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Orthogonal projection operator

Let X ⊂ Rn be a subspace. Then the orthogonal projection operator PX (·) is the
linear operator satisfying
1. ∀x ∈ X , PX (x) = x
2. ∀x ∈ X⊥, PX (x) = 0

Decomposition of vectors

We can decompose any u ∈ Rn uniquely as

u = x + x⊥

where x ∈ X and x⊥ ∈ X⊥.
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Optimization representation

The orthogonal projector PX (·) can be expressed as

PX (x) = arg min
x̂∈X

‖x − x̂‖2

for any x ∈ Rn .
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Matrix representation

The orthogonal projector PX can be represented by the matrix

PX = XX†

for any matrix X such that X = range(X). If we furthermore require that the
columns of X are linearly independent, then this specializes to

PX = X(XTX)−1XT .
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Oblique projection operator

LetX ,Y ⊂ Rn be subspaces that intersect trivially. Then the projection ontoX along
Y is the linear operator EX ,Y(·) satisfying
1. ∀x ∈ X , EX ,Y(x) = x
2. ∀y ∈ Y , EX ,Y(y) = 0
3. ∀z ∈ Rn , EX ,Y(z) ∈ X

Decomposition of vectors

We can decompose any u ∈ Rn uniquely as

u = x + y + z

where x ∈ X ,y ∈ Y, z ∈ (X ∪ Y)⊥.
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Optimization representation

The oblique projector EX ,Y(·) can be expressed as

EX ,Y(z) = X
(

arg min
w s.t.Y T (Xw−z)=0

‖Xw − z‖2

)

for any matrix X such that X = range(X) and any matrix Y such that Y⊥ =
range(Y ).
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Matrix representation

The oblique projector EX ,Y can be represented by the matrix

EX ,Y = X
(

Y TX
)†

Y T

for any matrix X such that X = range(X) and any matrix Y such that Y⊥ =
range(Y ).
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Some identities

EX ,Y + EY,X = PX∪Y

EX ,Y + EY,X + P(X∪Y)⊥ = I
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A-orthogonality and oblique complement
Let x ⊥A y denote

x ⊥A y ⇔ xTATAy = 0.

If X ⊂ Rn is a subspace, then we say that

X⊥A = {y ∈ Rn : ∀x ∈ X , x ⊥A y}

is its oblique complement w.r.t. A. For the oblique projector EX ,X⊥A , we just write
EX .
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Matrix representation and splitting

The oblique projector EX = EX ,X⊥A can be expressed as

EX = X(AX)†A,

for any matrix satisfying X = range(X). Also, we can split any vector x ∈ Rn as

x = EXx + (I − EX )x

which satisfies

EXx ⊥A (I − EX )x.
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Why is

EXx ⊥A (I − EX )x ?

Let EX = X(AX)†A. Then we can show A-orthogonality by showing that〈
X(AX)†Ax,

(
I − X(AX)†A

)
x
〉

AT A
= 0.
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Expanding, we see that

〈. . . , . . .〉AT A = xTATAX(AX)†Ax − xTAT ((AX)†)TXTATAX(AX)†Ax
= xTATAX(AX)†Ax − xTAT ((AX)†)T (AX)T (AX)(AX)†Ax
= xTATAX(AX)†Ax − xTAT ((AX)†)T (AX)T (AX)(AX)†Ax
= xTATAX(AX)†Ax − xTAT (AX)(AX)†Ax
= 0

since ∀B ∈ Rm×n ,

(B†)TBTB = B.
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Oblique pseudoinverse

Let X ∈ Rp×n with p ≤ n such that X = range(X). Then we define the oblique
pseudoinverse as X†

Y ∈ Rn×p where

X†
Y = EY,ker(X)X†.

