VEDIT PLUS

PROGRAMMING GUIDE

-171-

VEDIT PLUS Programming Guide

-172-

VEDIT PLUS Programming Guide
Introduction

PROGRAMMING GUIDE

This section covers the Command Mode in much greater detail. In
particular it explains how the Command Mode may be used as a
powerful text oriented programming language. It first introduces
"ecommand macros" which are the programs of VEDIT PLUS. It then
covers the programming language topic by topic. Last, each command
is described in detail.

Introduction to Programming

Even if you have never written computer programs before, you will
find it easy and useful to write your own "programs" in VEDIT PLUS.
As you will see, there is no real distinction between "commands"
and "programs"; it can be said that a single command is just a very

short program. If that doesn't satisfy your intuitive definition
of a "program" you can follow the example in the Tutorial "Command
Macros from Visual Mode". By all accounts, you have then written

and used a real "program".

Programs are just sequences of commands. Some programs are quite
short, such as the one in the Tutorial, while others can be quite
long and sophisticated, such as the supplied COMPARE and SORT
programs. Useful programs do not need to be long - many useful
programs consist of less than ten commands and are just one line
long!

Any program, no matter how long, can be entered directly from the
keyboard while in Command Mode. Many short one line programs are
in fact entered in response to the "COMMAND:'" prompt - when you
press RETURN the program is executed. However, it would be tedious
and error prone to have to type in the entire program each time you
wanted to execute it. Therefore, you can store programs 1in the

text registers - one program per text register. The sequence of
commands stored in any text register can then be executed, just as
if you had typed them in by hand. Any sequence of commands

executed in a text register is referred to as a "command macro" or
just "macro" for short. Since all but the simplest programs are
usually executed from text registers, we use the term "command
macro" quite broadly to refer to all VEDIT PLUS programs.

Command Macros

Command macros are sequences of Command Mode commands stored in the
text registers - it may be just a single command or hundreds of
commands. Sequences of commands, i.e. "programs" which are used
over and over again are wusually saved as command macros. The
entire program can then be executed with a single command. Command

173

VEDIT PLUS Programming Guide
Introduction

macros can be saved on disk and re-used at a later time.

There is nothing special about the way command macros are stored in
the text registers - there is no difference between text registers
or even edit buffers that contain text and those that contain
command macros. It is up to you to keep track of which text
registers contain text and which contain commands. {You can
accidentally execute normal text as a command macro, with
unpredictable results.)

An existing command macro on disk is usually loaded into a text
register with the "BL" command. A new macro is usually entered by
editing the text register in Visual Mode. A newly entered macro
can be saved on disk for later use by exiting the edit buffer, or
with the "RS" (register save) command.

The commands 1in a text register are executed with the "M" command
or from Visual Mode with the [MACRO] function.

M6 Executes macro in register 6.

The 36 text registers allow complex macros to be broken down into
several simpler ones, each stored in its own text register. This
is analogous to the programming concept of "subroutines". Since a
macro can iiself contain he "M" command, it can exccute other
subroutine-like macros.

Command Macros in Visual Mode

Command macros let you create your own Visual Mode edit functions
which are accessible via the [MACRO] function. The following short
macros would be better handled as "keystroke macros" as described
in the Tutorial. However, the following steps apply to those
macros which are too large to be keystroke macros.

The following example is an edit function which duplicates the
current text line on the next line. It also moves the cursor to
the beginning of the new line. This saves you the time of typing a
line of text which is identical or nearly identical to the previous
line.

OL 1RC9 L RG9 -L Macro to duplicate a line of text.

The second example is a cursor movement function which moves the
cursor to the beginning of the next sentence.

@F/.!S/ @F/!F/ -C Macro to move the cursor to the
beginning of the next sentence.

17q

VEDIT PLUS Programming Guide
Introduction

To access a command macro with [MACRO], you must first place the
commands in a text register you will not be using for other
purposes. Notice that the first macro uses text register 9 for its
operation; therefore, register 9 must also not be used for other
purposes.

If you are repeatedly using a command macro (from Visual or Command
Mode), it is easy to automatically set it up wusing the VEDIT.INI
"auto-startup” file. For example, to set up the above two macros,
create a VEDIT.INI file with the following commands in it (or add
these commands to your existing VEDIT.INI file}:

@RID;0L 1RCY9 L RG9 -L;
@RIS;@F/.!S/ @F/IF/ -C;

After invoking VEDIT PLUS you can then immediately use the two
macros from Visual Mode:

[MACRO]-D To duplicate a line.

[MACRO]-S To move cursor to next sentence.

Search and Replace in Multiple Files

This is an in-depth example of how to use command macros to
automate the process of performing a large search and replace
operation on several files.

This example assumes you have a long report written as ten separate
files and that you have consistently misspelled 20 words.
Correcting this could be a very time consuming editing operation,
but it can be automated with two command macros. One macro
containg the global search and replace for each of the 20 words.
The second macro contains the commands to edit each of the ten
files and, for each file, execute the search/replace macro. Once
the two macros are entered and begin executing, you can take a
coffee break while the 200 (10 times 20) operations are
automatically performed. {(ALWAYS make a backup copy of the files
before performing complex macros. It 1is very easy for a small
syntax error, a power failure or a disk error to destroy the files
being automatically edited!)

For this example, the first macro will be created in the edit
buffer "S". Use the [WINDOW]-Switch function or "EE" command to
switch to edit buffer "S" and enter the following macro from Visual
Mode: ("wordl" is the first misspelled word and "fixI" is its
correct spelling, etc.)

..175_

VEDIT PLUS Programming Guide
Introduction

ES 8 1
ES 9 1
B#S/wordl/fixl/
B#S/word2/fix2/
B#S/word3/fix3/

B#S/word20/fix20/
The first two commands specify that explicit delimiters are to be
used and that search errors are to be suppressed. Since explicit
delimiters are wused, the <ESC> character is not needed anywhere.

Search errors must be suppressed because, otherwise, if any word is
not found the entire macro aborts.

The second macro reads in each of the ten files, executes the first
macro, writes the file back to disk and continues with the next
file. Switch to edit buffer "F" and enter the following macro:

EB filel.txt

EB file2.txt

EB filelO.txt

With both macros entered you can now start the "program" with the
command to execute text register "F":

MF Execute text register "F" as a macro.
It is often desirable to save macros on disk for future use. The
commands to save these two macros are:

RSS macrol.vdm
RSF macro2.vdm

Similarly, the commands to retrieve them from disk are:

RLS macrol.vdm
RLF macro2.vdm

The commands to display them on the screen are:

RTS
RTF

_176-

VEDIT PLUS Programming Guide
Iteration Loops

An iteration loop is a group of commands which repeats with or
without user intervention as many times as desired. As its name
implies, an iteration loop lets a sequence of commands loop over
and over again.

An iteration loop's general construction is a group of commands
enclosed by brackets "[" and "]" and preceded by an "iteration
count", which specifies how many times the entire group of commands
is to be executed. An iteration loop operates by executing the
first command of the group through the last command and then
starting over again with the first command.

The following example prints 10 pages with only 20 lines of text on
each page:

10[20PR PE 20L]

The "20PR" prints 20 lines of text, the "PE" starts a new page and
the "20L" moves the edit pointer over the text just printed. Due
to the iteration loop, this sequence of commands is executed for a
total of "10" times.

The "[" and "]" may also occur within each other for "nested"
iteration loops. For example, the iteration "S[4T]" displays the
same four lines over again five times. The iteration
"3[5[4T] 4L]" displays the same four lines five times, then moves
to the next four lines and displays them five times and last, moves
to the next four lines and displays them five times.

Iteration Count

If no explicit "iteration count" is given, it defaults to "#"
(65535) which signifies "forever" or "all". This is used when the
iteration is to continue as long as possible. For clarity's sake,
the "#" may also be explicitly specified. The following identical
examples display (type) all lines which contain the word "teeth":

#[Fteeth$ OT T]
[Fteeth$ OT T} Short-hand for above.

It is normal to get the error message "CANNOT FIND ..." with
iteration loops, such as the ones above, which search for all
occurrences of a string, because they are literally searching for
65535 occurrences. Therefore, an iteration loop ends when its
iteration count is exhausted or a search or other error occurs.

]77

VEDIT PLUS Programming Guide
lteration Loops

Search error handling is often suppressed in command macros. In
this case, when a search is unsuccessful, no error is given, but
the iteration loop is stopped and execution continues with the
commands following the iteration loop. This may be an outer level
iteration loop.

A similar situation occurs with an "L" command in iteration loops.
If an "L" command attempts to go past either end of the edit
buffer, it too stops the iteration loop. This is convenient for
iteration loops which need to stop when the end of the text is
reached. The supplied print macro "PRINT.VDM" is such an example.

Commands within Iteration Loops

Although a single "S" (substitute) command can be made into an
iteration loop, this is not necessary because the "S" can itself be
preceded by an iteration count. This also has the advantage of
executing mnmuch faster. Therefore, the second command below is the
preferable one:

Poor: #[Steeths$teeth$]
Faster: #Steeths$teeth$$

Note that the latter is not an iteration loop, but rather just a
form of the "S" command.

Of course, the "S" command will commonly appear inside iteration
loops which contain other commands too. The "T" command can be
used to display the 1lines that are changed in an iteration loop
without going into Visual Mode. For example, the command to change
all occurrences of "teeths"” to "teeth" and display those 1lines
which changed is:

[Steeths$teeth$ OTT]

("OT" displays from the beginning of the line up to the edit
pointer and "T" displays from the edit pointer to the end of the
line. Therefore, "OTT" is commonly used to display a line no
matter where the edit pointer is on it.)

The "I" (insert) command, which does not take an iteration count,
is often used singly in iteration loops. For example, the command
to insert the text " enter me three times" is:

3[I enter me three times$]
It is very important to observe the placement of any necessary

<ESC>'s to terminate strings and filenames in iteration loops.
Filenames must always be followed by an <ESC> and all text strings

178

VEDIT PLUS Programming Guide
Iteration Loops

must end with an <ESC> unless you are using explicit delimiters.
The following example shows a common error in which the string
" enter me three times]" is entered into the text, which is not the
intention (the "]" is erroneously part of the text string).

Wrong: 3[I enter me three times]

Right: 3[I enter me three times$]
If you are ever unsure, it is always safe to end a command with an
<ESC> - any unneeded <ESC>'s are ignored.
The "I" command can be used to insert the same text into the edit
buffer many times. For example, the following command creates a

table of 60 lines, where each line begins with a <TAB> and "..... ",
The table can then be filled in Visual Mode.

60[I<TAB>..... <BRETURN>$]
You could enter the above command as a macro by editing the
corresponding text register. Since the RETURN starts a new line
the "[" and "]" will appear on different lines - this works
properly.

You could also enter the command directly in Command Mode following
the "COMMAND:" prompt. Pressing RETURN starts a new line and gives
you the "~" prompt as a reminder that it is waiting for the <ESC>
delimiter. At this point the "I" command will also have been
executed once. As soon as you type the "]" and another RETURN, the
"I" command will execute ancother 59 times. It is allowable for an
iteration loop to extend over several command lines. Just remember
that the commands in the loop will be executed line by line as you
enter them.

Iteration loops begin operation from the current edit pointer
position. Therefore, be sure to place the edit pointer correctly
before executing an iteration loop. As in the "10[20PR PE 20L]"
example above, the edit pointer must often be explicitly moved
within the iteration loop, commonly with the "L" command.

-179-

VEDIT PLUS Programming Guide
Iteration Loops

Using Visual Mode in Iteration Loops

Search and replace operations are often used in conjunction with
the Visual Mode to edit the region, or to confirm that the
replacement was done correctly. For example, the following command
searches for all occurrences of the word "temporary" and lets those
regions of the text be edited in Visual Mode.

[Ftemporary$Vv]

The following command could be used with a form letter to change
"-name~" to the desired name, check that it was done correctly in
Visual Mode and, if necessary, make any additional changes.

[S-name-$Mr. Jones$V]

The Visual Mode has two ways of exiting back to Command Mode in
order to help in using iteration loops. [VISUAL EXIT] simply exits
and lets any command iteration continue. [VISUAL ESCAPE] exits to
Command Mode, but also aborts any iteration loop or command macro.
The latter is used when you realize that the iteration loop is not
doing what was intended and do not want to further foul things up.
For example, to change all occurrences of the word "and" to '"or",
the following command may have been given:

Wrong: [Sandorv]
You might then see in Visual Mode that the word "sand" was changed
to "sor", which was not the intention. Pressing [VISUAL ESCAPE]
stops the iteration 1loop, and the following correct command can
then be given:

Right: [S and$ or$v]

-180-

VEDIT PLUS Programming Guide
Commands In Macros

USEFUL COMMANDS IN MACROS

The following topics describe several commands which are primarily
useful inside of command macros.

Displaying Text

The "YT" command displays (types) a text string on the screen. Its
syntax is "YTtext<ESC>" - 'text' can be one or more lines long and
must end in an <ESC> or explicit delimiter. "YI" can be used to
display progress messages or debugging messages during the
execution of command macros.

@YT/Part 1 is done/ Digplay a message on screen.

Other uses for the "YT" command include displaying user prompts and
menus, such as in the supplied "MENU.VDM" macro.

The command "nYD" displays (dumps) a single character with decimal
value 'n' followed by a <CR> <LF>. Alternatively, the command form
"n:YD" dumps just the single character without the <CR> <LF>. It
can be used to display special control and graphic characters since
they are "dumped" to the screen and are not expanded.

1:YD 129:YD Display two graphic chars (on IBM PC).

Displaying Input / Output Filenames

"ER" without a filename displays the input (read) filename and "EW"
displays the output (write) filename on the screen. "EB" without a
filename displays both the dinput and output filenames. The
filenames are preceded by the messages "INPUT FILE:" and "OUTPUT
FILE:" respectively and are followed by a <CR> <LF>. The preceding
message and the following <CR> <LF> can be suppressed by preceding
the command with a ":".

EW<ESC> Display output filename and a <CR><LF>.

:EW<ESC> Display output filename without <(CR><LF>.

Re-routing Console Qutput

Any Command Mode console output, which normally goes to the screen,
can be re-routed to either the printer or the edit buffer. Such
re-routing is in effect until the next "COMMAND:" prompt or until
re-routing is canceled.

-181-

VEDIT PLUS Programming Guide
Commands In Macros

The command "YP" re-routes console output to the printer. It is
used in print formatting macros such as our supplied PRINT.VDM.
The command "-YP" (or "OYP") cancels the re-routing and allows
normal console output.

YP ED B: Print the directory of drive B.
YP EW<ESC> Print the output filename.

The "YP" command can be used in conjunction with the "YT" command
to send page headers, carriage returns and form feeds to the
printer. For example, the commands to send three blank lines to
the printer are:

YP @YT/<RETURN><RETURN><RETURN>/

"YI" re-routes console output to the edit buffer. Each character
is inserted at the edit pointer and the edit pointer incremented.
"-YI" (or "OYI") cancels the re-routing. A simple example to try
is:

YI EV Insert version # into edit buffer.
This inserts the VEDIT PLUS version number inlo the edit buffer.
Inserting text at the end of the edit buffer with the "YI" command

operates very quickly. However, inserting text at the beginning of
a large file may take as long as 1/2 second per character!

Extended "ED" Directory Display

The "ED" command first displays the current drive name and MS-DOS
subdirectory. The filenames are then displayed in four (4)
columns. The command form "-ED" displays the files one per line
and without the drive and subdirectory line.

-ED Display files one per line.

The "-ED" command is often used in conjunction with "YI" to insert
the directory into the edit buffer. It is thereby possible for a
command macro to determine what files are on disk and automatically
edit those files. For example, the command sequence to insert all
filenames with an extension of ".ASM" into the edit buffer is:

YI -ED¥*.ASM Insert all ".ASM" filenames into the

edit buffer, one per line.
The special form ":ED file" tests for the existence of the file
'file' and sets the internal value ".rv" (described later)
accordingly - "1" if the file is found and "O" if it is not found.

-182-

VEDIT PLUS Programming Guide
Commands In Macros

It does not display anything on the screen and is primarily used
inside macros which must know if a particular file exists.

Suppress Error Handling

Normally when a "F" or "S" command is unsuccessful, it gives the
error "CANNOT FIND string" and command execution stops. Similarly,
if an "L" command attempts to go past either end of the edit buffer
(file) it gives the error "END OF EDIT BUFFER REACHED" and stops
execution.

These errors can be suppressed with the ":" command modifier -
"oF" ":8" and ":L", When "suppressed", errors are still detected,
but are handled differently. First, no error message 1is given;
instead the ".er" error flag is set (described later under

"Internal Values"). Second, command execution jumps out of any
current iteration locop and continues with any following commands.
If the command causing the error is not within an 1iteration loop,
execution continues with the next command.

Search errors are often suppressed inside command wmacros. Macros
often contain a sequence of "S" (substitute) commands which should
not terminate the entire macro if some of the search strings are
not found. Instead of specifying ":" for many commands, it is
usually easier to make this command modifier the default by giving
the command "ES 8 1" at the beginning of a command macro.

For additional flexibility, VEDIT PLUS has another option set with

the command "ES 8 2". With this option, no error message is given
and only the ".er" error flag is set. Command execution 1is not
affected 1in any way. This option is available so that you can

explicitly test the error flag ".er" and, 1if necessary, jump to
another part of the macro with the command ".er JPlabel". (See
"Jump on Search Error" for additional information on this option.)

In summary:

ES 80 "F'", "§" and "L" command errors result in
error message and command execution stops.

ES 8 1 "F", "S§" and "L" command errors set the
".er" error flag and jump out of any
current iteration loop.

ES 8 2 "F", "S$" and "L" command errors only set
the ".er" error flag and command execution
continues with the next command. Must be
used with care to prevent "infinite" loops.

183

VEDIT PLUS Programming Guide
Commands In Macros

Commenting Macros

"Commenting" is the useful practice of adding descriptive text
(sentences and phrases) within a program (macro) to explain its
operation. This helps other people understand how the program
works, and will help you too, should you have to modify it sometime
in the future.

There are two methods for adding comments to macros. One is to use
the "R*" command. Any text following the "R*" to the end of the
line is treated as a comment and is ignored during macro execution.
R* This text is a comment and is ignored by VEDIT PLUS
Alternatively, you can enclose comments between two "!" characters.
As a convenience, any text on a line following a single "!" is also
a comment. The "!" also serve as "labels", described later, but
these two uses do not conflict.

!This is a comment, a "V" command follows! V

!This text to the end of the line is also a comment

Loading Macros into Text Registers

The command "RIrtezt" can be used to load "text" directly into text
register "r". "Text" 1is a text string which may be one or many
lines long. The form "RI+rtext" appends to any text which is
already in the register.

