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Narrative of this talk

Reconstructing environmental variables of sea ice state from
observations is typically ill-posed due to lack of data and noise

We need to introduce regularization in the form of a prior to
obtain good reconstructions

Not all priors are created equal; some priors recover certain
features (such as floe edges) better than others

To use better priors, the price we pay is that we lose convexity and
algorithmic convergence guarantees

The goal of this work is to obtain good reconstructions
with sparsity priors in spite of this loss of convexity, for
large-scale problems
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Bayesian inverse problems
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Inverse problems

The typical case: we have some data y ∈ Rm that we assume comes
from the generative model

y = Fx + ϵ, ϵ ∼ N (0,Q−1), (1)

for some known linear measurement operator F ∈ Rm×n, unknown
ground truth x ∈ Rn, and noise ϵ.

Even if F −1 exists, inverting the observation with F −1 yields poor
reconstructions due to ill-posedness of the reconstruction problem
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Figure 1: Optical imagery (ground truth).
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Figure 2: F representing a blurring/averaging.
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Figure 3: F representing an up-sampling, used in super-resolution,
combining observations of disparate resolutions, pan-sharpening.
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Figure 4: F is just the identity, as in the product model for synthetic
aperture radar (SAR) de-despeckling.

ICEYE Strip SAR Example, Arctic Ocean (∼ 12 km x 27 km )
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Bayesian formulation of the reconstruction task

Goal: characterize the posterior probability density

π(x ∣ y)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(posterior)

∝

likelihood (data fidelity)
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
π(y ∣x) × π(x)

²
prior (regularization)

(2)

In our work, we focus on finding the maximum a posteriori (MAP)
point estimate

xMAP = argmin
x

{− logπ(x ∣ y)} . (3)

Future work will consider characterizing the full posterior density,
which then permits uncertainty quantification for the
reconstruction.
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Common (convex) priors

1 ℓp-norm priors, 1 ≤ p ≤ 2

π(x)∝ exp{−λ∥Rx∥pp} (4)

⇒ xλ = argmin
x

{∥Fx − y∥22 + λ∥Rx∥pp} (5)

2 Total variation (TV) prior

π(x)∝ exp{−λ∥Rx∥1} (6)

⇒ xλ = argmin
x

{∥Fx − y∥22 + λ∥∇x∥1} (7)

The selection of the “best” regularization parameter λ is a field in and
of itself.
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Figure 5: Tikhonov reconstruction for de-blurring problem with R = ∇
(image gradient), π(x)∝ exp{−λ∥∇x∥22}.
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Sparsity-promoting priors
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Motivation

Hypothetically the prior is a free parameter (choose whatever
regularization penalty you want)

However, convexity of the MAP estimate depends on the prior

Non-convex priors can yield superior reconstructions in sparse
signal recovery, edge-preserving inversion, etc.

With non-convex problems you may lose convergence guarantees,
convex algorithms may no longer produce good solutions,
generally harder to approach
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The idea

Represent non-convex priors marginally as scale-mixtures of
Gaussians

π(x) = ∫ π(x ∣ θ)π(θ)dθ

where the joint density π(x,θ) is conditionally Gaussian when
conditioned on θ. Here π(θ) is a hyper-prior for the
hyper-parameters θ, related to the prior we want to work with.

We now infer a posterior over both the unknown source, as well as
the parameters θ. We can also infer unknown noise levels in this
framework, which are vital to the quality of the reconstruction.

π(x,θ ∣ y)∝ π(y ∣ ,x,θ)π(x ∣ θ)π(θ).
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The new problem

argmin
(x,α,β)

1

2α2
∥Fx − y∥22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
data fidelity

+

prior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∥Rx∥2

D−1β
+m

2
logα + log det(Dβ) − logπ(α,β)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
hyper-parameters

Bayesian coordinate descent (BCD) algorithm for obtaining the
posterior mean1

Iterative alternating sequential (IAS) algorithm for obtaining the
MAP estimate, with the global hybrid variant to tackle
non-convexity2

1Glaubitz, Gelb, and Song, Generalized sparse Bayesian learning and application
to image reconstruction.

2Calvetti, Pragliola, and Somersalo, “Sparsity Promoting Hybrid Solvers for
Hierarchical Bayesian Inverse Problems”.
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Our novel contributions

1 We have proven convexity conditions for the hierarchical model
that apply in more general settings than has been shown before;
(1) for non-invertible regularization R, (2) unknown noise
variance, and (3) multiple observations with unknown noise
variance (data fusion)

2 We have applied auxiliary variable techniques to develop a new
variant of IAS, partially-collapsed Gibbs IAS (PCG-IAS), which
can exploit diagonalizations of operators and is computationally
feasible for large-scale inversion
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Numerical examples
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Figure 6: Example data.
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Figure 7: Two reconstructions via PCG-IAS; convex solution (left) used to
initialize sparse gradient, non-convex solution (right)
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Figure 8: Inferred (gradient) regularization weights for the convex solution
and non-convex solution.
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Figure 9: Inferred (gradient) regularization weights for the non-convex
problem, with and without global hybrid initialization. Both solutions are
local minima of the same problem.

J. Lindbloom Generalized hybrid solvers Nov. 1, 2022 22 / 28



Figure 10: Low-resolution data ( 96 x 126 ).
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Figure 11: Super-resolution reconstruction ( 2000 x 3240 ).
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Figure 12: Real synthetic aperture radar image (contaminated by speckle
noise).
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Figure 13: Variance image in reconstruction, according to reconstruction
with a total variation prior.
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Figure 14: Variance image in reconstruction, according to reconstruction
with a Cauchy difference prior.
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Future directions

Testing with MURI challenge problem 1

Development of toolkit for easy access to solvers (to be released)

Applying our solvers to de-speckling

Uncertainty quantification

Data fusion

Application to pan-sharpening
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