If Y = ker(X)⊥, then X†
Y = X† (just the Moore-Penrose inverse).
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Properties of oblique pseudoinverse

1. XX†
Y = PX

2. X†
YX = EY,ker(X)

3. X† = Prange(XT )X
†
Y

4. If Y = range(Y ), then X†
Y = Y (XY )†.
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Motivation: for general, regularized least-squares problems of the form

x? = arg min
x∈Rn

‖Fx − y‖22 + ‖Rx‖22,

with F ∈ Rm×n,R ∈ Rk×n, ker(F) ∩ ker(R) = {0}, we often would like to convert
this using a change-of-variables to solving a problem of the form

z? = arg min
z∈Rk

‖Az − y‖22 + ‖z‖22

for some A to be determined, and some relation between z and x to be determined.
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Why would we like to convert to standard form? The solution we desire is given
explicitly by

x =
(

FTF + RTR
)−1

FTy.

For high-dimensional problems, we must employ iterative methods such as the
Conjugate Gradient method to apply the inverse to a vector. The efficiency of this
method depends highly on the condition number of Q = FTF + RTR. The (heuristic)
observation is that for typical choices of F and R, making a change-of-variables and
dealing instead with Q̃ = ATA + I gives a matrix with better conditioning and thus
easier/quicker to apply the needed inverse.
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Strongest assumption: if we assume that R−1 exists, then with the
change-of-variables z = Rx ⇔ x = R−1z we obtain the solution by solving

z? = arg min
z∈Rn

‖FR−1z − y‖22 + ‖z‖22

and recovering x? = R−1z?.
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A slightly weaker assumption: if we assume that ker(R) = {0} (R has linearly
independent columns), then RTR is invertible and a matrix square root such as the
Cholesky factor L in RTR = LLT exists and can be computed. With the
change-of-variables z = LTx ⇔ x = L−Tz , we obtain the solution by solving

z? = arg min
z∈Rn

‖FL−Tz − y‖22 + ‖z‖22

and recovering x? = L−Tz?.
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But what to do when R not invertible and has a nontrivial kernel?
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Oblique projections to the rescue!

x? = arg min
x∈Rn

‖Fx − y‖22 + ‖Rx‖22

Consider the splitting Rn = ker(R) ∪ ker(R)⊥F , and for the solution x? = x1 + x2.
Then, inserting the splitting, we arrive at two separate problems

arg min
x1∈ker(R)

‖Fx1 − y‖22, arg min
x2∈ker(R)⊥F

‖Fx2 − y‖22 + ‖Rx2‖22.
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For the second problem, we need the oblique projector Eker(R)⊥F . This is given by

Eker(R)⊥F = R†
ker(R)⊥F

R,

for any W such that span(W ) = ker(R). The oblique pseudoinverse can be
expressed as

R†
ker(R)⊥F

=
(

I − W (FW )†F
)

R†.

We can also show that

RR†
ker(R)⊥F

R = R
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So we see that

arg min
x2∈ker(R)⊥F

‖Fx2 − y‖22 + ‖Rx2‖22

is the same as solving

arg min
x∈Rn

‖FEker(R)⊥F x − y‖22 + ‖REker(R)⊥F x‖22

which is the same as

arg min
x∈Rn

‖FR#Rx − y‖22 + ‖RR#Rx‖22

which is the same as

arg min
x∈Rn

‖FR#Rx − y‖22 + ‖Rx‖22.
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This final problem can be written as

arg min
z∈range(R)

‖FR#z − y‖22 + ‖z‖22.

What have we accomplished?

It turns out, we can show that the solution to this
problem is the same as the solution to the unconstrained problem

arg min
z∈Rk

‖FR#z − y‖22 + ‖z‖22.
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SUMMARY

We have shown that the solution x? to

x? = arg min
x∈Rn

‖Fx − y‖22 + ‖Rx‖22

can be written as

x? = R#z? + W (FW )†y

where

z? = arg min
z∈Rk

‖FR#z − y‖22 + ‖z‖22

=
(
(R#)TFTFR# + I

)−1
(FR#)Ty.
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MATRIX DETERMINANT LEMMA

Matrix Determinant Lemma (part 1)

Let A ∈ Rn×n . Then

det
(

A + uvT
)−1

=
(
1 + vTA−1u

)
det(A)

for any u, v ∈ Rn .
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MATRIX DETERMINANT LEMMA

Matrix Determinant Lemma (part 2)

Let A ∈ Rn×n be invertible, and let U ∈ Rn×k , V ∈ Rn×k . Then

det
(

A + UV T
)
= det

(
Ik + V TA−1U

)
det(A).
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SM IDENTITY

Sherman-Morrison Identity

Let A ∈ Rn×n be invertible and let u, v ∈ Rn . Then B := A + uvT is invertible iff
1 + vTA−1u 6= 0, in which case

B−1 =
(

A + uvT
)−1

= A−1 −
A−1uvTA−1

1 + vTA−1u .