The main purpose for the "RI" command is for a command macro to
insert text, usually another macro, into a text register. Each
register of a multiple register macro could be loaded from a
separate disk file, but this would be awkward and consume unneeded
amounts of disk space. For example, instead of setting up eight
registers from eight disk files, it is easier to just load one disk
file and then set up the eight registers with eight "RI" commands.
The later topic "Jumping To A Command Macro” describes this in more
detail.

-184-~

VEDIT PLUS Programming Guide
Numerical Capability

NUMERICAL CAPABILITY

VEDIT PLUS has extensive numerical capabilities. "Numbers" used in
Command Mode can be '"constants", "variables" and algebraic
"expressions"”.

REMEMBER: The "on-line calculator" lets you evaluate any numeric
constant, variable or expression by simply typing it at
the "COMMAND:" prompt.

Numeric Constants

There are four types of numeric constants:

Type Example Description

Integer 345 A simple integer in the range O to 65535.

Signed -239

Integer -59021 A signed integer in the range -65535 to
65535, {Integers are 17 bits wide.)

ASCII "A

Constant "B The wvalue of an ASCII character or control
character can be used as a numeric
constant. The first example gives the
value of the letter 'A', the second the
value of <CTRL-B>.

This is a shorthand for the maximum integer

65535.

There is a distinction between "Integer" and "Signed Integer"
because some commands take simple integers, while others take
signed integers.

Examples - Numeric Constants

Many VEDIT PLUS commands may be preceded by a numeric constant.
For example, the "T" command types (displays) lines of text:

12T Type the next 12 lines of text.
~-23T Type the previous 23 lines of text.
#T Type the rest of the text lines.

185

VEDIT PLUS Programming Guide
Numerical Capability

The following example shows one way to insert a <CTBL-S5> into the

text: (Type """, then "S", then "EI")
“S EI Insert a <CTRL-S> into the text wusing the
"EI" command. (The space before "EI" has

no effect on the command; it just dimproves
the readability and can be left out.)

IMPORTANT - Numeric Notation

Normally, a numeric argument directly precedes a command, 1.e
"12T". However, a space can also appear between them to dimprove
readability, i.e. "12 T". Many of the examples in this manual
contain extra spaces.

1271
12 T Identical command to above. The extra

space before "T" is optional and, in more
complex commands, improves the readability.

Numeric Registers (Variables)

There are 100 numeric registers or '"variables" named "O" thru
"ogh (CP/M versions have only 26 numeric registers.) Three
commands access the numeric registers:

1

(o)

nXSr sets numeric register 'r' to the value 'n'.

nXAr adds the positive or negative value 'n' to
register 'r'.

XTr types the wvalue of register 'r' in decimal,

followed by <CR> <LF>. The command form ":XTr"
suppresses the <CR> <LF>.

Additionally the form "Qr" is used to access
a f=3

a
a numeric constant can appear,

Examples - Numeric Registers

12XS1

QL T Types the next 12 lines of text. Note that
the space before the "T'" is optional!

12XS1

100XA1

Q1L T Types the next 112 lines of text.

-186~-

VEDIT PLUS Programming Guide

Internal

Numerical Capability

Q4 XS3 Copies the value of numeric register "4" to
numeric register "3".

25XS1

45%52

EG fi1e[Q1,Q2] Inserts lines 25 - 45 of 'file' into the
edit buffer. Shows that numeric variables
(and expressions) can be used in the line
range for the "EG" and "EL" commands.

Qb The on-line calculator displays the value
of register "4"., In this context it is
equivalent to the command "XT4". Note that
"Qlf" is not a command, but a numeric value.

Values (Read Only)

Besides the 100 numeric register "variables"”, you can also access

several
internal
numeric
followed

b

.ef

.er

.es

. eW

internal '"read-only" numeric values. You can use these
values anywhere you can gpecify a numeric constant or a
register. The internal values are accessed by a "."
by a one or two letter mnemonic. The internal values are:

Name of the edit buffer currently being edited: "O" - "9",
"A" - "Z", or "@". The command ".bYD" displays which edit
buffer is being editing.

ASCII value of the character at the edit pointer.

End-~of-file condition. Has value "1" if the end of the
input file has been reached or has not been opened.
Otherwise, has value "0" if input file is still open.

Value of the error flag. Cleared {value "O") before each
command 1is executed. Set (value "1") by the "F", "S" and
"EM" commands by a search/match error. Set by "L" when
attempting to go past the end of the text. Note: since
.er is cleared so quickly, we recommend using .es whenever
possible.

Value of the search error flag. Similar to ".er", but is
set/reset only by the "F", "S§" and "EM" commands. Allows
testing the results of a search many commands later.

Write error flag set/reset by the last disk write
operation. Has value "0O" if there was no write error; has
value "1" if there was a write error.

Number of free memory bytes. Same value as displayed by
the "U" command.

~187_

VEDIT PLUS Programming Guide

Y

e

.of

.rtR

Lur

wd

we

.wh

Numerical Capability

Value of the current 1left margin, 1i.e. the indent
position in Visual Mode.

Name of text register containing the currently executing
macro. In ASCII character form. Has value of O (zero) if
no macro executing. (Register "O" is denoted by the ASCII
code for "0" which is 48 decimal).

Number of characters matched by successful F, §, EM
commands. Number of characters matched by RM command.

OQutput file open. Has wvalue "1" if the output file is
currently open. Otherwise has value "O".

The edit pointer's position (offset) in the current edit
buffer. The position of the first character is "0".
Note: this is not necessarily the position in the file,
because part of the file may have been written to disk.

Absolute value of the remainder from last division.

The "type" for register 'R': 0 = unused, 1 = text
register, 2 = edit buffer.

Return value from the commands EM, EP, ES and RM. Set by
":ED" if the following filename is not found.

Position of the next tab based on the current value of
".x". Returns 255 if no more tab positions.

Number of characters in text register '»r'.

Numerical value of the expression at the edit pointer.
The edit pointer is moved past the expression.

The position (offset) in the current edit buffer for the
"invisible" text marker set in Visual Mode corresponding
to the "1 END" status line message.

The screen attribute for text characters in

window.

he current

The current display type:
0 = CRT terminal, 1 = Non-IBM memory mapped
2 = IBM Monochrome, 3 = IBM Color (CGA or EGA)

The screen attribute for erased (clear) portions in the
current window.

The horizontal size (in columns) of the current window.

-188-

VEDIT PLUS Programming Guide
Numerical Capability

.wn The name of the current window in ASCII.

wt Total number of windows on the screen.

WY The vertical size (in lines) of the current window.

WX The horizontal ("x") position of the cursor in the window.
Wy The vertical ("y") position of the cursor in the window.
X Horizontal column position for the character at the edit

pointer. Same as displayed for "COLUMN" in Visual Mode.
.y Line number in the file for the line the edit pointer is

on. Same as displayed for "LINE" in Visual Mode.

Do not be concerned if you do not understand all of these internal
values yet. Several of them are return values from commands that
are covered later.

Examples - Internal Values

Enter Visual Mode with any convenient file in the edit buffer and
note the Line and Column numbers displayed on the status line.
Exit back to Command Mode. By Jjust typing the internal value
designator, the on-line calculator will display its value.

X Displays same value as the Visual Mode column
position.

Y Displays same value as the Visual Mode line
number,

.x XS82 Saves the current column position in numeric

XT2 register "2" and displays this value in decimal.

B Positions the edit pointer 123 characters from

123C the beginning of the edit buffer. ".p" then has

P the value of 123 assuming the edit buffer

contains 123 characters. If it has less, the
value of ".p" is the total number of characters
in the edit buffer.

£ Displays the number of free bytes, which is also
the first number displayed by the "U" command.

Z Places the edit pointer at the end of the edit

.p buffer. ".p" therefore has the same value as the
second number displayed by the "U" command.

,189_

VEDIT PLUS Programming Guide
Numerical Capability

Expressions

You can use not only numeric constants and variables, but also
expressions built from these constants and variables. Numerical
expressions are similar to the types of operations you can perform
on a simple calculator including addition, subtraction,
multiplication and division. Besides numerical expressions, VEDIT
PLUS also supports conditional expressions which evaluate to a
truth value (TRUE or FALSE) for use with the Jump commands and
decision making structures.

All expressions are a sequence of "operands" and "operators" that

evaluate to a numeric value. "Numerical expressions" evaluate to a
signed integer, while "conditional expressions" evaluate to just
two numeric wvalues - "1" which represents TRUE and "O" which
represents FALSE. "Operators" are the functions such as addition,
subtraction, multiplication and division. "Operands" can be
numeric constants or variables (or internal values) or can
themselves be expressions. Operands can, therefore, be of a

numerical or conditional type.

Simple expressions can be combined with operators to create more
complex expressions. The many operators in complex expressions are
not evaluated left to right, but rather a rigid "precedence"

determines the order in which operators are evaluated. This
precedence can be overridden by using parentheses i.e. "(" and
"}". Extra parentheses may be used to improve the readability of a

complex expression.

Since all expressions evaluate to a numerical value, the difference
between numerical and conditional expressions is the range of
values they can evaluate to. This is determined by the types of
operators in the expressions. There are three types of operators,
and the following table lists the type of operands they take and
the range of values to which they evaluate.

Numerical operators - take one or two numerical operands and
evaluate to a signed integer.

Relational operators - take two numerical operands and evaluate to
"1" meaning "TRUE" or "O" meaning "FALSE".

Logical operators - take one or two conditional operands and
evaluate to TRUE or FALSE.

-190-

VEDIT PLUS Programming Guide
Numerical Capability

Examples of the three types of operators are:

Numeric: 12 /3 + 7 The operators are "/" and "+"
and the expression value 1is
Nllﬂ.

Relational: 35 » 14 The operator 1is ">" and the
expression value is "1" or
TRUE.

Logical: (35 > 14) & (17 = 23) The logical operator is "&"

(AND) and the expression value
is "0" or FALSE.

A complex expression may contain all three types of operators and
the expression type is determined by the last operator evaluated.
All operators can actually be used with any type of operand, but it
is usually not meaningful to use conditional operands with
numerical or relational operators. Similarly, it may not be
meaningful to use numerical operands with logical operators.

Of primary importance in constructing expressions, is how the
evaluated numeric value 1is used by the following command or flow
control structure. If a command expects a numerical expression,
but 1is given a conditional expression, the command will only see
the two values "0" and "1". If a numerical expression is used
where a conditional 1is expected, the results are generally
predictable. The numeric values "1" and "O" will be interpreted as
TRUE and FALSE. Generally, any other value will also be
interpreted as TRUE.

Numerical Operators

The numerical operators are:
+ Addition

- Subtraction (also performs unary minus function)

* Multiplication

/ Division

% Remainder of division
& Bitwise AND

Bitwise OR

Bitwise complement (also called 1's complement)

-191-

VEDIT PLUS Programming Guide
Numerical Capability

Examples of these operators and the resulting values are:

Expression = Value
12 + 19 31

54 - 36 18
-4+ 16 -6l
14 /4 3

14 % 4 2

14 &7 6
-7 15
25" -26

In integer division "1l divided by 4" equals "3" with a remainder
of "2". Following any division the remainder can be found 1in the
internal value ".rm". If you are only interested in the remainder,
use the remainder operator "%", which returns a signed remainder.
This remainder has the same sign as the quotient.

The "-" operator performs subtraction when between two operands, or
may precede an operand to change its sign. Note that nc operator
may immediately follow another. Thus "14/-4" is invalid and needs
to be written as "14/(-4)".

All numerical values are 17 bits wide and therefore have a range of
-65535 to 65535. Internally, addition and subtraction are computed
with a 24 bit accuracy. Therefore:

50000 + 50000 + 50000 - 60000 - 60000 properly evaluates to
30000.

However, it is invalid for any final expression to have a value
outside the allowed range and, except for such sequences of
additions and subtractions, no intermediate value may fall outside
the allowed range.

NOTE: 1If an invalid value occurs in an expression, division by

" zero occurs, or the expression is incorrectly written, the
entire expression evaluates to zero (0).

-192-

VEDIT PLUS Programming Guide
Numerical Capability

Relational Operators

Relational operators are used in virtually every decision making
function and every conditional expression must contain at least one
relational coperator. The relational operators are:

< Less than

(= Less than or equal to

= Equal to

<> Not equal to

>= Greater than or equal to
> Greater than

Examples of these operators and the resulting values are:

Expression = Value

4 ¢ 12 1 or TRUE

-13 <= -4 1 or TRUE

Q1 = Q1+5 0 or FALSE
-9 <> 9 1 or TRUE

-5 >= 0 0 or FALSE
10 » 10 0 or FALSE

Logical Operators

The logical operators are:

& AND TRUE only if both operands are TRUE.
h OR TRUE if either operands is TRUE.
NOT Flips the truth value of the following
operand.

193

s in the
ake the
be used
S op
s FALSE)
use the
ise AND
erators.
AND and

VEDIT PLUS

Programming Guide
Nimmericral Canahilitv

The following examples show how the operators are used:

Expression = Value
1&1 1 or TRUE
1&0 0 or FALSE
0&O0 0 or FALSE
171 1 or TRUE
1 -0 1 or TRUE
0~0 0 or FALSE
~ 1 0 or FALSE
-0 1 or TRUE

Logical operators are used with conditional operands a
following examples. Numeric variables are used to m
examples more realistic. Note that numeric variables can
as conditional operands when they contain only lhe values
NO" .

Assume: Q1 = 12, Q2 = -7, Q4

0 (FALSE), Q5 = 1 (TRUE)

Expression = Value

(Q1 > 10) & (Q2 <= -7) 1 or TRUE

(Q2 <> 0) & Q4 0 or FALSE (The right operand i
QL = Q2) ~ Q5 1 or TRUE
(Q1 = Q2) = (" Q5) 0 or FALSE
~ (Qb & Q5) 1 or TRUE

You will notice that the logical operators for AND and CR
same symbols "&" and """ as the numerical operator for bitw
and bitwise OR. "&" and """ are really numerical or
However, when used with conditional operands, the bitwise

OR operators also perform the logical AND and OR functions.

_19q-

VEDIT PLUS Programming Guide
Numerical Capability

Unlike the AND and OR operators, the numerical "Bitwise Complement”
and logical "NOT" are not at all related:

o' Evaluates to -1
~0 Evaluates to 1
25! Evaluates to -26
25 Evaluates to O

Operator Precedence

In expressions involving two or more operators, the operators are
not necessarily evaluated left to right, but rather in the order
determined by a rigid precedence. You can override the precedence
by using parentheses. Everything in the parentheses will be be
evaluated before the entire parenthesized expression is itself used
as an operand. Additional parentheses are often used to improve
the readability of an expression since it is not always immediately
clear what the precedence of operators will be. In the case of
operators of the same precedence, the leftmost one will be
evaluated first. The precedence of operators in VEDIT PLUS is the
same as used by many programming languages and is:

Highest: ' Complement
* /% Multiplication, Division, Remainder
+ = Addition, Subtraction
< > = etc. Relationals
- NOT
& AND (Both Bitwise and Logical)
Lowest: ~ OR (Both Bitwise and Logical)

_195..

VEDIT PLUS Programming Guide
Numerical Capability

ADDITIONAL NUMERIC FEATURES

The following command sequence counts the number of words in a file
and displays the result. This is handy for a writer who needs to
know the number of words in a manuscript.

0XS1 Zero out register 1.
B[@:F/iSia/ XAl] Count words in entire file,
XT1 Display the count.

Line Numbering

A numeric register can be used to count line numbers. For example,
the following command sequence inserts 200 lines of the form "This
is line number nnnn", where 'nnnn' increments for each line:

YI 1XS1 200[@I/This is line number / XT1 1XAl]

Some applications, such as BASIC programming, require line numbers
at the beginning of each text line. It is usually easier to edit a
file without line numbers and, when done editing, add the 1line
numbers to the beginning of each line. The following command macro
adds 1line numbers starting with "100" and with an increment of
"10". Of course, you could choose any other starting number and
increment. (Note: the following command lines are best entered
into a text register and executed as a command macro.)

100XS1 Set the starting line number.

B YI :XT1 @1/ / Insert line number for first line.
Start an iteration loop.

10XA1 Add the increment.

: @F / <RETURN> Find beginning of next line.

/ :XT1 @1/ / Insert line number for this line.
End of iteration loop.

-YI Stop inserting into text.

Additional On-Line Calculator Features

Besides evaluating just one expression, the on-line calculator can
also evaluate multiple expressions per line. The expressions do
not have to be typed in each time; they can be part of macros. In
general, any expression which is not followed by a command is
evaluated and displayed on the screen.

When evaluating multiple expressions, you can control whether they

_196m

VEDIT PLUS Programming Guide
Numerical Capability

are displayed one per screen line or all on the same screen line.
The syntax is:

el $e2% ... $ en Each expression 'el' through 'en' is
evaluated and displayed on separate
screen lines. '$' represents the

<ESC> key, which forces each
expression value to be displayed.

el :$ e2 :$... :$ en Each expression 'el' through 'en' is
evaluated and displayed on the same
screen line. The ':' character

suppresses the <CR><LF>.

For example, you could display the wvalues in four numerical
registers on the same line with the command:

QL :$ Q2 :$ Q3 :3 Q4 Display the values in the numeric
registers all on the same line.

"EP" and "ES" Parameter/Switch Values

The value of any "EP" parameter or "ES" switch can be accessed from
within macros. An "EP" or "ES" command with just the first
argument does nothing but save the current setting in the "rv"
internal value. When an edit parameter or edit switch 1is changed
with "EP" or "ES", the old value is also saved in ".rv". The
Command Mode menu macro uses this feature to display the current
values of the parameters and switches.

EP Display current values of all parameters.
EP 7 Set .rv to the current word wrap column.
EP 7 50 Save old word wrap value in .rv; set new

value to 50.

For example, the command sequence to display the value of the word
wrap column (EP 7 n) is:
@YT/Word Wrap Column is:/ EP T<ESC> .rv

NOTE: Each edit buffer has its own set of EP and ES values.

-197-

VEDIT PLUS Programming Guide
Numerical Capability

Numeric Register as Text Register Name

The text register commands such as "RCr", "RGr", "EEr", etc.,
operate on text register 'r'. You can also use the value of a
numeric register to specify the desired text register. The form
is: "RC#r", "RGHr", "EE#r", etc., where 'r' is now the numeric
register name - "0" through "25". The numeric register must hold
the ASCII value of the desired text register. For example:

'05 XS3

RE#3 Empty text register 5. The ASCII for "5"

is first placed in numeric register 3.
"#3" then accesses the value of numeric
register 3.

