x∥)
= x− (I − U⊥U⊤

⊥)ΣX,YΣ
−1
Y (y− y⋆).

We recover a projected formulation of the Kalman filter (Simon, 2010).

Two equivalent treatments in the Gaussian case

For linear constraints in the Gaussian case:
Inference in rotated space = Projection of the Kalman’s update.
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A synthetic linear problem with an arbitrary number of invariants

Consider the linear dynamical model

dx
dt = Arx, x(0) = x0,

where Ar has rank n− r and eigendecomposition Ar = UΛrU−1 where

Λr = Diag([0r,−λr+1, . . . ,−λn]), with λk > 0 for k > r.

• span(U[:, 1 : r]) is an invariant subspace of the dynamical system.
• Parametric study over the ratio of invariants r/n and the ensemble size M

Filter Category Preserve linear invariants
EnKF with tapering Linear 7

Constrained EnKF with tapering Linear 3
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RMSE results for the synthetic linear problem
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Figure 5: Evolution of the RMSE with the
ratio r/n for the EnKF and the
constrained EnKF (ConsEnKF) for
M = 20, 30, 50, 100 samples.
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Figure 6: Evolution of the RMSE with the
ensemble size M for the EnKF and the
constrained EnKF (ConsEnKF) for
r = 1, 5, 10, 15 linear invariants.

Takeway: Preserving linear invariants is most beneficial when M is small and r/n is large.
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Linear advection equation

Consider the linear advection problem on the periodic domain Ω = [0, 1):

∂u(s, t)
∂t +∇ · (cu(s, t)) = 0, s ∈ Ω, t > 0,

u(s, 0) = u0(s), s ∈ Ω,

Discrete mass is preserved, i.e., x→ U⊤
⊥x with U⊥ = [1, . . . , 1]⊤/

√
n ∈ Rn.

Filter Category Preserve linear invariants
EnKF with tapering Linear 7

Constrained EnKF with tapering Linear 3

From previous example, we don’t expect much improvement on global tracking metrics
(such as RMSE) for a small ratio r/n.
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Evolution of the invariant U⊤
⊥xt
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Figure 7: Time evolution of U⊤
⊥xt for the true state process (green) and the posterior mean obtained

with the EnKF (blue) and the constrained EnKF (dashed yellow) for M = 40.
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A embedded Lorenz-63 model

We embed the Lorenz-63 model in R4 to create a dynamical system with a linear
invariant,i.e.,

dx̃
dt = F̃(x̃, t) =


σ(x̃2 − x̃1)

x̃1(ρ− x̃2)− x̃2
x̃1x̃2 − βx̃3

0

 ,

where x̃4 has zero dynamic. We apply a random rotation Θ ∈ O(4) to define x = Θx̃

dx
dt =

dΘx̃
dt = ΘF̃(Θ−1x, t) = ΘF̃(Θ⊤x, t),

By construction, x→ U⊤
⊥x is preserved where U⊥ = Θe4 ∈ R4.
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Details on the setting

We compare three filters:

• EnKF with optimal multiplicative inflation (OMI)
• A stochastic map filter (SMF) based on radial basis functions with OMI
• A constrained stochastic map filter with OMI

For this low-dimensional problem, tapering is not beneficial.

Filter Category Preserve linear ininvariants
EnKF Linear 3

SMF Nonlinear 7

Constrained SMF Nonlinear 3
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Results for the embedded Lorenz-63 model
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Figure 8: Evolution of the RMSE with the
ensemble size M for the EnKF (blue), the
SMF (yellow), and the constrained SMF
(green).
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Figure 9: Evolution of the spread with the
ensemble size M.

Takeway: Constrained SMF exploits structure + nonlinear update
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Evolution of the invariant U⊤
⊥xt

Figure 10: Evolution of U⊤
⊥xt for M = 120.
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Evolution of the invariant U⊤
⊥xt
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Figure 10: Evolution of U⊤
⊥xt for M = 160.
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Future work and Acknowledgements

Summary:
• We introduced a class of linear invariant-preserving analysis maps for non-Gaussian
filtering problems

• In the Gaussian case, we recovered a constrained formulation of the Kalman filter
• Assessed the benefits of preserving linear invariants for linear /nonlinear ensemble
filters.

Future work:
• Extension to nonlinear invariants, e.g., Hamiltonian, energy, entropy
• Weak preservation of invariants in non-Gaussian settings

Main reference with Github repo:

Le Provost, M., Glaubitz, J., and Marzouk Y. (2024), “Preserving linear invariants in
ensemble filtering methods.”, arXiv:2404.14328

Funding: National Science Foundation (Grant PHY-2028125).
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