31



Outline Oblique projections Regularized least-squares Low rank structure

SMW IDENTITY

Sherman-Morrison-Woodbury Identity

We have

(A + UCV )−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1

when all of these products and inverses make sense.
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GAUSSIAN SAMPLING

Skipping many of these details, in statistical inverse problems we often find ourselves
in the situation that we would like to sample from the Gaussian

N (µ,Σ), Σ−1 = FTF + Q, µ = Q−1FTy.

Since x ∼ N (µ,Σ) ⇒ Ax ∼ N (Aµ,AΣAT ), we know that if we could find a square
root factorizationΣ = LLT then we could draw a sample from this Gaussian.

But the problem is that even though computing a square root factorization of Q may
be feasible, computing a square root factorization of FTF + Q may not be feasible.
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Σ =
(

FTF + Q
)−1

=
(

FTF + Q
1
2 Q

1
2

)−1

=

(
Q

1
2

(
Q− 1

2 FTFQ− 1
2 + In

)
Q

1
2

)−1

= Q− 1
2

(
Q− 1

2 FTFQ− 1
2 + In

)−1
Q− 1

2 .
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If the posterior covariance is close to a low-rank update of the prior covariance, then

Q− 1
2 FTFQ− 1

2 = VΛV T ≈ VrΛrV T
r

is a good approximation.
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Then, by the SMW identity we have(
VΛV T + In

)−1
= In − V

(
Λ−1 + V TV

)−1
V T

= In − V
(
Λ−1 + I

)−1
V T

= In − V
(

diag
(
λi + 1

λi

))−1

V T

= In − V diag
(

λi
λi + 1

)
V T

= In − Vr diag
(

λi
λi + 1

)
V T

r −
n∑

i=r+1

diag
(

λi
λi + 1

)
vivT

i

≈ In − VrDrV T
r

where Dr := diag( λi
λi+1) ∈ Rr×r .
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The final expression for the covariance is

Σ ≈ Q− 1
2

(
I − VrDrV T

r

)
Q− 1

2 .

It turns out that this approximation also provides us with an expression for a square
root of the covariance:(

In − VrDrV T
r

)1/2
= In − Vr

[
In ± (In − Dr)

1
2

]
V T

r .
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(
In − Vr

[
In + (In − Dr)

1
2

]
V T

r

)(
In − Vr

[
In + (In − Dr)

1
2

]
V T

r

)T

= In − 2Vr

[
In + (In − Dr)

1
2

]
V T

r + Vr

[
In + (In − Dr)

1
2

]
V T

r Vr

[
In + (In − Dr)

1
2

]
V T

r

= In − 2Vr

[
In + (In − Dr)

1
2

]
V T

r + Vr

[
In + (In − Dr)

1
2

] [
In + (In − Dr)

1
2

]
V T

r

= In − 2Vr

[
In + (In − Dr)

1
2

]
V T

r + Vr

[
In + 2 (In − Dr)

1
2 + In − Dr

]
V T

r

= In + Vr

[
−2In − 2 (In − Dr)

1
2

]
V T

r + Vr

[
2In + 2 (In − Dr)

1
2 − Dr

]
V T

r

= In − VrDrV T
r
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So a square root of the covariance is

Σ
1
2 ≈ Q− 1

2

(
In − Vr

[
In ± (In − Dr)

1
2

]
V T

r

)
.

This has the nice benefit of letting us take advantage of a square root factorization of
Q, which may be much cheaper to compute than forΣ.
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