198

VEDIT PLUS Programming Guide
Direct Edit Buffer Positioning

DIRECT EDIT BUFFER POSITIONING

You can save the position of the character at the current edit
pointer in a numeric register so that this position may later be
referenced. The commonly used commands "K", "T", "PR" and "RC"
(Kill Lines, Type Lines, Print, Copy to Text Register), which
normally operate on lines can also perform their operation between

any two positions in the edit buffer. The "EJ" command can jump to
any position in the edit buffer.

The position of the current edit pointer is accessed with the ".p"
internal value. This position is an "offset" from the beginning of
the edit buffer, with the first character having a position of zero
"0". Using the on-line calculator you can easily determine the
edit pointer's position by typing:

.p Display edit pointer's current position as an
"offset" from the beginning of the edit buffer.

You can save the edit pointer's position with the "XSr" command,
where 'r' is the numeric register to save it in. For example:

.p XS4 Save edit pointer's position in register 4.

Note that this edit buffer position is not necessarily the same as
the position in the file. If part of the file has been written to
disk, position "O" will no longer refer to the first character in
the file. Consequently you must be sure that no file writing takes
place between the time you save any buffer positions and when you
use them.

The command "nEJ" performs a "jump'", moving the edit pointer to the
'n'th position in the edit buffer. Note that "OEJ" is equivalent
to "B" and "¥EJ" is equivalent to "Z". In practice, "EJ" is
usually used to jump to the position saved in a numeric register:

Q4 EJ Move (jump) edit pointer to position saved in
numeric register 4.

Two Argument Commands

The commonly used "K", "T", "PR" and "RC" (Kill, Type, Print,
Register Copy) commands can optionally operate between any two edit
buffer positions with the command forms "el,e2K", 'el,e2T",
"el,elPR" and "el,el2RC". The effective range is from the position
specified by the numerical expression 'el' up to (but not
including) the position specified by ‘'e2'. These commands also
move the edit pointer to the position 'el'.

199

VEDIT PLUS Programming Guide
Direct Edit Buffer Positioning

4,9 Kk Kill (delete) . the 5th through 9th
characters in the edit buffer. (Counting
starts at zero.) Note that the space
before "K" is optional.

123 XS1

234 xs2

Q1,Q2 RC7 Copy the 124th through 234th characters in
the edit buffer into text register 7.

.p-24,.p T Type out the previous 24 characters.

The counting scheme used with these commands may seem a little
unnatural, but it actually works out well in practice, especially
when used with the search commands, which is how the two edit
buffer positions are usually set.

It may help to think of the "K", "T" "PR" and "RC" commands as
performing a line oriented operation when they are preceded by a
single expression and performing a character oriented operation
when they are preceded by two expressions. Since a character
oriented "K" command is more like a "D" command, the "D" command
may also take two expressions, in which case it acts identical to
the "K" command.

Setting the Edit Position by Searching

The search command "F" (Find) is often used to find some text,
whose position is saved for further processing. A typical
application is using one search to find the beginning of a block of
text, saving the position, using a second search to find the end of
the block, and then moving the block of text into a text register.

As an in-depth example, consider the task of extracting all mailing
list entries with the name "Smith". Assume that the list is in the
form used by the SORT macro. All such entries are to be appended
to text register 4 and deleted from the current edit buffer.

First we need to find the word "Smith". This is a simple command:
@F/Smith/ Find the word "Smith" in the current edit
buffer.

We do not want to save the current edit position, since our text
would then not include the word "Smith". We need to backup to the

beginning of the word. Since "Smith" should appear at the
beginning of a line, we could backup with the command "OL".
However, we want to examine the more general case. Since "Smith"

is 5 characters long, we could save our edit position as follows:

~200-

VEDIT PLUS Programming Guide
Direct Edit Buffer Positioning

.p-5 XS1 One way to save the beginning position of
"Smith".

This would work fine, but for searches involving pattern matching,
it may be unclear how many characters to backup. For the general
case the internal value ".n" should be used. Its wvalue 1is the
number of characters matched by the last successful search.

.p-.n XS1 Preferred way to save beginning position of
any search.

Next, we need to find the end of the entry, noting that entries are
separated from each other by at least one blank line. Therefore,
we can search for two Carriage Return - Line Feed pairs. The
search command is:

@F/<CR><CR>/ Search for the end of a blank line.
We will save this position too with the following command:
.p X852 Save position past end of desired text.

With the beginning and ending positions of the desired block of
text saved, we are ready to append it to text register 4

Q1,Q2 RC+4 Append the mailing list entry to register
b,

Since we also want to delete the entry from the edit buffer, we
need the command:

Q1,Q2 K Delete the mailing list entry just
appended.

Finally, using an iteration loop to repeat this operation for all
occurrences of "Smith", after first emptying text register 4, we
have the command sequence:

RE4

[

@F/Smith/
.p-.n XS1
@F/<CR><CR>/
.p X82
Q1,Q2 RC+4
Q1,Q2 K

]

-201-

VEDIT PLUS Programming Guide
Matching

MATCHING

Matching is the process of comparing the text at the edit pointer
against either a "text string" or the contents of a text register.
The comparison can be for "equality" or lexical "greater than" or

"less than". In programming terminology, matching compares two
"strings" - a "string variable" (at the edit pointer) against
either a "string constant" or another "string variable"” {(in a text
register/edit buffer). There are two match commands: "EM" and
’YRMH .

"nEMstring” Compares 'string' to the text at the edit pointer.

toat

The comparison is performed n times. The
comparison can be quite sophisticated because
'string' may contaln pattern match codes. "EM" has a
form very similar to the "F" command.

The comparison is successful or "equal" when 'string' completely
matches the text at the edit pointer. (For "nEM" the 'string' must
match 'n' times in a row.) The text strings are considered "equal"
even though the edit buffer can clearly be longer than ‘'string'.
If the strings do not completely match, the "EM" command sets the
internal values ".er" and ".es" (error flags) to TRUE and computes
a lexical "greater than" or "less than" for the two text strings.

The result of the comparison is saved in the internal value ".rv"
{return value): "O" if successful; "1" if 'string' is "less than"
text; "2" if 'string' dis ‘greater than" text; "3" if the match
failed on a pattern match code. The latter is needed because
"greater than" or "less than" is meaningless with pattern matching.

Similar to the "F" command, "EM" moves the edit pointer past the
characters which match 'string' if (and only if) the match is
successful . When successful, the internal value ".n" contains the
number of text characters which were matched. If not successful,
the edit pointer is not moved and ".n" is not changed.

'string' Edit Buffer Result .rv .n .er
big biggest... Equal 0 3 0
biggest bigger... Greater 2 1
big dog bigger... Less 1 - 1
bigla biggest... Equal 0 4 0
biglA big dog... Not Equal 3 - 1

-202-

VEDIT PLUS Programming Guide
Matching

It may be helpful to consider how the "EM" and "F" commands are
different.

1. EM does not search through the text trying again if the
match at the current edit pointer is unsuccessful.

2. If the EM match is unsuccessful, this error is non-fatal and
is only reported in the ".er" internal value.

3. The result of the match is also returned in ".rv". The "F"

command does not change ".rv".

"RMr" Compares the contents of the text register (or edit
buffer) 'r' to the text at the edit pointer.
Performs direct character comparison without pattern
matching; the Upper/Lower case switch (ES 5) is
respected. The command " _RMp" performs
auto-buffering, if needed, to complete the match,
especially if 'r' is an edit buffer.

If 'r' is a simple text register, the comparison starts from the
beginning of the register. If 'r' is an edit buffer, the
comparison starts from 'r's edit pointer, and the edit pointer is
moved past the last character matched. In either case, the rest of
the text register must match for the comparison to be successful.
The result of the comparison {0,1,2} is returned in ".rv" as with
the "EM" command.

Unlike the "EM" command, "RM" moves the edit pointer past those
characters which match the comparison register, regardless of
whether the entire comparison is successful. The internal value
".n" is set to the number of characters which matched, regardless
of success. ".n" is only set to "O" when the very first character
does not match. It is not an error if the comparison is
unsuccessful; therefore, the ".er" (error flag) is not affected.

The "RM" command is useful for moving the edit pointers in two edit
buffers past all characters which match, even if the two edit
buffers don't completely match. It is an important command in the
"COMPARE.VDM" file comparison macro. The User section describes
how to use the "RM" command to compare two files or blocks of text.

If you want to compare text against a text register, but want the

characteristics of the "EM" command {i.e. pattern matching), use
the "!R" pattern with the "EM" command.

-203-

VEDIT PLUS Programming Guide
Flow Control

FLOW CONTROL

The simplest type of macro consists of a sequence of one or more
commands which are executed just once. For example:

@F/the/ OTT This simple sequence of commands could be a
macro. Notice that there is no flow
control.

To execute a sequence of commands repeatedly, you must specify that
the execution is to "loop" back to the commands which are to be
repeated. Any such looping involves flow control - you are
controlling the order (flow) in which commands are executed.

Independent of looping, you can also have decision making. The
macro tests some condition - if it is TRUE the macro performs one
function - if it is FALSE the macro performs a different function.
For example, the description of a macro might be: "If the character
is a lower case letter, change it to upper case; else leave the
character unchanged". There is no looping involved in such a
MACro. However, decision making is often used together with
looping. Consider the description: "Until the end of the file is
reached, change all lower case letters to upper case, leaving all
other characters unchanged". Any decision making also involves
flow control.

Looping and decision making is performed primarily with “"Flow
Control Structures" and to a lesser extent with "Jump" commands.
All flow control could be performed with Jump commands, but the use
of many Jump commands tends to make a macro difficult to
understand. The flow control structures make macros easier to
write, easier to understand and easier to debug when necessary.

Flow Control Structures

"Iteration loops" are the basic structure from which all flow
control structures are built. In review, an iteration loop is a
structure of the form:

n{ ...] The commands 1in an iteration loop are
executed 'n' times. The iteration count
'n' may be any numerical expression.

In operation, all commands between the two outer brackets "[" and
"]" are repeatedly executed 'n' times. This structure, therefore,
performs looping, where the expression 'n' determines how many
times the loop is performed. Often you will want to loop
continuously until some special condition occurs. This can be done
by just making 'n' a very large value. Remember that the default

-204-

VEDIT PLUS Programming Guide
Flow Control

value is 65535 if no 'n' is specified. Therefore, the form for a
continuous loop is:

[... 1] Loop "forever" or continuously until a
special condition occurs.

The "special condition" might be the wuser pressing <CIRL-C> or,
more 1likely, a condition such as not finding any more occurrences
of a word. The latter condition does not need to be tested, since
it is normally an "error" which automatically ends the iteration
loop. Other conditions for ending the loop can be explicitly
tested. In programming terminology, the operation of an iteration
loop would be called a "REPEAT-UNTIL" looping structure.

If the iteration count has a value of "0" or FALSE, none of the
commands between the brackets "[" and "]" are executed and
execution immediately continues with any commands following the
brackets. Since all condition testing (using conditional
expressions) results in a value of "1" for TRUE and "0" for FALSE,
the iteration loop can also be used as a decision making structure.
It then has the form:

e[...] Form of an IF - THEN decision structure.
The condition '¢' may be any conditional
expression.

If the condition is "1" or TRUE, the commands between the brackets
"[" and "]" are executed once. If the condition is "O" or FALSE,
the commands are not executed. Such a structure performs decision
making where an operation is performed when the condition is TRUE.
This is called "IF-THEN" decision making.

Very often in decision making you want to perform one alternative
if the condition is TRUE and perform the other alternative if the
condition is FALSE. This is called "IF-~THEN-ELSE" decision making.
A special form of the iteration loop performs IF~-THEN-ELSE decision
making. The form is:

cf ... 1[...] Form of an IF-THEN-ELSE decision structure.
The condition 'e' may be any conditional
expression.

If the condition is "1" or TRUE, the commands between the first set
of brackets are executed once. If the condition is "O" or FALSE,
the commands between the second set of brackets are executed once.
In either case, execution then continues with any commands
following the second set of brackets.

RETURN's can occur between commands and around the brackets "[" and

"]" to improve their readability. However, the condition 'c' and
the "[" bracket must be on the same line. Also, in an IF-THEN-ELSE

-205-

VEDIT PLUS Programming Guide
Flow Control

structure there must be no intervening characters between the
"I, Therefore, an alternative form for the IF-THEN-ELSE
structure is:

cf Alternative form for an IF-THEN-ELSE

N structure. Emphasizes that the brackets

H "]J[" must appear together with no

.. intervening characters at all.

1
For more complex loops and decision making, these structures can
occur within each other. This is called "nesting". Structures may

be nested to a depth of 25.

The IF-THEN-ELSE structure allows two alternatives. Decision
making often involves more than two alternatives. Consider the
description: "If azaa then do vvv; else if bbb then do xxx: else if
ccc do yyy; else do zzz". This can be implemented with a nested
IF-THEN-ELSE structure, which is traditionally called a "CASE"
structure. Its form is:

clf IF condition #1

L e2[ELSE IF condition #2
1L en[ELSE IF condition #n
i ELSE

111 (n closing brackets)

Examples ~ Flow Control Structures

The following example of a REPEAT-UNTIL structure prints all text
in the edit buffer with 50 lines printed per page. The "special
condition” which ends the loop is the error caused by the "L"
command reaching the end of the buffer.

REPEAT-UNTIL Example

[

50PR Print 50 lines

50L Advance by 50 lines in buffer
PE Start a new page

]

The following example of an IF-THEN structure displays the message
"Letter”, followed by the message "Thats All" if the character at
the edit pointer is a letter. If the character is not a letter, it
just displays the message "Thats All". Since RETURN's are not
allowed within expressions, the initial conditional expression is
quite long.

-206~-

VEDIT PLUS Programming Guide
Flow Control

IF-THEN Example
((.c >= "A) & (.c <= "Z)) "~ ((.c >= "a) & (.c <= "z)) [

Check if upper case letter
OR lower case letter

@YT/Letter/ Message if it's a letter
} End of IF-THEN
@YT/Thats All/ Final Message

The following example of an IF-THEN-ELSE structure displays the
messages "Letter", followed by "Thats All" if the character at the
edit pointer dis a letter. If the character is not a letter, it
display the messages "Not A Letter" followed by "Thats All".

IF-THEN-ELSE Example
((.c >= "4) & (.c <= "Z)) ~ ((.c >= "a) & (.c <= "z)) [

If upper case letter
OR 1lower case letter THEN

@YT/Letter/ Message if it's a letter
End of THEN; beginning of ELSE
@YT/Not A Letter/ Message if not a letter
] End of ELSE
@YT/Thats All/ Final Message

The following example of a CASE structure displays the messages
"Letter", followed by "Thats Al1l" if the character at the edit
pointer is a letter. If the character is not a letter, but is a
numeric digit, it displays the messages "Digit", followed by "Thats
ALL". If the character is not a letter and not a digit it displays
the messages "Not Alphanumeric" followed by "Thats All".

CASE Example

((.c >= "A) & (.c <= "Z)) "~ ((.c >= "a) & (.c <= "z}) [

If upper case letter

OR 1lower case letter THEN
@YT/Letter/ Message if it's a letter
] End of THEN; beginning of ELSE
{({.c >= "0) & (.c <= "9)) [If a digit, THEN

@YT/Digit/ Message if it's a digit

11 End of THEN; beginning of ELSE
@YT/Not Alphanumeric/ Message if not letter or digit
11 End of first ELSE, second FLSE
@YT/Thats All/ Final Message

-207-

VEDIT PLUS Programming Guide
Flow Control

The following example of an IF-THEN structure within a REPEAT-UNTIL
displays the 1line numbers of lines in the edit buffer which are
more than 80 columns long (including TAB expansion). The macro
uses the pattern match "}>" to find the end of each line. The
internal value ".x" is used to check the length of each 1line, and
the value ".y" is used to indicate which line it is.

IF-THEN in REPEAT-UNTIL Example

B Start at begin of edit buffer
Begin REPEAT-UNTIL

@F/ !>/ Find end of current line

(.x > 81) [Check if line is too long, THEN

@YT/Line #/ .y$ Display the long line number

] End of THEN

er/ L/ Find begin of next line

1 End of REPEAT-UNTIL

Jump (Branching) Commands

The order in which commands in a macro are executed can be
controlled not only with Flow Control structures but also with
"Jump" commands. The Jump command is analogous to the "GOTO"
instruction in most programming languages.

The Jump commands are all conditional - the jump is only executed
if the conditional expression preceding the Jump command is TRUE.
However, a Jump command not preceded by an expression will
unconditionally perform the jump. If the Jump command is preceded
by a numerical expression, the jump is performed for any non-zero
value.

The "JP" command performs a jump to a specified "label". The form
for a label is:

!label! A label is any string of characters
enclosed by exclamation marks "!". The
entire label must appear on one line,

Labels may occur anywhere in a macro except within a text string.

Since labels may exist without a corresponding Jump command, labels
are often used for commenting a macro.

-208-

VEDIT PLUS Programming Guide
Flow Control

The five Jump commands are:

cJPlabel If condition 'c! is TRUE, Jjump to
"1label!"; otherwise continue processing
any commands following 'label'. 'label'

must end with an <ESC> or, alternatively,
explicit delimiters may be used. You can
jump out of a Flow Control structure, but
you cannot jump into one.

cJL If ‘¢! is TRUE, exit the current
REPEAT-UNTIL structure. IF-THEN-ELSE
clauses are recognized as such and are
ignored when seeking the end of a REPEAT
clause. However, brackets within text
strings, if any, must be balanced.

cJN If 'c' is TRUE, jump to the beginning of
the current REPEAT-UNTIL structure and
start the next iteration of it, so long as
the count has not expired.

cJM If 'c! is TRUE, exit the currently
executing macro.

cJO If 'c' is TRUE, cease executing any macro
commands and return to the Command Mode
prompt.

Jump on Search Error

Following the the command "ES 8 2", search and "L" command errors
are suppressed where only the ".er" flag is set and command
execution simply continues with the next command. This next
command is often a ".erJPlabel" to jump to another part of a macro.
Alternatively, the command to Jjump out of an iteration loop on
error is ".er JL". This common command has the abbreviation of
";". For example:

[@:F/help/ ;] Jump out of iteration loop when 'help"
is no longer found. Equivalent to the
commands [€@:F/help/ .erJL].

Note that the special ";" command is only needed when using the
"ES 8 2" option. If you like, you can think of the "ES 8 1" option
as placing a ";" after each "F", "S" and "L" command by default.

Notice also in the above example that if the ";" were inadvertently
left out, the iteration would execute 65536 times regardless of the
number of occurrences of "help". For this reason the "ES 8 2"

-209-

VEDIT PLUS Programming Guide
Flow Control

option must be used with care to prevent such nearly "infinite"
loops. (You can break out by pressing <CTRL-C>.)

