
Sparsity-Promoting Multiplicative Denoising via Block Coordinate Descent
Jonathan Lindbloom, Anne Gelb
Dartmouth College, Department of Mathematics

Abstract

Images produced by coherent imaging techniques, such as synthetic
aperture radar (SAR), ultrasound imaging, and positron emission tomog‐
raphy (PET), are frequently contaminated by multiplicative noise. Unfor‐
tunately, numerical methods for additive (Gaussian) denoising cannot
easily be modified to handle multiplicative noise.

We propose two new block coordinate descent methods for sparsity‐
promoting multiplicative denoising assuming a Gamma multiplicative
noise model. The first method is applicable when the unknown has first
been obscured by a linear measurement operator A ∈ Rm×n

+ , whereas
the second method is carried out in the log domain but requiresA = In

(the identity). Both methods accommodate general sparsifying transfor‐
mations R ∈ Rk×n. Convexity analysis and convergence guarantees
are presented.

To accelerate the methods, we employ a Newton‐Krylov method for the
solution of their most computationally‐intensive subproblems. Finally,
we develop an efficient priorconditioned Newton‐Krylov method for a
very general class of nonlinear optimization problems, which can be
viewed as a generalization of the popular priorconditioning technique of
the statistical inverse problem community to non‐Gaussian likelihoods.
We then apply this method to further accelerate the proposed multi‐
plicative denoising methods.

General model

For an unknown u ∈ Rn
++, we assume that the corrupted observation

f ∈ Rn
++ arises from the observational model

f = (Au) ⊙ η.

HereA ∈ Rm×n
+ is a nonnegative linear measurement operator, andη ∈

Rm
++ having entries independently and identically distributed according
to a gamma distribution [η]i ∼ Gamma(L, L) for some parameter L > 0.

For the reconstruction of u, we propose to model u via the hierarchical
generative model

[f ]i | u
ind∼ Gamma

(
L,

L

[Au]i

)
, i = 1, . . . , m,

u | θ ∼ N
(

0,
(

RT D−1
θ R

)−1
)

,

[θ]i
iid∼ GG (r, β, ϑ) , i = 1, . . . , k.

where we employ a sparsity‐promoting, conditionally‐Gaussian prior for
the signal vector u. The degree of sparsity is controlled by the three
hyperparameters r, β, ϑ.

Applying Bayes’ theorem, the negative log posterior density is of the
form

E(u, θ) =
m∑

i=1
L log

(
[Au]i

)
+ L

[f ]i
[Au]i

+ 1
2
∥D

−1/2
θ Ru∥2

2 − log π(θ),

with π(θ) collecting hyperprior terms. We then seek the MAP estimate
of the parameters (uMAP, θMAP) = arg min(u,θ) E(u, θ).

Logmodel

If A = In, then one can formulate a similar model in the log‐domain.
Defining y := log(f ), x := log(u), ϵ := log η, we obtain the additive
model y = x + ϵ. Formulating a similar hierarchical model for x, the
negative log posterior density we consider has the form

H(x, θ) =
n∑

i=1
L([x]i − [y]i) + L exp{[y]i − [x]i}

+ 1
2
∥D

−1/2
θ Rx∥2

2 − log π(θ).

A benefit of the log model is that the likelihood is log‐concave, whereas
the likelihood in the general model is not. However, reconstructions via
the log model can be biased towards lower intensity.

Block coordinate descent methods

To solve the MAP problem, we employ the block coordinate descent
method

θ(k+1) = arg min
θ

E(u(k), θ),

u(k+1) = arg min
u

E(u, θ(k+1))

for the general model, and similarly for the log model.

The subproblem for updating θ can be solved via an ODE method or
by an analytic formula depending on the hyperparameters r and β, and
in either case is relatively cheap to compute.

The subproblem for updating u amounts to minimizing the negative log
likelihood regularized by a quadratic penalty. With F(u) the objective,
we consider solving this subproblem using a either first‐order gradient,
or by a second‐order Newton‐Krylov method of the form

u(k+1) = u(k) − αk

(
Du,uF(u(k))

)−1
DuF(u(k)).

The step sizes {αk} chosen by an Armijo line search. For the general
model the hessian may be nonsingular, but can be made singular with
a simple modification. For the log model, the hessian is always nonsin‐
gular.

