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Orthogonal projection operator

Let X C R™ be a subspace. Then the orthogonal projection operator Px(-) is the
linear operator satisfying

l.VeeX, Py(x)==
2. Vz e X1, Px(z)=0
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Orthogonal projection operator

Let X C R™ be a subspace. Then the orthogonal projection operator Px(-) is the
linear operator satisfying

l.VeeX, Py(x)==
2. Vz e X1, Px(z)=0

Decomposition of vectors

We can decompose any u € R™ uniquely as
U=+

wherez € X and z;, € Xt
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Optimization representation

The orthogonal projector P« (-) can be expressed as

Py (x) = argmin ||z — |2
TeX

forany € R™
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Matrix representation

The orthogonal projector Py can be represented by the matrix
Py =XX!

for any matrix X such that X = range(X). If we furthermore require that the
columns of X are linearly independent, then this specializes to

Py=X(XxTx)"'xT.
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Oblique projection operator

Let X, Y C R™ be subspaces thatintersect trivially. Then the projection onto X along
Yis the linear operator Ey y(-) satisfying

lLVeeX, Exy(x)==
2.Vye), Exy(y)=0
3. Vz e R™, E)("y(z) cXx



Obligue projections

Outline are:
Oblique projection operator
Let X, Y C R" be subspaces thatintersect trivially. Then the projection onto X along

Yis the linear operator Ey y(-) satisfying
lLVeeX, Exy(x)==

2.Vye), Exy(y)=0

3. VzeR" Exy(z)eX

Decomposition of vectors
We can decompose any u € R™ uniquely as

u=x+y+=z

wherez € X,y €Y,z € (XY UY) .
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Optimization representation

The oblique projector Ex y(-) can be expressed as
Exy(z) =X arg min | Xw — z||2
wst YT (Xw—2z)=0

for any matrix X such that X = range(X) and any matrix Y such that Y+ =
range(Y).
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Matrix representation

The oblique projector Ex y can be represented by the matrix
t
Exy=X(Y'X) Y7

for any matrix X such that X = range(X) and any matrix Y such that Y+ =
range(Y).



Outling Obligue projections Re ¢ 3 0 ink structure

[e]e]e]ele]ele] Jelele]elo]e) OO0 )OO [e]e]e]e]o]e)

Some identities

Exy+ Eyx = Pxuy
EX,:)/ + Ey’)(‘ + P(XU:)/)J- — I
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A-orthogonality and oblique complement

Let | 4 y denote
zlayesxTATAy=0.
If X C R™is a subspace, then we say that
XLA:{yER" Ve e X, xlyy}

is its obligue complement w.r.t. A. For the oblique projector EX7XLA, we just write
Ey.

11
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Matrix representation and splitting

The oblique projector Ex = Ey y14 can be expressed as
Eyx=X(AX)'A,
for any matrix satisfying X = range(X). Also, we can split any vector € R" as
x=Eyx+ (I — Ex)x
which satisfies

Exm J_A (I — Ex)$.

12
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Why is
.ExéL' J_A (I - .Ex)w?

Let Ex = X(AX)TA. Then we can show A-orthogonality by showing that

<X(AX)TAa;, (I - X(AX)TA) m>ATA ~0.

13
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Expanding, we see that

since VB € R™*"®

(BhTBTB = B.

14
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Oblique pseudoinverse

Let X € RP*™ with p < n such that X = range(X). Then we define the oblique
pseudoinverse as X; € R™*P where

XJT; = By () X

15
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Oblique pseudoinverse

Let X € RP*™ with p < n such that X = range(X). Then we define the oblique
pseudoinverse as X; € R™*P where

XJT; = By () X

If ¥ = ker(X)*, then X; = X (just the Moore-Penrose inverse).

15
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Properties of oblique pseudoinverse

L XXJ, =Py

2. X},X = Eyye(x)

3. XT = Prange(XT)X;r)

4. If Y = range(Y), then X3, = Y (X Y)".

16



REGULARIZED LEAST-SQUARES



Regularized least-squares

Outline

0O@000000000

Motivation: for general, regularized least-squares problems of the form

@' = argmin ||Fz — y|3 + | Raf3,
meRn

with F € R™" R € R¥" ker(F) Nker(R) = {0}, we often would like to convert
this using a change-of-variables to solving a problem of the form

2* = argmin |[Az — y|3 + |23
zERK

for some A to be determined, and some relation between z and x to be determined.