Jump when End-0f-File Reached

Many iteration loops will automatically end when the end of the
file is reached due to an "L" command or search error. However, in
other cases the End-Of-File condition has to be explicitly tested.
When this condition is encountered, you can end the iteration loop
with the appropriate Jump command.

The end of the edit buffer is marked with a <CTRL-Z>, and you can
test if the edit pointer is at the end of the edit buffer with the
expression:

(.c = "Z) This expression is TRUE if the edit
pointer is at the end of the edit
buffer. Otherwise it is FALSE.

Of course, the end of the edit buffer is not necessarily the end of
the file. However, the internal value .ef is TRUE when the end of
the edit buffer is also the end of the input file. Therefore, the
expression to test if the edit pointer is at the end of the file
is:

((.c = "Z) & .ef) This expression is TRUE if the edit
pointer is at the end of the file.
Otherwise it is FALSE.

Depending upon what you want to do when the End-0Of-File is reached,
you can use the above expression in front of the appropriate Jump
command. Generally you will wuse the "¢JM" command to exit the
current macro. This common Jump command is:

({.c = "2) & .ef)JM Exit the current macro when the edit
pointer is at the End-0Of-File.

As an elaborate example, we will build on the earlier CASE
structure example which displayed "Letter", "Digit" or "Not
Alphanumeric" depending upon the character at the edit pointer.
The following example displays one of these messages for each
character in the edit buffer. When the end of the edit buffer is
reached, it displays the message "Thats All". Instead of a "JM"
command it uses a "JL" command to jump out of the REPEAT-UNTIL loop
in order to display the "Thats All" message.

~-210-

VEDIT PLUS

B
[

Programming Guide
Flow Control
CASE in REPEAT-UNTIL Example

Start at beginning of buffer
Begin continuous REPEAT-UNTIL

({.c > "A) & (.c <= "Z)) " {{.c >= "a) & (.c <= "z)) [

@YT/Letter/
1L

({.c >= "0) & (.c <= "9)) [

@YT/Digit/

[
@YT/Not Alphanumeric/
11
C

{.c = "Z)JL

1
@YT/Thats All/

-211-

If upper case letter

OR lower case letter THEN
Message if it is a letter

End of THEN; beginning of ELSE
If a digit, THEN

Message if it is a digit

End of THEN; beginning of ELSE
Message if not letter or digit
End of first ELSE, second ELSE
Advance to next character

Jump out if end of edit buffer
End of REPEAT-UNTIL

Final Message

VEDIT PLUS Programming Guide
Interactive Input and Output

INTERACTIVE INPUT AND OUTPUT

Macros can be written to interact with a user. Messages, menus and
prompts can be displayed on the screen, on the status line or in
separate windows. Macros can accept input from the wuser 1in the
form of single keystrokes, numbers, or entire lines of text. For
fancier interaction, "forms entry" macros can be written.

Screen Control

Simple messages can be displayed on the screen with the "YTtext"
command . Since the 'text' may be several lines long, detailed
"menus" can also be displayed. An "Input command" (described
below) is then used to accept the user's selection. If desired,
the window commands can be used to create a new window in which the
menu is displayed and, after accepting the user input, the window
can be deleted.

The Command Mode "cursor" can be positioned anywhere in the current
window with the "YEH" and "YEV" commands.

"nYEH" Moves the cursor horizontally to column
n'.
"nYEV" Moves the cursor vertically to line 'n'

By first moving the cursor, new text can be displayed anywhere
within the window, instead of just at the bottom of the window.
This is useful for "forms entry"” macros which paint the full screen

and then move the cursor from one field to another.

For additional screen control, all or part of a window can be

erased.

"YEC" Erases the entire window and moves

the

cursor to the wupper 1left hand corner

("home" position).

"YEL" Erases from the cursor to the end of
window (screen) line.
"YES" Erases from the cursor to the end of

window {screen).

the

The erased parts of the screen use the "erase attribute" set with

the "YEA" command - see the detailed "YEA" command description.

The command form "+YTtext" displays the text on the status line.
In this case 'texrt' must be a single line long and will normally be

~212-

VEDIT PLUS Programming Guide
Interactive Input and Cutput

displayed in reverse video.

"+@YT//" This command can be used to clear the
status line during macro execution. The
status 1line will remain clear until the
next "COMMAND:" prompt or until Visual Mode
is entered.

Several "internal values" assist when manipulating windows ingide

of macros. ".wh" and ".wv" give the size of the current window.
These values can be used if, for example, a macro is to split the
current window in half. ".wa" and ".we" give the attributes

(color) of the current window. You may want to copy these values
to two numeric registers before changing colors so that you can
restore the original colors later.

Input Commands

Macros can accept input in three forms wusing three commands.
Similar to the BASIC language "INPUT" statement, each Input command
includes a '"prompt" to be displayed on the console for the user's
benefit.

Command Type of Input Example of Inputb
@XKr/prompt/ Single Keystroke Y
@XQr/prompt/ Number ~123

Expression (123 + 345) / 18 - 1
@RQr/prompt/ Text String NEWFILE.TXT

Each command above is using the explicit delimiter option. This is
not necessary, but otherwise there is no visual break between 'r'
designating the register name and the ‘prompt’'.

The command @XKr/prompt/ first prompts the user on a new console
line with 'prompt'. It then places the ASCII wvalue of the next
keystroke typed into numeric register 'r'.

The command @XQr/prompt/ first prompts the user on a new console
line with 'prompt'. It then evaluates the next expression, most
likely a simple integer, and stores the result in numeric register
'r'. A RETURN or two <ESC>'s signal the end of the expression.

The command @RQr/prompt/ first prompts the user on a new console

line with ‘'prompt'. It then accepts an entire line of keyboard
input, including the RETURN or two <ESC>'s signaling the end of the

-213-

VEDIT PLUS Programming Guide
Interactive Input and Output

line, and stores the line in text register 'r'. Remember that a
RETURN is expanded into a <CR>{LF> pair. The <CR><LF> pair or two
<ESC>'s can be left off the stored line by using the command form:

oAt

:@8RQr/prompt/ Store the input line in text register 'r',
but without the <CR>XLF> or two <ESC>'s.
Lines may be "appended" to the register with the command form:
@RQ+r/prompt/ Append the input line to text register 'r'.
The ":RQ" command is frequently used to prompt the user for a

filename. The filename in a text register can subsequently be used
with the "!R" pattern in place of 'filename' with any command which
takes a 'filename'.

Using the special "+" command modifier on the "XK", "XQ" and "RQ"

commands causes the prompt to appear on the status line. In this
case the 'prompt' must be a single line long.

-214-

VEDIT PLUS Programming Guide
Developing Complex Macros

DEVELOPING COMPLEX MACROS

Writing Macros in Edit Buffers

When developing complex macros contained in multiple text
registers, it dis easiest to directly edit each text register; in
the process making the text register into an edit buffer, Edit
buffers may be used in the same way as text registers when
executing command macros. However, two vrestrictions must be
observed:

1. The currently active edit buffer may not be executed as a
macro. It cannot be specified in the dinitial "M" command,
nor from another executing macro. Doing so gives the error
message "INVALID EDIT BUFFER OPERATION" and macro execution
stops. To avoid this, simply switch to another edit buffer
which does not contain macro commands {usually "@", the main
edit buffer), before issuing the "M" command.

2. Although a macro may in general issue an "EEr" command to
edit another edit buffer, it may not issue the command if
edit buffer 'r' is itself an executing macro. Doing so stops
execution and gives the error "MACRO ERROR IN r" where 'r' is
the name of the text register containing the offending "EE"
command. (Entering "??7" at the command prompt shows the
offending "EE" command in context).

Self-Modifying Command Macros

In general, VEDIT PLUS does not allow self-modifying macros;
therefore, a macro may not modify the contents of its own text
register.

A macro in one text register may itself contain "M" commands to
"call" other macros {analogous to “subroutines”) in other text

registers. When this happens, the currently executing text
register and the text registers which "called" it are both
considered to be "executing". (Actually, one macro may call a

second, which calls a third, etc., to a depth of 20.) More
specifically, a macro cannot change the contents of any text
register which is currently "executing”. Otherwise, unpredictable
results could occur. VEDIT PLUS checks for this possibility and,
if it occurs, gives the error message: "MACRO ERROR IN r" where 'r’'
is the name of the text register containing the offending "M"
command.

However, a macro can create or modify a macro in a text register
which is not currently executing and, after modification, execute
it. For example, it is common for a "main" macro to lcad other

-215-

VEDIT PLUS Programming Guide
Developing Complex Macros

macros from disk, or enter them into text registers with the "RI"
command. After all the other macros are set up, they are then
executed.

As a special exception, the command "+REr" empties text register
'r' even if it is executing. This can be used immediately
following an "RA" (Auto-execute Register) command to empty the
currently executing text register since it is no longer needed.

Jumping to a Command Macro

The "Mr" command performs a "call" to the "subroutine" macro in

register 'r'. When the 'subroutine" macro finishes, execution
returns to any commands following the "Mr". As an alternative, the
command "RJr" will "jump" to the macro in register 'r' without
returning to the register containing the "RJr". The "M" and "RJ"

commands are analogous to the normal programming language concepts
of "CALL" and "GOTO", respectively.

The "RJ" command is wused in the supplied "COMPARE.VDM" and
"SORT.VDM" macros. These macros are first loaded into one text
register, generally register "Z". (This can be done with
auto-execution.) When executed, each macro first sets up all of
the needed text registers using the "RI" command. Last, each macro
uses the "RJ" command to "jump" to the register containing the main
macro. Register "Z" is then emptied from the main macro.

This scheme has several advantages. It allows even the most
complex macro to be saved in one disk file. You can save memory
space by placing the majority of your comments before the actual
commands. The "RI" commands can then be written to only load the
actual commands and not the bulky comments, Following the "Jump"
to the main macro, the initial macro is no longer executing and can
be deleted by the main macro, saving a lot of memory space. In
this way you will not pay a memory space penalty for the good habit
of documenting your macros.

-216-

VEDIT PLUS Programming Guide
Developing Complex Macros

Auto-Execution of Macros

The Command Mode menu works by automatically executing the menu
macro whenever the user attempts to enter Command Mode. This
automatic execution or "locking in" of a text register is
controlled by the command "+RAr" where 'r' is the text register to
execute. Only register "0" may not be automatically executed, and

the command "RAQ" disables auto-execution. {Any 'r' which is not a
valid register name, i.e. "RACESC)>" also disables auto-execution.}
+RAY Automatically execute register "Y" in place

of the "COMMAND:" prompt.
RAO Disable automatic register execution.

In effect, anytime VEDIT PLUS would normally present the "COMMAND:"
prompt, it instead executes the specified text register. Use this
feature carefully. Be sure to provide a method for the user to
exit the macro to Command Mode, or to exit VEDIT PLUS. Otherwise
the user will have to reboot the computer, losing any edit
changes!

The "MENU.VDM" macro uses several tricks to get itself started.
First, the file "MENU.INI" (which can be renamed to "VEDIT.INI")
loads a few commands into register "Y" and then issues the command
"+RAY" to "lock" into register "Y". Nothing further happens until
Visual Mode is exited for the first time. Register "Y" then
auto-executes and loads the menu macro into register "Z". It then
issues the command "+RAZ" to "lock" into register "Z". Last, it
issues the command "+REY" to clear itself out! Since there are
then no further commands to execute, the menu macro starts
executing in place of the "COMMAND:" prompt.

-217-

VEDIT PLUS Programming Guide
Debugging Macros

DEBUGGING MACROS

Hopefully you will have the opportunity to write your own command
macros. Of course, if you write complex macros, the time will come
when you have to debug one of your macros. The debugging of many
macros is often obvious, involving just correcting typing errors or
simple syntactic errors. This type of debugging just involves
looking the macro over again.

Unfortunately, there will occasionally be macros, especially long
and complex ones, whose flaws are not immediately visible. For
those macros, VEDIT PLUS has several diagnostic features to help
you in debugging them. The most useful feature is the ability to
single-step through the macro execution, tracing the commands one
by one. You know that a macro needs to be debugged when:

1. You receive an error message while a macro is executing.

2. There is no error message, but the results of the macro are
not what you intended.

If you receive an error message, it may not be cbvious which
command caused the error. To display the most recently executed
commands type "?7?" in response to the normal command prompt. You
can also press <CTRL-C> to abort a macro and display the most
recently executed commands.

77 Displays the most recent commands executed, ending with the
last command executed. Be sure to enter "??" immediately
following the command prompt. This helps you determine

which command caused the error, and by what sequence of
commands it got there. The displayed sequence of commands
can be quite lengthy, so do not be dismayed if information
scrolls off the screen. The message "(Rr)" is also
displayed, where '»r' 1is the text register containing the
most recent macro commands. If no macro was executing,
"(}" is displayed. Just the last few displayed commands
are usually of interest, but you can often view the
execution quite far back.

-218-

VEDIT PLUS Programming Guide
Debugging Macros

When the "?7?" command is not enough to determine the flaw in a
macro, you can trace (or single step) through the macro command
execution. The trace mode is enabled with the "?" command. You
can place a "?7" anywhere within a macro from where you want to
begin tracing execution. In programming terminology, placing a "?"
within the macro is called "setting a breakpoint". Alternatively,
you can trace from the beginning of the macro with the command:

7Mr Begin tracing {single stepping) from the beginning
of the macro in register ‘r'.
When the "?" is encountered, trace mode is turned on. With trace

mode on, one command at a time is executed. Before each command is
executed, it is displayed on the screen, preceded by its evaluated
numerical argument(s). For each command, VEDIT PLUS 1lets you
control the tracing process with several single character choices:

RETURN Process the current command and remain in trace mode.
This "single steps" through the commands.

SPACE Same as RETURN unless the current command is the macro
command "M", in which case trace mode is disabled while
the macro is executed; trace mode is resumed when the
macro terminates. (Any "?"'s encountered in that macro
will be ignored). This allows "single stepping" through
an "M" command.

v This enters Visual Mode so that you can more readily see
the current contents of the edit buffer. If desired, you
can also perform any edit changes. Use [VISUAL EXIT] to
return and continue tracing; use [VISUAL ESCAPE] to abort
processing and return to Command Mcde.

<ESC> Turns trace mode off and resumes normal execution with
the current command.

{CTRL-C> Aborts processing and turns the trace mode off. Returns
you to the Command Mode prompt.

Displays more of the current command buffer: displays the
next line of commands up to the next RETURN or the end of
the command buffer. For each additiocnal "?", an
additional line of the command buffer is displayed.

-OTHER~ Any other character is ignored.

-219-

VEDIT PLUS Programming Guide

Debugging Macros

Debugging Hints

While it is impossible to predict everything that could go wrong in
writing command macros, here are a few hints to keep in mind when
debugging.

*

Check for missing/incorrect text delimiters. This could allow
commands to be interpreted as text, or text to be interpreted
as commands.

Do not use the characters "[{" and "]" in text strings or
comments - the Jump commands and error handling can get
confused. If necessary, place these characters into text
registers and include them in the string with the "[R"
pattern.

Remember that lines normally end in a Carriage Return and Line
Feed - two characters.

Do your search operations handle an unsuccessful search
properly? Are search errors suppressed?

Are files larger than available memory being handled
correctly? Watch out when searching for text, part of which
may be in memory and part on disk. Try adding the command
"ES 11 1" to the beginning of the macroc to see if it helps.

Check how the end of the file (or edit buffer) is handled. Is
it a special case? If it is, are you testing for the end of
file properly?

Check that the correct Jump commands are being used. Be
careful not to mix up REPEAT-UNTIL with IF-THEN when using the
"JL" and "JN" commands.

Using the incorrect relation operator, such as "Greater Than"

in place of "Greater Than or Equal" can lead to very subtle
problems where the macro "works most of the time".

~-220-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

100A 0A -0A

This command appends 'n' lines from the input file to
the end of the edit buffer. Fewer lines are appended
if there is insufficient memory space for 'n' lines,
or there are fewer than 'n' liines remaining in the
input file. If 'n' is "0", an auto-read is performed,
which reads all of the input file or until the edit
buffer is almost full. The command can be issued
(with 'n' not zerc) after an auto-read to read in more
of the file. The command is ignored if no input file
is open. The input file can be opened with the "EB"
and "ER" commands, or when VEDIT PLUS is invoked.

The special forms "-nA" and "-0A" read back 'n' lines
from the output file to the beginning of the edit
buffer. "-0A" reads all of the output file back or
until the edit buffer is almost full. Nothing is read
back if there is no output file or it is empty.

No indication is given if fewer than 'n' lines were
appended. Use the "U" command to see if anything was
appended. If the edit buffer is completely full,
Visual Mode will not work well.

Commands: U, W, EB, EG, ER
Auto-buffering

ER TEXT.DOC

0A Opens the file "TEXT.DOC" and reads
it all in, or until the edit buffer
is almost full.

-0A Reads back as much of the output

file as will fit into the beginning
of the edit buffer.

-221-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

Notes:
See Also:

Examples:

Command Description

B Beginning
B B

This command moves the edit pointer to the beginning
of the edit buffer. The beginning of the edit buffer
is not always the beginning of the file, especially
when editing large files. Use the command "_B" to
move back to the beginning of the file.

Commands: EA, Z
Backward Disk Buffering

B 12T Moves the edit pointer to the
beginning of the edit buffer and
types the first 12 lines.

mC Change
12¢ ~lc
This command moves the edit pointer by 'm' character

positions forwards if 'm' is positive and backwards if
'm' is negative. The edit pointer cannot be moved
beyond the beginning or the end of the edit buffer.
Remember that every line normally ends in a <CR> <LF>
(carriage return, 1line feed), which take up two
character positions.

Commands: D, L, EJ

Fhello$ -5C Searches for the word “"hello", and
if it is found, positions the edit
pointer at the beginning of the
word.

222~

VEDIT PLUS

Example:

Description:

Notes:
See Also:

Examples:

Example:

Desgcription:

Notes:

See Also:

Examples:

Command Description

mD Delete

12D -4p

ton !

This command deletes m characters from the edit
buffer, starting at the current edit pointer. If 'm'
is positive, the 'm' characters immediately at and
following the edit pointer are deleted. If 'm' is
negative, the 'm' characters preceding the edit
pointer are deleted. Fewer than 'm' characters are
deleted if either end of the edit buffer is reached.

"KH

Use the command to delete entire lines of text.

Commands: C, K

100[Fbikes$ -D] Deletes the 's' from up to 100
occurrences of the word 'bikes'.
E Extended Commands
EX EV
This is not a command by itself but just the first

letter of the two letter commands beginning with "E",
many of which have to do with file handling.