Analysis

Lemma. The objective functions E(u, θ) and H(x, θ) are proper, lower
semicontinuous, closed, have closed sublevel sets, and are coercive. They
also achieve minimum values.

Theorem. The objective function E(u, θ) is generally nonconvex. The
objective functionH(x, θ) is strictly convex if r ≥ 1 and η = rβ − 3

2 > 0,
but is generally nonconvex otherwise.

Convergence

Theorem. Let {x(k), θ(k)} denote the iterates of the block coordinate de‐
scent applied the log model objective H(x, θ). Then any limit point of
{x(k), θ(k)} is a stationary point of H(x, θ). If r ≥ 1 and η = rβ −3/2 > 0,
then any limit point of {x(k), θ(k)} is a unique minimizer of H(x, θ).

Conjecture. Let {u(k), θ(k)} denote the iterates of the block coordinate
descent applied the general model objective E(u, θ). Then any limit point
of {u(k), θ(k)} is a stationary point of E(u, θ).

One-dimensional denoising

Here we consider the denoising task (A = In) with sparsity in the dis‐
crete gradient. We fix r = −1, β = 1, and show results for varying ϑ.

Priorconditioned Newton-Krylov method

Utilizing a Newton‐Krylov method for the u/x subproblem of the co‐
ordinate descent requires the repeated solution of (possibly large) lin‐
ear systems with a Krylov method such as the Conjugate Gradient (CG)
method. Hence it is advantageous to precondition these system solves.

A variety of preconditioning strategies may be employed. One popular
approach is known as priorconditioning, which for models with additive
Gaussian noise turns the MAP problem of solving[

A
R

]
x⋆ =

[
y
0k

]
in least‐squares ⇐⇒ x⋆ = arg min

x∈Rn

1
2
∥Ax − y∥2

2 + 1
2
∥Rx∥2

2

into the related problem of solving

[
AR#

Ik

]
z⋆ =

[
y
0k

]
in least‐squares ⇐⇒ z⋆ = arg min

z∈Rk

1
2
∥AR#z − y∥2

2 + 1
2
∥z∥2

2

where R# is an oblique (A‐weighted) pseudoinverse. This has an in‐

terpretation as a standard form transformation for regularized least‐
squares problems.

We propose a novel extension of the priorconditioning technique to
the non‐Gaussian setting. Specifically, we consider the general class of
problems

arg min
x∈Rn

m∑
i=1

ϕi([Ax]i ; [y]i) + 1
2
∥Rx∥2

2.

of which the u/x subproblems in our multiplicative denoising methods
are special cases. LettingW(x) be this objective, we show how for this
class of problems the computation of the Newton direction

d(k) = −(Dx,xW(x(k)))−1(DxW(x(k))
can be cast as the solution to a least‐squares problem, to which the
priorconditoning technique can be employed as in the Gaussian setting.

Joint denoising and inpainting

Here we use the general model algorithm for a joint denoising (L =
10) and inpainting task, assuming sparsity in the discrete gradient. Red
pixels are unobserved, and we pick r = 1, η = 10−2, ϑ = 1

2.

SAR despeckling

Here we use the log model algorithm for despeckling a synthetic aper‐
ture radar (SAR) scene, assuming sparsity in the discrete gradient.

Joint denoising and deblurring

Here we use the general model algorithm for a joint denoising and
deblurring task, assuming sparsity in the discrete gradient. This is
the most challenging example shown, since here L = 1. We pick
r = −1, β = 1, ϑ = −1.

Future directions

Automated regularization parameter selection: in our methods the
parameter ϑ plays the role of a regularization strength parameter
which must be specified or hand‐tuned by the user.
Nonconvexity: since we work with generalized Gamma hyperpriors,
one might consider hybrid or path‐following approaches to obtain
better results with strongly promoting priors.
Uncertainty quantification: here we seek only the MAP estimate of
the unknown. To obtain UQ information one might consider
sampling sampling the posterior distribution via MCMC, or other
approaches to UQ.
Other sparsifying transformations: our examples assume sparsity in
the discrete gradient. However, our approach allows for a general
sparsifying transformation, so one could easily consider sparsity in
our bases, e.g., wavelet coefficients.
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