18
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Why would we like to convert to standard form? The solution we desire is given
explicitly by

—1
x = (FTF n RTR) FTy.

For high-dimensional problems, we must employ iterative methods such as the
Conjugate Gradient method to apply the inverse to a vector. The efficiency of this
method depends highly on the condition number of Q = FTF + RT R. The (heuristic)
observation is that for typical choices of F and R, making a change-of-variables and
dealing instead with @ = AT A + I gives a matrix with better conditioning and thus
easier/quicker to apply the needed inverse.

19
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Strongest assumption: if we assume that R~! exists, then with the

change-of-variables z = Rz < = = R~!z we obtain the solution by solving

2* =argmin |[FR 'z — y|j3 + ||2]3
z€R™

and recovering * = R~12*.

20
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A slightly weaker assumption: if we assume that ker(R) = {0} (R has linearly
independent columns), then R R is invertible and a matrix square root such as the
Cholesky factor Lin RT R = LL" exists and can be computed. With the
change-of-variables z = LTz < 2 = L~ 2, we obtain the solution by solving

2* = argmin |[FL™ Tz — y|3 + 2|3
zER™

and recovering * = L~ T 2*.

21
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But what to do when R not invertible and has a nontrivial kernel?
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Obligue projections to the rescue!
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Obligue projections to the rescue!

a* = argmin ||Fz — y||3 + || Rz|3
zeR™
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Obligue projections to the rescue!

a* = argmin ||Fz — y||3 + || Rz|3
zeR™

Consider the splitting R = ker(R) U ker(R)**, and for the solution =* = x; + x».

23
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Obligue projections to the rescue!

a* = argmin ||Fz — y||3 + || Rz|3
zeR™

Consider the splitting R = ker(R) U ker(R)**, and for the solution =* = x; + x».
Then, inserting the splitting, we arrive at two separate problems

argmin ||Fx; — y||3, argmin  ||[Fzy — y|3 + || Ra)3.
;pleker(R) (L‘QEkGI‘(R)LF

23
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For the second problem, we need the oblique projector E,, g).p. This is given by

Eyer(r)tr = ther(R)LFR’
for any W such that span( W) = ker(R). The oblique pseudoinverse can be
expressed as

t _(r_ 7 gt
Rl g = (I W(FW) F) R'.

We can also show that

RR! R=R

ker(R)LF

2%
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So we see that

argmin || Fzy — y|3 + || Raz|l3
xp€ker(R)LF
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So we see that

argmin || Fzy — y|3 + || Raz|l3
xp€ker(R)LF

is the same as solving

arg min IFE eyt ® = Yll3 + | REey gy r 2l
x n
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So we see that

argmin || Fay — g3 + | Ra 3
xp€ker(R)LF

is the same as solving

a‘rg%ﬂn ||FEker(R)lFm - y”% + ||R'Eker(R)LFmH§
TER™

which is the same as

argmin |[FR? Rz — y|3 + | RR” Rx|)3
zeR"

25



Outline

Regularized least-squares
00000000800

So we see that

argmin || Fay — g3 + | Ra 3
xp€ker(R)LF

is the same as solving

a‘rg%ﬂn ||FEker(R)lFm - y”% + ||R'Eker(R)LFmH§
TER™

which is the same as

argmin |[FR? Rz — y|3 + | RR” Rx|)3
zeR"

which is the same as

arg min ||FR#R:(: — y|5 + | Rx||3.
rER?
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This final problem can be written as

argmin || FR"z — y|3 + ||2[|3.
zerange(R)

What have we accomplished?

26
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This final problem can be written as

argmin || FR"z — y|3 + ||2[|3.
zerange(R)

What have we accomplished? It turns out, we can show that the solution to this
problem is the same as the solution to the unconstrained problem

argmin [|FR*z — y|5 + ||2|3.
zERFK

26
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SUMMARY

We have shown that the solution z* to

a* = argmin [|[Fz — y|3 + || Rz|[3
zER™

can be written as
= R"z" + W(FW)'y
where

2" = argmin |[FR%z — y|3 + ||2|3
2€RF

_ ((R#)TFTFR# + 1)71 (FR*)Ty.