Other two letter commands begin with the letters
IIOH . "P" y HR" . HXH aﬂd HY'I R

Hn
’

-223-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Command Description

mFstring<ESC> Find

Fnispell$$ -10Fwords$$ F$$ @F/|Sword|S/

This command searches the edit buffer, starting from
the edit pointer, for the 'm'th occurrence of
‘string'. If 'm' is positive, the search is forwards
and the edit pointer is positioned at the character
following the 'm'th occurrence of 'string'. If 'm' is
negative, the search is backwards (toward the
beginning of the file) and the edit pointer is
positioned at the first character of the 'm'th
occurrence.

If the 'm'th occurrence of 'string' is not found, the
error "CANNOT FIND string" is given {(unless
suppressed) and the edit pointer will be positioned at
the last occurrence of 'string' found, or be left at
its original position if no occurrences were found.
The command "F$$" searches for the previously
specified ‘string'. The command switch "ES §"
("Equate Upper/Lower case in search") determines if
the search equates upper and lower case letters.

The form "m_Fstring<ESC>" performs a global search to
the end/beginning of the file instead of just to the
end/beginning of the edit buffer. If the 'm'th
occurrence is not found with a global search, it is
possible that the previous occurrence is no longer in
the edit buffer due to auto-buffering. In this case
the edit pointer is positioned at the beginning of the
edit buffer.

'string' may be up to 80 characters long and may
contain "pattern matching codes". The internal value
".n" is set to the number of characters matched by
'‘string'. The internal values ".er" and ".es" are set
if the search is not successful. The "@" command
modifier allows the use of explicit delimiters.

The command form "#Fstring<ESC>" only gives an error
if no occurrences of 'string' are found. The error
"NO QUTPUT FILE" occurs if no output file is open for
performing the auto-buffering necessary for a global
search.

Commands: S, EM, RM
Pattern Matching, Suppress Error Handling

-224-

VEDLIT PLUS

Examples:

Command Description

B Fhello$$ Searches for the word "hello" from
the beginning of the edit buffer.
#[3Ffirst$ -5D Ithird$) Changes every third

7 -100L Fend$$

#{@F/fix up/V]

F$V

occurrence of the word "first" to
"third".

Finds the word "end" if it occurs in
the last 100 lines of the edit
buffer.

Finds the next occurrence of the
string "fix up" and enters Visual
Mode. Any changes can be made in
Visual mode. When [VISUAL EXIT] is
pressed, the next occurrence of "fix
up" is found and so on.

Searches for the next occurrence of

the previously specified string and
enters Visual Mode.

-225-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

H HES H!

This command performs interactive on-line help using
the help file "VPHELP.HLP" which contains the Command
Mode information in the "Quick Reference" section.
The help file displays several menu screens of
commands and topics for which help is available. The
user enters the desired command or topic name and the
selected help text is displayed. The help command
then ends automatically. The user can also follow the
"H" with the desired command or topic name and the
menus will be skipped.

All three ".HLP" help files are user changeable and
expandable. They have the capability to display menus
and sub-menus. The internal structure of the help
files is described under "Modifying On-line Help
Files".

Commands: EH
Sample Edit Session, Modifying On-line Help Files

H ES Skips the help menu and directly
displays the help text for the "ES"
command, which consists of a summary
of all the editing switches.

Hi Skips the help menu and directly

displays the help text for all of
the pattern matching codes.

-226-

VEDIT PLUS

Example:

Description:

See Also:

Examples:

Command Description

Ttext<ESC> Insert
Ia word$$ I<CR>new line$$ ~Toverlay$$
Inserts 'text' into the edit buffer at the current
edit pointer. The dinsertion 1is complete when the
<ESC> is encountered; or explicit delimiters can be
used. 'text' may contain the RETURN key, which is

expanded to <CR> <LF>. The edit pointer is moved just
past the inserted text.

If insufficient memory space exists for 'text', the
error "*BREAK*" is given and only part of 'text' will
have been inserted.

The inserted text does not overwrite any existing text
unless the command form "-Itext<ESC>" form is used.
The "-I" (and "~EI") command executes more quickly
than the equivalent sequence of an "I" ("EI") command
followed by a "D" command to delete the unwanted
characters. However, the difference is only
significant when performing hundreds or thousands of
such operations in a large file.

Control characters can be ingerted by receding them
with the literal character <CTRL-Q>. The "@" command
modifier allows explicit delimiters to be used.
Explicit delimiters must be used to insert an <ESC>
character. The <TAB> key is not expanded with spaces
as is optional in Visual Mode.

Commands: EIL

200[I<CR><TAB>$] Inserts 200 new lines, each
beginning with a tab character.

Tunder<CTRL-Q><CTRL~H>_3$$ Inserts the text "under", a
BACKSPACE and the underline
character. This will underline the

L]

r" on some printers.

@I/a word/ Inserts the text "a word" into the
edit buffer.

~Ioverwrite$ Overwrites the existing text with
the text "overwrite", beginning at
the edit pointer.

@I/EP 7 70<ESC><CR>/ Inserts the command line

"EP 7 7OCESC>" into the edit buffer,
including a <CR><LF>.

-227-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

4 K -3K OK Q1,02 K

This command kills (deletes) the specified number of
lines. If 'm' is positive, all text from the current
edit pointer up to and including the 'm'th <LF> is
deleted. If 'm' is negative, all text preceding the
edit pointer on the current line and the 'm' preceding

lines are deleted. If 'm' is "Q", all characters
preceding the edit pointer on the current line are
deleted. Fewer than 'm' lines are killed if either

end of the edit buffer is reached. The global command
"m_K" performs auto-buffering, if necessary, to delete
the specified lines.

The command form "p,qK" deletes all characters from
the 'p'th character in the edit buffer up to, but not
including the 'q'th character. Counting starts with
0.

The command "p,qK" is equivalent to "p,qD".

Command: D, T
Two Argument Commands

#[_Ftemp line$ OL K] Kills all 1lines which contain
the string "temp line".

-# K Kills all text before the edit
pointer.
#RCO #K Saves all text in the edit buffer

following the edit pointer in text
register 6 and then deletes it from
the edit buffer.

-228~

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

mL Lines
120L -14L OL 1000 L
This command moves the edit pointer by 'm' lines. Iifr

'm' is positive, the edit pointer is moved to the

beginning of the 'm'th following 1line. If 'm' is
negative, the edit pointer is moved to the beginning
of the 'm'th preceding line. If 'm' is "0", the edit
pointer it moved to the beginning of the current line.
The global command "m L" moves by 'm' lines in the
file, performing auto-buffering if necessary.
Attempting to move past either end of the edit buffer
{or file) leaves the edit pointer at the respective
end and gives the error "END OF EDIT BUFFER REACHED"
(unless suppressed).

The command form "m:L" suppresses the error message if
either end of the edit buffer is reached. However, if
this error occurs inside an iteration loop, it ends
the current iteration level - execution continues with
the commands (if any) following the iteration loop.

Commands: C, T
Suppress Error Handling

2200 L Moves down 2200 1lines in the file
performing auto-buffering, if
necessary. If the edit pointer is

at the beginning of the file, this
moves to the beginning of line 2201.

-229-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

Notes:

See Also:

Examples:

Command Description

Mr Macro

M1

This command executes the contents of text register
'r' as a command macro. Any legitimate command or
sequence of commands may be executed as a macro.
Macros are most easily created in an edit buffer and
edited in Visual Mode. They may also be loaded from
disk with the "RL" command or inserted with the "RI"
command. A macro may invoke another macro, which in
turn may invoke another, up to a nesting depth of 20.
Macros are very convenient for holding long command
sequences which are repeatedly used, saving the effort
of retyping them each time.

RETURN's may be used to separate commands in order to
improve readability. The error "MACRO ERROR IN r"
results if a macro attempts to change a text register
which contains the executing command macro. An "M"
without a following register name is interpreted as
"MO". See Notes for "RJ" command.

Commands: RI1, RJ, RL, RS
Command Macros, [MACRO] function

See the Tutorial "Command Macro" for an example.

nNss<ESC> Next

Nbad linec$$ 3@N/third/ N$$

This command 1is a short hand for the global search
command "_Fss<ESC>".

The long form "_F" should be used in any macros you

save on disk since the "N" command is likely to be

changed in a future release.

Command: F

[3Nfirst$ -5D Ithird$] Changes every third
occurrence of the word "first" to
"third" in the rest of the file.

[3@N/first/ -5D @I/third/] Same as above, but using

explicit delimiters.

-230-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

nSss<ESC> text<ESC> Substitute
Stypo$type$$ #Sname$Mr. Smith$$ _Sold$news$
This command performs 'n' search and replace
{substitute) operations. Each operation consists of
searching for the next occurrence of 'ss' in the edit
buffer and changing it to 'text'. An error is given
if 'ss' is not found. The edit pointer is positioned

after 'text', if 'ss' is found, or else is left at its
previous position if not found. For the command form
"#Sss<ESC>text<ESC>" an error is only given if no

occurrences of 'gs' are found. The form
"n_Sss<ESC>texrt<ESC>" performs a global search and
replace, searching to the end of the file if
necessary.

All Notes for the "F" command apply here too. A
command like "#Sfishes$fish$$" executes much faster
than the equivalent command "#[Sfishes$fish$]"”. There
is no backward search and replace command. If there
is insufficient memory space for inserting 'text',
'ss' will have been changed to as much of 'text' as
possible and the "*BREAK*" error is given.

Commands: F, I
Suppress Error Handling

#Stypo$type$$ Changes all occurrences of "typo" to
" type "

#[Stypo$type$ OTT] Changes all occurrences of
"typo" to "type" and types out every
line that was changed.

ES 9 1

#[S/typo/type/ OTT] Alternate form of above command.
"ES 9 1" allows explicit delimiters
to be used without the "@" prefix.

#[Sname$smith$V] Changes the next occurrence of
"name" to "smith" and enters Visual
Mode. Any changes can be made in
Visual Mode and when [VISUAL EXIT]
is pressed the next occurrence of
"name" is searched and so on.

#_Sgarbage$$ Deletes all occurrences of "garbage"

-231=

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

mT Type (Display) Lines

14T -6T 0T 66 T

This command types out (displays) the specified lines.
If 'm' is positive, all characters from the edit
pointer up to and including the 'm'th <LF> are typed.
If 'm' is negative, the previous 'm' lines and all
characters up to the edit pointer are typed. If 'm'
is "O", only the characters on the present line
preceding the edit pointer are typed. Fewer than 'm'
lines are typed if either end of the edit buffer is
reached. This command does not move the edit pointer
and is wuseful in iteration loops for displaying
selected lines.

The global command "m T" performs auto-buffering, if
necessary, to display the specified number of 1lines.
At the end of the command auto-buffering is again
used, if necessary, to restore the edit pointer to its
original position. The print formatting nacro
"PRINT.VDM" is a good example of wusing the "_T"
command .

The command torm "p,qT" types all characters trom the
'p'th character in the edit buffer up to, but not
including the 'q'th character. Counting starts with
0.

The commands "OTT" display the current line regardless
of the position of the edit pointer on it.

The " command displays control characters in
expanded format (i.e <CTRL-A> is displayed as ""A")
and <ESC> is displayed as a "$".

Commands: PR, RT, YP

B #[Fmoney$ OTT] Displays every line in the edit

buffer with the string "money" in
it.

-232~

VEDIT PLUS

Example: U

Command Description

U Usage (Memory)

Description: This command displays the number of memory bytes free
for use by the current edit buffer, followed by the
number of characters in the edit buffer, followed by
the combined number of characters in all the text
registers which are NOT edit buffers. (Each character
takes up one memory byte.)

Notes: The first two numbers will not always add up to the
same total, since several other smaller buffers also
use the same memory space. If the number of free

bites goes below 1028 (260 on 8080/280 versions}, the

message is displayed during Visual Mode.

See Alsa: .. Commands: RU
Examples: 100A U An additional 100 1lines from the
input file are appended and the
remaining number of free bytes
displayed.
) Visual Mode
Example: v
Description: This command enters Visual Mode. The wvisual cursor

Notes:
See Also:

Examples:

position is set from the current edit pointer
position. Visual Mode is exited with either the
[VISUAL EXIT] or the [VISUAL ESCAPE}] function. At
that time the edit pointer is set from the cursor
position.

The error "UNABLE TO ENTER VISUAL MODE" is given if
the keyboard decode table is invalid. This is most
likely due to loading the wrong file with the "YL"
command. If this happens load a valid table or give
the command "EXA" to save all files and exit VEDIT
PLUS.

The text registers are preserved.

Visual Mode

Fhere$ V Finds "here" and enters Visual Mode.

..233..

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

nW Write

20W #W 1% -100W
This command writes 'n' lines from the beginning of
the edit buffer to the output file, which also deletes
these lines from the edit buffer. If there are less
than 'n' lines in the edit buffer, the entire edit

buffer is written out. If 'n' is zero, the entire
edit buffer up to the line the edit pointer is on, 1is
written out. If no output file is open, the error

"NO OUTPUT FILE" is given and no text is written. The
output file can be opened with an "EW" or "EB" command
or when VEDIT PLUS is invoked.

The special forms "-nW" and "-0W" write the end of the
edit buffer to the temporary ".R" file. These
commands are primarily used to make more memory space
available for further edit operations. "-nW" writes
the last 'n' lines in the edit buffer out to disk.
"-0W" writes out the end of the edit buffer beginning
with the line the cursor is on.

No indication is given if less than 'n' lines were
written.

Commands: A, EB, EN, EW, EX

EW partl.txt

2hy

EF

EW part2.txt

EX Writes the first 24 1lines of the
edit buffer to the file "PART1.TXT",
writes the rest of the edit buffer
to file "PART2".TXT", saves the
files and exits VEDIT PLUS.

234

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

Z Z

This command moves the edit pointer past the last
character in the edit buffer. The command " _Z" moves
the edit pointer past the last character in the file,
performing forward disk buffering if necessary.

Commands: B,
Disk Buffering

Z =-100L Positions the edit pointer to the
100th 1line before the end of the
edit buffer.

Z -12T Types out the last twelve lines in
the edit buffer.

7 -12T7 Types out the last twelve lines in
the file.

235

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Command Description

EA Edit Again

EA

This command saves the entire file being edited
(including any un-read portion of the input file) to
disk. It then begins a new edit session on the same
file. Your original edit position in the file and any
text markers are maintained. In effect, it saves your
file on disk without disturbing anything else. The
main purpose for this command is to save all of your
edit changes as a safeguard against losing the file
due to a user error, hardware, software or power
failure.

All file backup and renaming is performed as with the
"EY" or "EX" commands. This command is functionally
similar to an "EY" followed by an "EB" on the file
being edited. The contents of the text registers are
not affected by the "EA" command.

The "EA" command starts a new edit session.
Therefore, if you quit with an "EQ" sometime after an
"EA", you will only abandon those changes made after

the "EA" command. Those changes made before the "EA"
command will have already been saved on disk.

The "EA" performs the identical operation as the
[FILE]-Save function.

Commands: EX, EY
[FILE] function

EA BV Saves the current file on disk,
moves the edit pointer to the
beginning of the file and enters
Visual Mode. Useful for periodic

saving of ongoing work.

,236“

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EBf71e<ESC> HEdit Backup

EB file.txt EB orgfile.txt newfile.txt

When only one file is specified, it opens 'file' for
both input and output and then reads in all of the
file, or until the edit buffer is nearly full. If two
files are specified, it opens the first file for input
and opens the second file for output.

"EB file" is similar to invoking VEDIT PLUS with the
command:

VPLUS file
It is also similar to the sequence of commands:
ER file$ EW file$ OA

"EB filel file2" is similar to invoking VEDIT PLUS
with the command:

VPLUS filel filel

The message "NEW FILE" is displayed if the file does
not already exist and is therefore created. If an
output file is still open, the error "CANNOT OPEN TWO"
is given and the command has no other effect.

The term "backup" is wused here to describe this
command since the term is often used by other editors
to perform a similar operation. Remember that VEDIT
PLUS always renames an existing file to ".BAK" when it
creates a new file by the same name.

Commands: W, ER, EW

EY

EB newfile.tixt The current file being edited is
saved on disk and the file
"NEWFILE.TXT" is prepared for

editing - it is opened for input and
output and read in.

ER partl.txt$0A

EB part2.txt The file "PART1.TXT" 4is vread into
the edit buffer, the file
"PART2.TXT" is then made the current
input and output file and is
appended to the end of the previous
file "PART1.TXT".

_23"'7..

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EC Change Disks

EC

This command must be given before you attempt to
change any logged-in disks in order to recovery from a
disk write error, or to read files from another disk.
It gives the error "CANNOT OPEN TWO" if the output
file is open and the error "REV FILE OPEN" if the
backwards buffering ".R" file is open - you cannot
then change disks. Be sure that any input file has
been completely read into memory before issuing the
"EC" command because it also closes any input file.
This command can also be used to switch to another
disk before an "ER" or "EG" command.

If neither the output file nor ".R" file is open,
the command gives the prompt "INSERT NEW DISK AND
PRESS <RETURN>". At this time change the disk(s) and
press RETURN.

The very careful user can change disks without using
the "EC" command. For example, if you are editing on
a hard disk, it is safe to read different disks in the
floppy drive without issuing an "EC" command. Just be
sure never to remove a disk which contains the output
file (".8$3%" file)} or the ".$R$" file or any unread
portion of the input file. The "EC" command must be
used under CP/M if you intend to write to a disk which
is not currently logged in - otherwise you will get a
fatal BDOS error and loose your edit session!

Commands: ED, EF
Disk Write Error Recovery.

EC Prompts you to enter the new disk{(s)
and press RETURN.

238

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

ED EDfile Digk Directory
ED EDA: ED B:* . TXT 1ED
This command displays the directory of files on any
drive and/or MS5-DOS subdirectory. It serves as a
reminder of the names of files you wish to edit, merge
or have already written out. Drive specifiers, the

"?" and "*" wildcard characters and MS-DOS pathnames
(or CP/M User Numbers) are allowed.

The command form "nED" displays the directory in 'n’'
columns instead of the normal 4 columns. The command
form "-nED" also displays the directory in 'n'
columns, but suppresses the normal header line which
displays the current drive and subdirectory.

The command form ":ED file" displays nothing and only
tests if the file 'file' exists. If it exists it sets
the internal wvalue ".rv" to "1", otherwise it sets
".I'V" tO HOH'

Use the "EU" command to change to a different drive or
M5-DOS subdirectory {(or CP/M User Number).

Commands: EU

ED B:*.TXT Gives the directory of all files
with extension ".TXT" on drive B.

ED B:/LETTERS/ Gives the directory of all files in
subdirectory "LETTERS" of drive B.

YI -ED Inserts the directory into the edit
buffer one file per line.

239

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EEr Switch Edit Buffer

EEL EE. -EE

This command switches to edit buffer 'r'. If text
register 'r' is not already an edit buffer it is
converted into an edit buffer and will remain one.
The commands "EE@", "EE." or "EE<RETURN>" switch back
to the main edit buffer.

If the new edit buffer is in a different 64K memory
segment from the current edit buffer, the switch
occurs without any file buffering. Otherwise, the
"EN" command is internally called tc make more memory
free by buffering part of the current edit buffer back
to disk. By default the current edit buffer is
reduced in size to one file "page". The command form
"nEEr" makes 'n' bytes free for the new edit buffer.
The command form "-EEr" switches to edit buffer 'r'
and suppresses any file buffering.

"EE" only switches to a different edit buffer, it does
not itself switch to a different window although
Visual Mode may use a different window for the new
edit buffer. Usc "YWS" to switch te a different
window. The file buffering feature applies mostly to
8080/280 versions and when you have many edit buffers
open on IBM PC/8088/8086 versions.

Commands: EN, YWS
Multiple File Editing, Memory Management

EE4 Switches to edit buffer 4,

~-EE. Switches back to the main edit
buffer and suppresses any file
buffering.

-240-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EF Finish {Close Output File)

EF

This command closes the output file, which only saves
text that has ALREADY been written to disk. This
command DOES NOT actually write any text to disk. Any
existing file on disk with the same name as the output
file is backed-up by renaming it with a file extension
of ".BAK". The user is prompted for confirmation to
close the file. The command "EFY" skips the
confirmation. The error "NO QUTPUT FILE" is given if
no output file is open.

WARNING

Use this command with care! You can easily erase the
file you are editing! DO NOT USE THIS COMMAND TO QUIT
YOUR EDITING - IT WILL ERASE YOUR FILE! In general,
"EF" is only used to split large files into small ones
and, for this, it is preceded by "EW" and "W" commands
(See Tutorial "Splitting a File").

Technically, a file has to be "written" and "closed"
in order to save it on disk. The commands "EX" and
"EY" write text to disk AND close the file. In

contrast, "EF" only closes the file; it writes
nothing. Text can be written to disk by
auto-buffering or with the "W" command. "EF" is

primarily used when splitting a large file into
smaller files.

Since the output file is initially opened with the
file extension ".$$$", the ".$$$" file 1is first
closed, then any existing file on disk with the same
name as the output file is renamed to ".BAK" and,
last, the ".$3%" file is renamed to the true output
file name. (See EW command notes.)

Commands: EW, EX, EY

EW save.txt

100W EF Writes the first 100 lines of the
edit buffer to the file "SAVE.TXT"
and closes it to save it.

-2h1-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EGfile[line range] Get External File

EGfile.txt[1,100] EG file.txt

This command inserts a specified line number range of
the file 'file' into the edit buffer at the edit
pointer. If no line range is specified, the entire
file is inserted. If insufficient memory exists to
insert the entire file segment, as much as possible is
inserted and the *BREAK* error is given.

The 1line numbers of a file can be displayed using the
"EL" command. A space may be used instead of a comma
in the "line range". As with all file names in VEDIT
PLUS, an optional drive and MS-DOS pathname (or CP/M
user number) may be specified. More memory can be
freed in the edit buffer with the "EN" command.

Be sure not to leave a space between the filename and
the "[", If you accidentally do, it will insert the
entire file and treat the line range as a harmless
iteration loop to be repeated 65536 times. You can
break out of this almost "infinite loop" by pressing
<CTRL-C>.

Commands: A, EL, ER
EG library.asm[34 65]
Lines 34 through 65 of the file

"LIBRARY.ASM" are inserted into the
edit buffer at the edit pointer.

=242~

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

EH Extended Help

EH EH EXIT

This command performs interactive on-line help using
the help file "VPEHELP.HLP" which contains help
information for common Command Mode tasks. Except for
using a different help file, this command is identical
to the "H" command; thus "EH" may be immediately
followed by the desired topic name.

Once familiar with VEDIT PLUS, you may not need the
information contained in "VPEHELP,HLP" any further.
In this case you may want to create a help file for
another program, such as the V-PRINT print formatter,
and make this file accessible by the "EH" command.
This procedure is described under "Modifying On-line
Help Files" in the User Guide.

Commands: H
Modifying On-line Help Files

FH EXIT Skips the help menu and directly

displays the help text for the topic
on how to "exit" VEDIT PLUS.

243~

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

nEI Insert Single (Control) Character

12ET OEI -45ET

Inserts the character whose decimal value is 'n' into
the edit buffer at the edit pointer. This is useful
for inserting special control characters, especially
characters which cannot be generated from the
keyboard, such as the IBM PC graphics characters with
a decimal value between 128 and 255. Only the "End of
File" marking character with a value of 26 cannot be
inserted. The command form "-nEI" overwrites the
existing character.

The non-ASCII character with value 255 should not be
used. This character ig internally used as a "Null"
and will be deleted by the "S" command.

The command "OEI" is the only way to insert the
character with value "0" from the IBM PC keyboard.

Commands: 1
[NEXT CHAR LITERAL] function

8E1 Inserts a backspace character into
the edit buffer at the edit pointer.

132EL Inserts a graphics character into
the text with the EI command,
because it cannot be generated from
the keyboard.

-244.-

VEDIT PLUS

Example:

Degcription:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

nkJ Jump (To Position)

100EJ Q1 EJ

This command moves (jumps) the edit pointer to
position 'n' in the edit buffer. 'n' is wusually the
value of a numeric register containing a computed
position. Position "0" is the first character in the
edit buffer.

The command "OEJ" is equivalent to "B" and "#EJ" is
equivalent to "Z".

Commands: C
Q1 EJ Jumps to the position in the edit

buffer determined by numeric
register 1.

EKf11e<ESC> Kill (Delete) File

EKfile. txt EK *.bak -EK file.bak

This command erases (kills) the file 'file' from the
disk. Wildcard characters may be used to erase more
than one file. The command first displays a directory
of the files to be erased and asks for confirmation
before erasing them. Alternatively, the command form
"-EK" skips the directory display and confirmation
prompt. Using "EK" is the easiest way of recovering
from a disk write error by making more disk space
free.

Never erase any ".$33" or ".$R$" files from within
VEDIT PLUS! These are the temporary files VEDIT PLUS
is wusing. Do not delete the input file until all of

it has been read into memory.

Commands: EC, ED
Disk Write Error Recovery

EK oldfile.txt Erases the file "OLDFILE.TXT" from

the disk.

EK *.bak Erases all files with a filename
extension of ".BAK" from the current
drive.

-245-

VEDIT PLUS

Example:

Degscription:

Notes:
See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

ELfile[line range] Look at External File

EL file.txt EL b:file.txt[200,400]

This command allows you to view a range of lines from
another file. If no line vrange is specified, the
entire file is displayed. Line numbers are displayed
ahead of each line. The displayed line numbers may
subsequently be used with the "EG" command to extract
a portion of the file.

Press {CTRL-C> to stop the file display.
Commands: EG

EL library.asm Displays the file "LIBRARY.ASM" with
line numbers.

nEMstring<ESC> Match String
EMalign<ESC> @EM/ i <begin/ H@EM/ A/
This command compares (matches) 'string' to the text
at the edit pointer. 'string' may contain pattern
matching codes. If the entire 'string' matches the
comparison is successful - internal value ".rv" is set
to "0", ".n" is set to the number of matching

characters and the edit pointer is moved past the
matching characters. If the match is not successful
".er" is set to "1", ".n" is not changed and ".rv" is
set to "1" if 'string' is lexically "less than" the
text or "2" if 'string' is "greater than" or "3" if
'string' contains pattern matching codes. The edit
pointer is not moved if the match is unsuccessful.

"EM" is different from "F" in that "F" will search for
the string, while "EM" does not search if it does not
completely match the text right at the edit pointer.
Also, no error is given if "EM" is unsuccessful. Use
the command form "EM|Rr" when the 'string’ is
contained in text register 'r'.

Commands: F, RM
EM|<begin$ Checks if the edit pointer is at the
beginning of a line beginning with

the word "begin". Sets the internal
values accordingly.

-2U6-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

nEN Need Memory

10000EN OEN EN

This command makes 'n' bytes of memory free in the
edit buffer, if possible, by buffering some of the
file back to disk. If 'n' is "0" it tries to make
free the amount specified as "Size of Memory after
Auto-Read" during Installation (Task 9.4). If 'n' is
not specified it buffers the file out to disk until
only one "page" (Task 9.5) remains in memory - this is
typically 6 - 12K.

"EN" does not buffer out any text which is within 2000
bytes of the edit pointer. If the desired amount
cannot be written to disk with just forward disk
buffering it will also use backward disk buffering.
If 'n' is too large, it will make as much memory free
as possible. Use the "U" command to confirm how much
is free.

This command is typically used to make a large block
of memory free before inserting a large text register
or inserting a large file segment with the "EG"
command .

Commands: U, EE

10000EN

RG5 Make 100000 bytes free in the edit
buffer in preparation for inserting
the contents of text register 5.

2q7

VEDIT PLUS Command Description

EP n k Edit Parameters
Example: EP 1 2 EP 7 70
Description: This command changes the value of parameter 'n' to
k', The command "EP" with no arguments displays the
current value of all parameters. The command form
"EP n" without the second argument only stores the

1ot

value of parameter 'n' in internal value ".rv". The
default wvalues for these parameters are determined
during Installation. The parameters are:

Cursor type (
Cursor blink rate {
Indent Increment {
Lower/upper case conversion {
Conditional conversion character (
Delay for Command Mode scrolling (0 - 255)
Right margin for Word Wrap (
High-Bit (8th bit) processing (
Cursor positioning mode (
0 Horizontal scroll margin (
1 Horizontal scroll increment (

b 2D 0O ONUT W0 N =

Parameter (1) determines the type of cursor displayed in
Vigual Mode for memory mapped versions. The CRT terminal
versions use the terminal's cursor instead. The cursor types
are: 0O=Underline, 1=Blinking Reverse Video Block, 2=Solid
Reverse Video Block, 3=Attribute, 4=System cursor (IBM PC
only). Type 1 is generally best on the IBM PC unless you are
using Borland's Turbo Lightning for which you need type 4

Parameter (2) determines the cursor's blink rate for cursor
types O and 1 above.

Parameter (3) determines how much further the editor indents
each time [INDENT] is pressed. The indent position after
pressing [INDENT] four times is therefore the "Indent
Increment” multiplied by four.

Parameter (4) determines whether lower case characters are
converted to upper case. For value (0), no conversion takes
place; for (1), all lower case are converted to upper case.
For (2), lower case letters are converted to upper case,
unless the cursor is past a "special" character on the text
line. This "special" character is set by parameter (5). Mode
(3) 4is similar to (2) except that characters are reversed
instead of being forced to upper case. All of this is
primarily applicable to assembly language programming, where
it is desirable to have the Label, Opcode and Operand in upper
case and the comment in upper and lower case.

-248-

VEDIT PLUS Command Description

Parameter (5) sets the conditional upper/lower case convert
character used for parameter (4) above.

Parameter {6) determines how much delay is added to each line
displayed in Command Mode. Without any delay, memory mapped
systems, such as the IBM PC, will display the "ED", "T" and
other commands too quickly to read.

Parameter (7) is the right margin for Word Wrap. It is also
the right margin used for formatting paragraphs. A value of O
disables both Word Wrap and formatting. It should be disabled
when editing programs!

Parameter (8) governs the processing of high-bit characters
and is a 3 bit parameter. Setting Bit 1 allows high-bit input
characters. Bit 2 allows high-bit characters on output
{otherwise, the 8th bit is stripped and the character
displayed in reverse video if possible). Bit 3 allows unused
function/control keys to be inserted into the edit buffer.
Users with an IBM PC, NEC APC or other machines with graphics
characters will want to wuse a value of "3". CRT terminals
work best with a value of "1" - allow 8 bits on input, display
high-bit characters in reverse video.

Parameter (9) determines the cursor positioning mode. The
modes are 0 =~ cursor only at real text; 1 - cursor allowed
past end of lines; 2 - pad with spaces when past end of line.

Parameter (10) is the horizontal scroll margin which sets the
maximum right margin for scrolling. Text lines longer than
this "scroll margin" are wrapped to the next screen line.

Parameter (11) is the horizontal scroll increment. Tt
determines how much the screen scrolls right or left when
[SCROLL RIGHT] and [SCROLL LEFT] are pressed or VEDIT PLUS
scrolls automatically.

Notes: The numbers are specified in decimal and are separated
by spaces or commas. The last number should be
followed by an <ESC> or a RETURN to prevent ambiguity.

Each edit buffer has its own set of "EP", "ES" and
"ET" values; when an edit buffer is created, they are
initially set to their installed values.

See Also: Commands: ES, H (to help you remember them all)
Installation

Examples: EP 3 6 Sets the "Indent Increment” to six.
EP 7 70 Sets the Word Wrap margin to 70.

249

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EQ Quit (Abandon) Editing

EQ EQY EQA

This command quits (abandons) the edit session without
saving any edit changes. It also leaves the current
edit buffer and, if this is the last edit buffer, it
exits VEDIT PLUS. Except for the main edit buffer,
the current edit buffer is converted back to an empty
text register. The user is prompted for confirmation
to abandon the edit session. The command "EQY" skips
the confirmation. The command "EQA" quits all edit
buffers (abandons all files) and exits VEDIT PLUS.

"EQ" is often wused after examining a file which you
don't want to change. In this case it is safer to
quit, rather than exit with "EX", in case you
accidentally did change something.

You can also quit with the [FILE]-Quit function.

Any existing backup (".BAK") file with the same
filename as the ocutput file will have been deleted if
any characters were written to the (now abandoned)
output file. Any liles deleted with the "EK" command
will remain deleted. With these exceptions, the files
will exist on disk just as they did before you started
the edit session.

If you quit with an "EQ" sometime after an "EA"
command, you will only abandon those changes made
after the "EA" command. Those changes made before the
"EA" command will have already been saved on disk.

Commands: EA, EZ

VPLUS oldfile.txt You only want to examine the file
without changing anything.

EQ When done you quit to leave the
file unchanged and leave VEDIT
PLUS.

-250-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

ERf 7 1e<ESC> Edit Read (Open Input File)

ER newfile.txt ER

This command opens the file 'file' for input
(reading). However, nothing is actually read into the
edit buffer. The "A" command or auto-buffering is
used to actually read the input file. If the same
file was already open for input, the file is
"rewound", so that the file can again be read from the
beginning. The error "FILE NOT FOUND" is given if
'file' does not exist.

The command "ER" without a filename displays the name
of the current input file if it is still open. The
command ":ER" also displays the filename, but
suppresses the following <CR>XLF>. The command "+ER"
displays the filename and includes its drive and/or
path.

Files can also be read from disks which are not
currently logged in by using the "EC" command. Issue
the "EC" command, insert the new disk into a drive
which is not being used for any output files and open
a file for reading with the "ER" command. This may be
necessary in case a file has been split into two parts
during a disk write error recovery.

Filenames may be preceded with spaces to improve
readability.

As soon as VEDIT PLUS reads the entire input file it
closes the input file. This allows the file to be
accessed by other users on a multi-user or network
system. Howeyer. .sinee-—the-input-—-fite—ts -neo-longer..
openy—the—tER~conpand . {without-a.filenane). .. displays
nothing.—e—it-only-displays -the—filename: when-an-input
file—#g-open-and.has not-already-been-coupletely read.

Commands: A, EC, EB, EW

ER parts.inv

20A The file "PARTS.INV" is opened for
input and twenty lines from it are
appended to the end of the edit
buffer.

-251-

VEDIT PLUS Command Description

ES n k Edit Switches

Example: ES 10 ES 3 1

Description: This command changes the value of switch 'n' to 'k'.
The command "ES" with no arguments displays the

current value of all switches. The command form
"ES n" without the second argument only stores the
value of switch 'n' in internal value ".rv". The

default wvalues for these switches are determined
during Installation. The switches are:

1 Expand Tab with spaces (0=NO 1=YES)
2 Auto-buffering in Visual Mode (0=NO 1=YES 2=BACK)
3 Auto-Indent Mode (0=NO 1=YES)
4 Point past text register insert {0=NO 1=YES)
5 Equate Upper/Lower case in search {0=NO 1=YES)
6 MS-DOS End-of-file padding (0=NO 1=YES)
7 Reverse all upper and Lower case keys {0=NO 1=YES)
8 Suppress error handling (0=NO 1=YES)
9 Use explicit text delimiters (0=NO 1=YES)
10 Global file operations (0=NO 1=YES)
11 Justify paragraphs (0=NO 1=YES 2=UNJUSTIFY)

Switch (1) determines whether the [TAB CHARACTER] function is
expanded with spaces to the next tab position. If not, a tab
character is inserted into the edit buffer. Except for
special applications, [TAB CHARACTER] should not normally be
expanded with spaces.

Switch {2) determines whether auto-buffering is enabled in
Visual Mode. "0" disables auto-buffering, "1" enables only
forward disk buffering, and "2" enables both forward and
backward disk buffering. A value of "2" 1is recommended for
use with hard disks and a value of "1" for use with floppy
disks. Use "0O" when you are giving explicit Read/Write
commands. This prevents unexpected disk read and write from
occurring while editing in Visual Mode.

Switch (3) enables/disables "Auto-Indent” mode. When enabled,
the indent position for a new line of text is initially the
same as for the previous line of text. This is convenient for
programming in 'C', Pascal, PL/I, etc. The indent position
can always be changed with [INDENT] and [UNDENT].

Switch (Y4) determines the edit pointer's position (or cursor's
in Visual Mode) following insertion of a text register. It
the switch is "0", the edit pointer is not moved, and is left
at the beginning of the newly inserted text. If the switch is
"1" . the edit pointer is moved just past the newly inserted
text.

-252-

VEDIT PLUS Command Description

Switch (5) determines whether upper and lower case letters are
equated when searching using the "F", "S" and "EM" commands
and [FIND] and [REPLACE] functions. Typically they are
equated so that the string "why" will match "Why", "WHY" and
"whyﬂ .

Switch (6) determines whether MS-DOS files are written 1in
their exact file length or are written with a <CTRL-Z> at the
end and are padded to make the file length a multiple of 128.
A wvalue of "0O" for exact length files works best for most
applications.

Switch (7) determines whether all letters typed on the
keyboard will be reversed with respect to upper and lower
case. It should normally be OFF, but does allow a wuser with
an upper case only keyboard to enter lower case letters.
Setting the switch to "1" reverses all keyboard letters in
both Command and Visual Mode.