27
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MATRIX DETERMINANT LEMMA

Matrix Determinant Lemma (part 1)
Let A € R™*™ Then

det <A + uvT)71 = (1 + vTA_1u> det(A)

forany u,v € R".

29
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MATRIX DETERMINANT LEMMA

Matrix Determinant Lemma (part 2)
Let A € R™*™ be invertible, and let U € R™**, V € R™** Then

det(A + UVT) = det (Ik +vTat U) det(A).

30
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SMIDENTITY

Sherman-Morrison Identity

Let A € R™ " be invertible and let u, v € R Then B := A + wv” is invertible iff
1+vT A=y # 0, in which case

=1l A lywTA7!
= T _ A1
B —(A+'u,'v> =A T oTA Tu

31



Outline Oblique p Reg -square: Low rank structure

0000800000000

SMW IDENTITY

Sherman-Morrison-Woodbury Identity

We have
-1
(A+UCV) ' =41 - AU (C’l +vAl U) VA~

when all of these products and inverses make sense.

32
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GAUSSIAN SAMPLING

Skipping many of these details, in statistical inverse problems we often find ourselves
in the situation that we would like to sample from the Gaussian

N([J,,E), = FTF+ Q, p= Q_lFTy'

33
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GAUSSIAN SAMPLING

Skipping many of these details, in statistical inverse problems we often find ourselves
in the situation that we would like to sample from the Gaussian

N([J,,E), = FTF+ Q, p= Q_lFTy'

Since  ~ N (1, X) = Az ~ N(Ap, AXAT), we know that if we could find a square
root factorization ¥ = LL” then we could draw a sample from this Gaussian.

33
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GAUSSIAN SAMPLING

Skipping many of these details, in statistical inverse problems we often find ourselves
in the situation that we would like to sample from the Gaussian

N([J,,E), = FTF+ Q, p= Q_lFTy'

Since  ~ N (1, X) = Az ~ N(Ap, AXAT), we know that if we could find a square
root factorization ¥ = LL” then we could draw a sample from this Gaussian.

But the problem is that even though computing a square root factorization of @ may
be feasible, computing a square root factorization of F7F + Q may not be feasible.
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If the posterior covariance is close to a low-rank update of the prior covariance, then
Q :FTFQ 2=VAV =~ V,A, VT

is a good approximation.
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Then, by the SMW |dent|ty we have
— -1
(VAVT+IQ —L-V (AT VTV) VT

:h—v@ﬂ+Q4VT

-1
i+ 1
=1, — V(diag <)\ + )) vT
Ai
. Ai T
—In—leag<)\i+1) |4

:In—Vrdiag<)\)\ ) Z d1ag<

i=r+1

) oT
~I,-V,D. VI

where D, = dlag( L) e R™7,

36
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The final expression for the covariance is
S~ Q3 (I— V,D, VTT) Q:.

It turns out that this approximation also provides us with an expression for a square
root of the covariance:

1/2
—I,-V, [In + (I, - D,)

(ST

(In _V,D, V,T) } vT.

r

37
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}VT)<I—V[I +(I,-D )ﬂVTT)
—I—2V[ 1,- D)} VI + V. [Lo+ (L - D)} VIV, [L+ (1 - D] V]!
)}VT—&-V[I—i—I—D)%}[In—i-(In—Dr)ﬂVTT
1,2V, [I+I—D)]VT+V[I+2I—D)%+In—DT]VTT

I+ V, [—21 —2(I, - D,)? } ViV, [21 +2(In—DT)%—DT] vT
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So a square root of the covariance is
1 _1 i T
N x Qo In—VT[Ini(In— )2]V

This has the nice benefit of letting us take advantage of a square root factorization of
Q, which may be much cheaper to compute than for X.

39



Outline Reg zed least-square: Low rank structure

« )00 00000000000 000000000000@

REFERENCES

¥ Per Christian Hansen
“Discrete Inverse Problems: Insight and Algorithms”
Society for Industrial and Applied Mathematics, 2010

@ Havard Rue, Leonhard Held
“Gaussian Markov Random Fields”
CRC Press, 2005

[4  Alessio Spantini
“On the low-dimensional structure of Bayesian inference”
Massachusetts Institute of Technology, 2017

4 Low
“On the low-dimensional structure of Bayesian inference”
Massachusetts Institute of Technology, 2017

40



	Outline
	Oblique projections
	Regularized least-squares
	Low rank structure