Switch (8) determines whether the "suppress error handling"
command modifier ":" is set by default for all applicable
commands . If not suppressed, a search or "L" command error
causes an error message and the command to be aborted. Search
errors are usually only suppressed for command macros.

Switch (9) determines whether the "explicit text delimiter”
command modifier "@" is set by default for all applicable
commands. This is a matter of personal preference, but is
useful with command macros.

Switch (10) determines whether the "global" command modifier
"_" is set by default for all applicable commands. We suggest
only enabling this switch in command macros. Otherwise you
may find unnecessary file buffering occurring. Enabling this
switch also sets the "global" modifier for the [FIND] and
[REPLACE] functions.

Switch (11) determines whether the [FORMAT PARAGRAPH] function
and "YF" command will also justify the formatted paragraph.
Switch value "0" disables justification. Switch wvalue "1"
enables justification. Switch value "2" will "unjustify" the
paragraph, removing extra spaces.

Notes: The numbers are specified in decimal and are separated
by spaces or commas. The last number should be
followed by an <ESC> or a RETURN to prevent ambiguity.

See Also: Customization, Visual Mode

Example: ES 11 Enables the <TAB> key in Visual Mode

to be expanded with spaces.

253

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

ET Edit Tab
ET 20 40 60 80 100 120 ET 8 ET

This command changes the tab positions used for
displaying tab characters and, when the "ES 1 1"
("Expand Tab") switch is set, for expanding the
[TAB CHARACTER] key. Up to 33 tab positions are
allowed and they must be in the range 1 - 254. The
default positions are set during Installation. ir
only one number 'n' is given, the tab positions will
be set to every 'n' columns. The command "ET" with no
arguments displays the tab positions.

Counting starts at 1 (not at =zero). Therefore the
normal tab positions at every 8 columns are:

9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

For word processing the tabs can be set to the same
positions as are specified for the print formatter
program (V-PRINT) in order to preview how they will
look when printed

Each edit buffer has 1its own tab positions. "ET"
changes the tab positions for the current edit buffer
(but not other existing edit buffers) and sets the
initial wvalues for subsequently created edit buffers.
The command "-ET" changes the tab positions only for
the current edit buffer.

If you set the tab positions to anything other than
every 8, you may find that other programs will not
display your text properly because many programs have
fixed tabs at every 8 columns.

If you send files containing tab characters to
mainframe computers, you may find that the tabs are
lost in the transfer. (Many mainframes do not have
tab characters internally.) These two cases are good
candidates for expanding the [TAB CHARACTER] key with
spaces to the next tab position.

Installation, Visual Mode, Indent and Undent Functions

254

VEDIT PLUS

Example:

Description:

Notes:
See Also:

Example:

Example:

Description:

Notes:
See Also:

Example:

Command Description

EU drive:/pathname Drive/Path Used

EU B: EU C:\LETTERS

This command changes the "current" (logged in) drive
and/or MS-DOS subdirectory (or CP/M wuser number) to
the specified one. This allows files to be accessed
without having to specify the drive and/or pathname
each time. The command "EU" without any arguments
displays the current drive and subdirectory.

MS-DOS Pathnames, Changing Current Drive / Directory

EU B: Changes to drive B.
EU C:\LETTERS Changes to subdirectory "LETTERS" on
drive C.
EV Editor Version

EV

This command displays the VEDIT PLUS version number.
This number should be used in any correspondence you
have with us concerning this product. This command
can also be used inside iteration loops to give some
indication of the progress being made in long
executing macros.

..255_

VEDIT PLUS

Example:

Description:

Note:

See Also:

Example:

Command Description

EWfi1e<ESC> Edit Write (Open Output File)

EW newdat.inv EW

This command opens the file 'file' for output and
subsequent writing. No text is actually written by
this command. An output file must be opened in order
to save any text on disk. A file can also be opened
with the "EB" and "EA" commands, with the [FILE]-New
function and when VEDIT PLUS is first invoked. If a
file 1is already open for output, the error "CANNOT
OPEN TWO" is given and the command cancelled.

The command "EW" without a filename displays the name
of the current output file if it is open. The command
":EW" also displays the filename, but suppresses the
following <CR><LF>. The command "+EW" displays the
filename and includes its drive and/or path.

The file opened is actually a temporary file with the
same filename, but with an extension of ".$$$". The
file is not made permanent and given its true name
until it is "closed"™ with the "EA", "EF", "EX" or "EY"
commands or by the [FILE]-Exit function. At that
time, any existing file on disk with the same name as
the output file is backed up by renaming it with an
extension of ".BAK". Any existing backup file with
the same name 1is deleted when the first text is
written to the output file.

Commands: W, EA, EF, EX, EY

EW partl.txt

24w

EF

EW part2.txt

EX The first 24 1lines of the edit
buffer are written out to file
"PART1.TXT" and the rest of the edit

buffer ig written out to file
"PART2.TXT" and edit session is
completed.

ER a:bigfile.asm

EW b:bigfile.asm

OA V Typical procedure for editing a file
which is too big for both it and its
backup to fit on the same disk. In
this case, it is read from drive A:
and written to drive B:. Just be
sure that disk B: is nearly empty.

256

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EX Save And Exit

EX

This is the normal way to save the file being edited
on disk and exit the edit buffer. It saves the entire
file being edited {including any un-read portion of
the input file) on disk. It also exits the current
edit buffer and, if this is the last edit buffer, it
exits VEDIT PLUS. Except for the main edit buffer,
other edit buffers are converted back to empty text
registers. All file backup and renaming is done as
with the "EF" command. The error "NO OUTPUT FILE"
results if no output file is open. The error "NO DISK
SPACE" results if there is insufficient disk space to
save the entire file.

"EX" performs the same operation as [FILE]-Exit. In
case of a "NO DISK SPACE" or "NO DIR SPACE" error, see
the heading "Disk Write Error Recovery" in the User
Guide for the procedure to save your file.

Commands: EA, EB, EF, EQ, EW, EY
[FILE] function

VPLUS FILE.TXT
v

EX
The editor is invoked in the normal
way to edit a file in Visual
Mode. The new file is then saved on
disk.

.257

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

EY Save And Remain

EY

This command saves the entire file being edited on
disk, in preparation for editing another file. Like
the "EX" command it saves the entire file being edited
(including any un-read portion of the input file) on
disk. However, it stays in the same edit buffer. It
is usually followed by an "EB" command to edit another
file. The error "NO OUTPUT FILE" is displayed if no
output file is open.

In case of a "NO DISK SPACE" or "NO DIR SPACE" error,
see the heading "Disk Write Error Recovery" in the
User Guide for the procedure to save your file.

The [FILE]-New function is a combination of the "EY"
and "EB" commands.

Commands: EX, EF

EY

EB newfile.txt The current file is saved on disk,
and the file "NEWFILE.TXT" opened
for editing.

258

VEDIT PLUS

Example:

Description:

Notes:
See Also:

Example:

Command Description

EZ Abandon Edit Sessgion

EZ EZY

This command quits (abandons) the edit session, like
the "EQ" command, without saving any edit changes.
However, it stays in the same edit buffer and is often
followed by an "EB" command to edit a different file.
The user is prompted for confirmation to abandon the
edit session. The command "EZY" skips the
confirmation.

"EZ" is often used right after you invoke VEDIT PLUS
and you realize that you loaded the wrong file. "EB"
is then used to edit the desired file.

The notes for the "EQ" command apply.
Commands: EQ, EY

#K Shoot!! Meant -#K

EZ Since a bad mistake was made in the
above command, it is best to quit
this edit session and start over.
All edit changes are lost, but not
your original file!

259

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

cJL/cIM/cIN/cJO Jump Commands
cJP labe 1<ESC>
.erJM Q1 JO JPloop$

These commands perform a conditional jump within
command macros. If the conditional expression 'c'
evaluates to "O" the jump is not taken; if it
evaluates to "1" (or any other value) the jump is
taken. If any command is not preceded by an
expression it defaults to "1" and, therefore,
unconditionally performs the jump.

"JL" jumps out of the current REPEAT-UNTIL (iteration)
loop and execution continues with any commands
following the "]" at the end of the loop.

"JM" exits (jumps out of) the currently executing
macro. Execution continues with a higher level macro,
if there is one, otherwise it returns to the
"COMMAND:" prompt.

"JIN" starts the next iteration of current REPEAT-UNTIL
loop. If the iteration count is exhausted the loop
ends.

"JO" aborts the command macro execution and returns
immediately to the "COMMAND:" prompt.

"JPlabel<ESC>" jumps to '!label!', which must appear
somewhere in the current macro. You can jump out of a
flow control structure, but you cannot jump into one.
The command must end with an <ESC> or, alternatively,
explicit delimiters may be used.

"1label!" can be used as a label for the "JP" command
or as a comment. Unused labels serve no programming
purpose and are therefore a convenient way of placing
comments within a macro.

Commands: EJ
Flow Control, Jump (Branching) Commands, Commenting
Macros

See the heading "Flow Control" 1in the Programming
Guide for examples.

-260~

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

OCcommand DOS Command

0C DIR @0C/V~PRINT CHAPTER1/

This command executes a single MS-DOS command and
returns to VEDIT PLUS. The command may run another
program such as a compiler, V-PRINT or V-SPELL.

'Command’ must be followed by <ESC> or RETURN, or
explicit delimiters may be used, 'Command' may
contain a "|Rr" to use the contents of register 'r' as
all or part of the DOS command.

As with all commands which can take explicit
delimiters, if you have set "ES 9 1", then you MUST
use explicit delimiters with the "OC" command.

Although the "ED" command is easier to use, you can
display the directory with the command "OC DIR" which
also displays the size of each file.

MS-DOS has to be able to find its COMMAND.COM file on
the same drive as when the computer was first booted
or it will give the error "Insert COMMAND.COM disk in
drive A:". This generally only occurs if you boot
from a floppy disk and then remove the system disk.

If you run another program from within VEDIT PLUS it
may not have enough memory to run properly due to the
memory used by VEDIT PLUS. VEDIT PLUS will "grab"
128K of memory, if available, and another 64K for each
additional edit buffer. You can free memory for use
by other programs by exiting all unneeded edit buffers
which converts them back to text registers and frees
their 64K of memory. Alternatively, you can invoke
VEDIT PLUS with the "-S" option (see ERRATA.DOC file),
in which case it only '"grabs" 64K for all edit
buffers.

Commands: 0S
Memory Management

0OC VPRINT CHAPTER1
Runs the program V-PRINT to format
and print the file CHAPTER1.VPR from
within VEDIT PLUS.

0C VSPELL IR9 Runs the program V~SPELL on the file
whose name is in register "9".

-261-

VEDIT PLUS

Example:

Description:

Notes:
See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

0s DOS Operating System

0Ss

This command enters the MS-DOS operating system
without leaving VEDIT PLUS. The normal DOS prompt,
i.e. "A>" or "C>" will be displayed. Any number of
DOS commands and programs can be executed. Give the
DOS command "EXIT" to return to VEDIT PLUS.

All notes for the "OC" command apply here too.

Commands: 0C

PE Page Eject

PE

This commands advances the printer to the start of a
new page. In printer terminology this is often called
a "Form Feed". It is used in print macros to force
the following text to start on a new page. It can be
used from the "COMMAND:" prompt to start a new page or
to send a blank page through the printer. The command
"-PE" resets the internal 1line counter without
ejecting a page on the printer. This is useful inside
macros which change the "PP" parameters.

"PE" is equivalent to the [PAGE]-Eject function.

"PE" will start a new page by sending either multiple
"Line-Feed" characters to the printer or by sending a
single "Form-Feed" character. This is determined by
the setting of the "PP 4" print parameter. Form-feeds
are preferable and should normally be used except for
those rare printers which do not support the Form-Feed
character.

Commands: PP, PR
[PRINT] function

B [4OPR 40L PE] This macro prints the entire edit

buffer, but with only 40 lines of
text per page.

-262-

VEDIT PLUS Command Description

Example:

PP n k<ESC> Print Parameters

PP 2 50 PP 4 1

Description: This command changes the value of print parameter 'n'

Notes:

to 'k'. The command "PP" with no arguments displays
the current value of all switches. The command form
"PP n" without the second argument only stores the
value of parameter 'n' in internal value ".rv". The
default values of these parameters are determined
during Installation. The parameters are:

Physical lines per page (
Printed lines per page (1

Left margin for printing (0 - 100)
Use Form-Feed for new page (0

5 - 100)

N
H
[
o
o

Parameter (1) must be set to the length of a page in lines.
Typical paper is 11 inches long and is printed 6 lines per
inch, giving a value of 66. Set to the length of your page
or, when printing labels, to the number of 1lines between
labels.

Parameter (2) sets the number of lines printed per page
before a new page is automatically started. The lines will
be centered top to bottom. For example, with 66 physical
lines per page and 60 printed lines, there will be a 3 line
(1/2 inch) margin at the top and bottom of each page.
Picking a smaller number gives larger top and bottom
margins. Setting this value to the same as parameter (1)
allows pages to be printed without top/bottom margins.

Parameter (3) determines by how many columns printed text
is offset from the very left edge of the paper - i.e the
size of the left margin. The actual size of the left
margin also depends upon the paper's alignment in the
printer and on the number of columns printed per inch (10,

12 or 15}. The normal value of 12 gives a margin of
roughly one inch. When printing computer programs yocu may
want to set this parameter to "O" - no left margin.

Parameter (4) determines whether new pages are started by
sending out the correct number of Line-feeds (blank lines)
or a single Form-feed character. Most printers respond
properly to a Form-feed character and this option should
then be used. (If your printer automatically wraps long
lines to the next line, new pages won't start at the right
place unless you have enabled Form-feeds}).

See Notes for "EP" command.

“263_

VEDIT PLUS

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

Commands: PE, PR
[PRINT] function, Installation Task 4.

PP 2 50 Set to print only 50 lines per page.
mPR Print Text
40PR -20PR OPR 60_PR

This command prints the specified lines. The line
range and syntax are identical to the "T" command. If
there are fewer than 'm' lines to print, as many as
possible are printed and no error is given.

The command form "m PR" performs auto-buffering, if
necessary, to print the specified lines. The command
form "p,qPR" prints all characters from the 'p'th
character in the edit buffer up to, but not including,
the 'q'th character.

The printing can be stopped by pressing <CTRL-C>.

Each page is printed with the number of lines
specified by the "PP 2" parameter. After a "full"
page is printed, a new page is automatically started.

Since the "PR" command does not move the edit pointer,
it is often followed inside macros by an "L" command
to advance the edit pointer to the next block of text
to print. In case of auto-buffering, the edit pointer
is restored to its original position following the
printing.

Tab characters are printed by sending the correct
number of spaces to the printer. All other control
characters are sent verbatim - without expansion. The
command "YP mT" will also print the text, but will
expand control characters and print <ESC> as "$§".

Commands: L, T, RP, YP
[PRINT] function

B # PR Moves the edit pointer to the
beginning of the file and prints the
entire file.

-26h-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

R* Command Macro Comment

R* This is a comment in a command macro

This command allows a comment to be placed within
command macros. All text through the next <CR><LF> is
ignored.

The "R*" and following comment can appear anywhere in
a command macro except in the middle of a text string
or filename.

Commenting Macros, Labels

RAr Auto-execute Register

+RAY RAO

This command causes the macro in text register 'r' to
be executed in place of the normal "COMMAND:" prompt.
It is primarily used to replace Command Mode with a
main menu of operations, as in the "MENU.VDM" macro.
'r' may be any register except "O". Due to the
potential danger of this command (it can cause
infinite loops), its syntax is checked carefully -
leaving off the "+", specifying register "0" or no
register at all will disable auto-execution.

Use this command with care! Since pressing <CTRL-C>
normally returns to the "COMMAND:" prompt, it
re-executes the register instead. When writing a main
menu macro debug it fully before adding the "RA"
command. Be sure to allow a way for the menu user to
exit VEDIT PLUS (it can be done with the [FILE]
function).

Commands: M, RE, RJ
Auto-Execution of Macros
Examine the "MENU.VDM" and "MENU.INI" files.

+RAY Sets up to execute register "Y' in
place of the normal command prompt.

-265_

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

mRCr Copy To Register

40RC1 -20RC+2 Q1,Q2 RCZ

This command copies the specified lines 'm' to text
register 'r'. The previous contents of the text
register are destroyed, unless 'r' is preceded with a
"+" indicating that the text is to be appended. The
range of lines copied is the same as for the "K" or
"T" commands. The text in the edit buffer is
unchanged. If there is insufficient memory space for
the text copy, the text register is only emptied,
nothing is copied to it and the "*BREAK*" error is
given,

The command form "p,gRCr" copies all characters from
the 'p'th character in the edit buffer up to, but not
including, the 'q'th character to text register 'r'.
Counting starts with 0.

The error "MACRO ERROR IN r" results 4if a macro
attempts to change a text register which contains an
executing command macro. The error "INVALID EDIT
BUFFER OPERATION" results if 'r' is an edit buffer.

On systems with less than 192K of memory, the text
registers will share memory space with the edit
buffers - therefore, saving text in the text registers
decreases the amount of memory available to the edit
buffer. Thus the "REr" command should be given to
empty a register when it is no longer needed.

Commands: K, T, RG
[BLOCK] function

120RC1 120K Saves 120 lines in text register 1
and then deletes them from the edit
buffer.

-23T

-23RC6 Displays text lines for verification
before saving them in the text
register.

-266-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

RDr Register Dump

RD3 +RD9

This command displays (dumps) the contents of text
register 'r! on the console. Control and tab
characters are not expanded. The command is useful
for sending initialization sequences to a CRT
terminal, such as sequences to set up programmable
function keys. The "RT" command should be used to
display the registers, since control characters are
then expanded.

VEDIT PLUS's window handler sends a <CR>LF> to a CRT
terminal if the "RD" command attempts to exceed the
right window (or screen) margin. If this interferes
with terminal initialization, use the command form
"+RDr" which allows the dumped text to exceed the
window margin.

Press {CTRL~C> to stop the "RD" command.

Commands: RT
Auto-Startup

RD5 The contents of text register 5 are
dumped (displayed) on the console.

REr Empty register
REY +REM
This command empties text register 'r'. An edit

buffer cannot be emptied and 1leads to the error
"INVALID EDIT BUFFER OPERATION". Normally 'r' also
cannot be emptied if it contains a currently executing
command macro unless the command form "+REr" is used.
"+REr" must be used with care, but is useful for
saving the memory space of a command macro which VEDIT
PLUS thinks is still executing, but is no longer
really needed.

It is a good habit to empty unused text registers.

Commands: RC
Command Macros

REY Empty text register .

~-267-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

RGr Get {Insert) Register

RGA

This command inserts a copy of text register 'r' at
the position of the edit pointer. If the text
register 1s empty, nothing is inserted. Depending
upon the setting of the "ES 4" switch, the edit
pointer will either remain unchanged or move just past
the inserted text. The contents of the text register
are not affected. If there is 1insufficient memory
space for the entire copy, nothing is inserted and the
"*BREAK*" error is given.

toat

r can be an edit buffer, in which case the current
contents of the edit buffer are inserted.

Commands: RC
[BLOCK] function

B RGY Inserts the contents of text
register 9 at the beginning of the
edit buffer.

12[RG2] Ingerts the contents of text
register 2 twelve times at the edit
pointer position.

132RC3 132K
B

10L RG3 Moves 132 lines of text, by saving
it in text register 3, killing the
original lines and inserting the
text after the tenth 1line of the
file.

-268-

VEDIT PLUS

Example:

Degcription:

Notes:

See Also:

Example:

Command Description

RIrtext<ESC> Ingsert Into Register

@RI3/B #PR/

This command places 'text' into text register 'r'. If
'‘r' is preceded by a "+" the 'text' is appended to any
existing contents in the register. The 'text' may

contain the RETURN key, which is expanded to
<CR> <LF». If insufficient memory space exists, the
error "*BREAK*" is given and only part of the 'text’
will be inserted. This command is useful for setting
up a text register from within a command macro.

If a register needs to be set up from the keyboard, it
is often easier to change the register into an edit
buffer and enter the text directly from Visual Mode.

Programming Guide: "Loading Macros into Text
Registers"
@RI3/B #PR/ The command sequence "B #PR" is

placed into text register 3.

269

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

RJr Jump To Macro

RJY

This command "jumps" to execute text register 'r' as a
command macro. It differs from the "M" command in two
important ways. First, there should be no commands
following the "RJ" because command execution does not
return to the text register issuing the "RJ". Second,
since the text register which issued the "RJ" is no
longer "executing"”, it can be modified without getting
the "MACRO ERROR IN r" error.

The "M" command is analogous to a subroutine "CALL"
with execution returning to the "calling" program when
the subroutine is done. (VEDIT PLUS maintains an
internal stack of these "return addresses".) In
contrast, the "RJ" is a "JUMP" since execution doesn't
return to the "program" which issued the "RJ" command.
(Since a return address for the issuing macro is not
on the internal stack, it is no longer considered to
be "executing".) In programming terminology "RJ" is
similar to "chaining" in BASIC.

Commands: M, RE
Jumping to a Command Macro

RJY "Jump" to execute text register "Y"
as a command macro.

-270~

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

RLr file<ESC> Load Register

RLY macrol.vdm

This command loads the entire file 'file' into text
register 'r', The file itself is not affected. If
there is insufficient memory space to load the entire
file, as much as possible is loaded and the error
"*BREAK*" is given. This command is often used to
load command macros which have been saved on disk.
The command form "+RL" performs an extended search for
the file.

Do not use this command to edit another file. Instead
use the "EE" and "EB" commands to simultaneously edit
another file in an edit buffer/text register.

Commands: RS, EG

RLY macro.vdm Loads the file "MACRO.VDM" into text
register 4,

-271-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

RMr Match Register

RM8 _RMC

This command compares (matches) the contents of text
register (or edit buffer) 'r' to the text at the edit
pointer, It performs a direct character comparison
without pattern matching; only the "Equate Upper/Lower
case" switch is respected. If 'r' is a text register
the comparison 1is with the entire text register; if
'r' is an edit buffer the comparison starts with 'r’s
edit pointer and its edit pointer is moved past the
last character matched.

In either case, if the rest of the text register
matches, the internal value ".rv" 1is set to "0O",
otherwise ".rv" is set to "1" if 'r' is lexically
"less than" the text or "2" if 'r' is "greater than"
the text. Regardless of whether the entire text
register matches, the edit pointer is moved past as
many characters which do match and ".n" is set to the
number of characters which matched. The error flag
".er" is not affected.

Two major differences between "EM" and "RM" are that
"EM" uses pattern matching and does not move the edit
pointer unless the entire match is successful. "RM"
matches as much as possible; it is not an error if the
entire text register doesn't match. "RM" is useful
for moving the edit pointer in two edit buffers past
all characters which match, regardless of whether the
two edit buffers match completely.

Commands: EM

_RMY Matches the text at the edit pointer
with the text at the edit pointer in
edit buffer "Y" and moves both edit
pointer past all characters that
match. Auto-buffering is performed,
if necessary, in the current edit
buffer.

-272-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

RPr Print Register

RP3

Yt

This command prints the contents of text register 'r'.
It allows a hardcopy of the text or command macro in
the text register to be made. Also allows a disk file
to be printed after first loading it 1into & text
register.

Be sure your printer is "On Line". Press <CTRL-C> to
stop the printing.

Tab characters are printed by sending the correct
number of spaces to the printer. All other control
characters are sent verbatim - without expansion. The
command "YP RTr" will also print the text, but will
expand control characters and print <ESC> as "$".

Commands: RD, RT

RPH The contents of text register 5 are
printed.

273

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

RQrtext<ESC> Register Query

@RQF/Enter File Name:/

This command queries (prompts) on the screen with
'text' and then reads the user's response line into

text register 'r'. The user ends the input 1line by
pressing RETURN or two <ESC>'s which are also stored
in the text register. The command form

":RQrtext<ESC>" does not store the ending RETURN or
two <ESC>'s in the text register. The 'r' may be
preceded with "+" to append the response line to the
existing contents of the text register. The command
form "+RQrtext<ESC>" prompts on the status line -
'tert' must then be a single line prompt.

The query always starts on a new screen line. The
response line may be edited in the same way as a
command line may be edited. In programming

terminology "RQ" performs a "string input", similar to
an "INPUT" statement in BASIC, or a combination of
"puts(text)" and "gets(r)" in C.

Commands: XK, XQ, YT

@RQF/Enter File Name:/

EB{RF Prompts for a filename and saves the
filename in register "F". Then
opens the file which the user
specified for editing.

274

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

RSr file<ESC> Save Register

RSY4 macrol.vdm

This command saves the contents of text register 'r'
in the created file 'file'. The register contents are
not affected. This command is commonly used to save a
section of text 1in its own disk file, or to save a
command macro for later use. If there is insufficient
disk space for the entire file, as much as possible is
saved and the error "NO DISK SPACE" is given, The
error "NO DIR SPACE" is given if there is insufficient
directory space on the disk.

If an existing 'file' already exists, the user is
prompted for confirmation to overwrite it. If there
is dinsufficient disk space to save the register, try
deleting some files or insert another disk and give
the command again.

Commands: RL

RS4 macro.vdm Saves the contents of text register
4 in the file "MACRO.VDM".

RTr Type (Display) Register

RT3
This command displays (types) the contents of text
register 'r'. This is commonly used to remind oneself
what 1is in a particular register. Press <CTRL-S> to
pause the display or <CTRL-C> to abort the command.
Any embedded <CTRL-S>'s will also pause the display.

Control characters are expanded and <ESC> s
represented as a "$". Use the "RD" command to dump
out a text register without expanding control
characters.

Commands: RD

RTH The contents of text register 5 are
displayed on the console.

..275...

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

RU Register Usage

RU

This command displays the number of characters held in
each text register/edit buffer. A "#*" is displayed
next to those text registers which are also edit
buffers. It is commonly used to see which registers
are being used, how many characters they hold and
which registers are currently edit buffers.

The third number displayed by the "U" command is the
total number of bytes held by all text registers which
ARE NOT also edit buffers. If this value is not =zero
the status line message 1is displayed during
Visual Mode.

Commands: U

RU Displays the sizes of the text
registers.
40RC3 RU Saves 40 lines of text in register 3

and then displays how many bytes are
now in the text registers.

RXr file<ESC> Register Execute

RXP print.vdm

Loads fi{le into text register 'r' and executes it
immediately as a macro. The command is a short hand
for the equivalent commands "+RLr file" and "Mr".

The "X" in "RX" was purposely chosen to coincide with
the "-X" invocation switch (think of the word
eXecute) . The "RX" command allows a macro to be
loaded and executed from within VEDIT PLUS, and also
lets you choose which register it will be loaded into.

Commands: M, RL
Auto-execution

RLP PRINT.VDM Loads the print formatter macro into
register 'P' and executes it.

276

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

mXAr Add to Numeric Register

XA2 12XA22

This command adds the positive or negative value 'm'
to numeric register 'r'. (If 'm' begins with a '-'
the wvalue is subtracted from the numeric register.)

The arithmetic is performed as 17 bit signed integers.

The numeric registers are pre-initialized to "0" when
VEDIT PLUS is invoked.

Commands: XS, XT

XA3 This increments (adds "1" to)
numeric register 3.

60XA22 This adds 60 to numeric register 22.

-2XAl Subtracts 2 from numeric register 4.
XKrtext<ESC> Single Key Query

@XK19/Press "Y" or "N":/

This command queries (prompts) on the screen with
'text' and then reads the value of the user's next

keyboard character into numeric register 'r'. The
command form ":XKQrtext<ESC>" allows even a <CTRL-C>
to be read from the keyboard (value = 3); otherwise,
{CTRL-C> performs its normal function of breaking out
of any command macro. The command form
"+XKrtext<ESC>" prompts on the status line - 'text'
must then be a single line prompt.

The query always starts on a new screen line. Since
the very next keyboard character is read, there is no
line editing. In programming terminology "XK"

performs a "character input", similar to an unbuffered
"getchar(r)" in C.

Commands: RQ, XQ, YT

@XK19/Press "Y" or "N":/

(Q19 = "Y) @JP/DOIT/
Prompts for confirmation. If the
user presses "Y" jumps to the label
"1DOIT!" in the command macro.

277

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

XQrtext<ESC> Numeric Value Query

@XQ15/Enter Line Number:/

This command queries (prompts) on the screen with
'text' and then reads the user's response of a decimal

number into numeric register 'r'. The user's response
may alsc be an algebraic expression which will be
evaluated. The user normally ends the number

(expression) with a RETURN, but any invalid character
also ends the number. Pressing an immediate RETURN
sets 'r' to "O". The command form "+XQrtext<ESC>"
prompts on the status 1line =~ text must then be a
single line prompt.

The query always starts on a new screen line. The
response line may be edited in the same way as a
command line may be edited.

Commands: RQ, XK, YT

@XQ15/Enter Line Number:/

_B Q15 L
Prompts for the desired line number.
Then goes to that line in the file.
nXSr Set Numeric Register
0Xs2 1200XS3
This command sets numeric register 'r' to 'n'. 'n' is

treated as a 17 bit signed integer.

The numeric registers are pre-initialized to "O" when
VEDIT PLUS is invoked.

Commands: XA, XT

0XS9 This clears (sets to 00) numeric
register 9,

12XS0 Numeric register O is set to 12.

278

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

Example:

Command Description

XTr Type Numeric Register

XT4 1 XTh

This command types (displays) numeric register 'r' in
decimal followed by a <CRX>LF>. The command form
":XTr" suppresses the final <CR><LF>. The number is
displayed right justified. The command form "-XTr"
displays the number left justified.

The numeric registers are pre-initialized to "O" when
VEDIT PLUS is invoked.

The wvalue of a numeric register can be printed in
conjunction with the "YP" command or inserted into the
edit buffer with the "YI" command.

Commands: XA, XS

10XS2 12XA2

XT2 Types out numeric register p

displaying the value 22.

YP XT9 -YP The number in numeric register 9 is
printed out.

n¥YD Dump Character

QLYD QL:YD .bYD

This command dumps (displays) the ASCII character with
value 'n' followed by a <CR> <LF>. The command form
"n:YD" suppresses the <CR> <LF>. Primarily wused
inside command macros, with 'n' being a numeric
register. It can also be used to display graphics
characters on the IBM PC, where 'n' has a wvalue
between 128 and 255,

It is called a "dump" because control characters are
not expanded.

Q1YD Interprets the contents of numeric
register "1" as a character and
dumps it to the screen,

.b¥YD Displays the name of the current
edit buffer.

...279_

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Exanmple:

Command Description

nl,n2YEA Change Window Attributes

6YEA 6,240YEA

This command changes the screen attribute(s) for the
current window. "nYEA" changes both the text
character and "erase screen" attributes to ‘'n'.
"nl,n2YEA" changes the text character attribute to

'nl' and the ‘"erase screen" attribute to 'n2'. The
"erase screen attribute" is the attribute used for the
erased (or clear) portions of the window. Both

attributes are usually set to the same value.

The attribute values are hardware dependent. On a CRT
terminal only "O" for normal video and "1" for reverse
video are supported. On an IBM PC all allowable
screen attribute values are supported. Both
foreground and background colors can be set on IBM CGA
and EGA systems. The heading "Changing Window/Screen
Color" in the User Guide gives values for most color
combinations.

The default attribute values are set in Installation
Tasks 10.6 and 10.7. The "YWI" command restores the
attributes to their installed values.

Before changing the attributes inside a macro, you may
want to save the current values so that they can be
restored later. The current attribute values are
available in the internal values ".wa" and ".we".
Installation Task 10.6 and 10.7

5YEA Changes to magenta colored
characters on an IBM PC.

-280-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

YEC / YEL / YES Erase Window

YEC YEL YES

These commands erase part or all of the current
window. "YEC" erases (clears) the entire window and
homes the cursor. "YEL" erases from the cursor
position to the end of the window line. "YES" erases
from the cursor position to the end of the window
(screen). For each command, the erased portion of the
window is sett to the "erase screen" attribute
initially set during Installation or changed with the
"YEA" command.

These commands are primarily used in command macros
which are creating a "menu" or "form" on the screen.

These commands perform the common CRT emulation
functions of "Clear screen", "Erase to end of line"
and "Erase to end of screen".

Commands: YEA, YEH, YEV

5YEV 15YEH

@YT/Nane: /

YEL Position the cursor to row 5, column
15 in the window, display the text
"Name:" and clear the rest of the
line.

-281-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

nYEH / nYEV Set Cursor Position
5YEV 15YEH 1YEH 1YEV
These commands position the cursor within the window
(screen). "nYEH" positions the cursor horizontally to
column 'n'. "nYEV" positions the cursor vertically to
row 'n'. This cursor position determines where the
next console character will be displayed. The upper

left hand corner (home) has position "1,1".

These commands are primarily used in command macros
which are creating a "menu" or "form" on the screen.

This cursor positioning has absolutely nothing to do
with the cursor positioning in Visual Mode; it only
performs a "CRT emulation" function for command
macros.

Commands: YEC, YEL, YES

BYEV Positions the cursor to row 5,
leaving it in its current column.

1YEV 1YEH Positions the cursor to "home" - the
upper left hand corner of the
window.

-282-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Command Description

nYF Format Paragraph

YF 1YF 10YF

This command formats the paragraph of text that the
edit pointer is in. "YF" is similar to the Visual
Mode [FORMAT PARAGRAPH] function. The left margin is
set by the Visual Mode indent position and the right
margin is the Word Wrap column. Alternatively, "nYF"
uses a left margin of 'n'. Use the command "1YF" to
use a left margin of one (1), independent of the
indent position. After formatting, the edit pointer
is positioned to the beginning of the next paragraph.
If word wrap is off, the command is ignored.

The paragraph can optionally be justified with the

command switch "ES 11 1", Similarly, the command
switch "ES 11 2" allows a paragraph to be
"unjustified". Note that you must use an iteration

loop to justify multiple paragraphs.
Formatting Paragraphs

5YF Formats the paragraph with the left
margin starting at column 5.

8[YF] Formats eight (8) paragraphs, using

a left margin set by the Visual Mode
indent position.

283

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

YK file<ESC> Save Keyboard Layout

YK SPECIAL.LAY

This command saves the current keyboard decode table,
including any keystroke macros, in the file 'file'.
This is the only way of saving keystroke macros to
disk so that they can later be loaded back with the
"YL" command. The command form "+YL" performs an
extended search for the file.

The entire keyboard layout set up during Installation
and any keystroke macros created with the [DEFINE]
function are saved to disk.

Commands: YL
Keystroke macros

YK SPECIAL.LAY Saves the current keyboard layout
and keystroke macros to disk.

YI Insert Intc Edit Buffer

YI

This command re-routes (inserts) any Command Mode
console output into the buffer at the edit pointer.
For example, this can be used in conjunction with the
"XT" command to insert numeric information, such as a
line or page number, into the text. "-YI" stops the
re-routing and resumes normal console output. The
"COMMAND: " prompt also stops any re-routing.

The "YI" command will operate very quickly near the
end of the edit buffer. However, inserting text at
the beginning of a large file may take as much as 1/2
second per character.

Commands: YP

YI XT3 Inserts the number in numeric
register 3 into the edit buffer.

YI -ED Inserts the disk directory into the
edit buffer, one file name per line.

-284-

VEDIT PLUS

Example:

Desgcription:

Notes:

See Also:

Example:

Example:

Description:

Notes:

Example:

Command Description

YL file<ESC> Load Keyboard Layout

YL SPECIAL.LAY

This command loads a new keyboard decode table from
the file 'file'. A keyboard decode table is saved to
disk with the "YK" command and includes any keystroke
macros which were set up when the "YK" was issued.

Loading a new keyboard table overwrites any existing
keystroke macros. When entering Visual Mode, the "V"
command checks that the keyboard table is valid. For
example, if you erroneously load a text file as a
keyboard table, the "V" command will give the error
"UNABLE TO ENTER VISUAL MODE".

Commands: V, YK
Keystroke macros

YL SPECIAL.LAY The file "SPECIAL.LAY" replaces the

current keyboard decode table
including any keystroke macros.

™ Find Matching Parentheses

YM

This command searches (forwards) for the next
"parenthesis" type character - "(", ™}", "{", "}",
e, Mg, "<t ">, If the edit pointer is already at
one of these characters it searches (forwards or
backwards) for its "matching" character. "Ym"
properly handles nested "parentheses". The command is
primarily useful for checking the syntax of structured
programming languages such as "C" and VEDIT PLUS
macros.

"YM" is similar in operation to the [MISC]-Match
function.

285

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Examples:

Example:

Description:

Notes:

See Also:

Example:

Command Description

YP Route to Printer
YP
This command re-routes any Command Mode conscle output
to the printer. The command "~YP" stops the
re-routing and resumes normal console output. The

"COMMAND:" prompt also stops re-routing. This command
can be used in conjunction with the commands RT, T, EL
ED, EV, XT, etc., to print text.

There 1is a subtle difference between, for example,
"YP T" and "PR". Most print commands, such as "PR",
do not expand control characters sent to the printer
so that special printer features can be accessed.
However, "YP" allows text to print exactly as it is
displayed on the screen where control characters are
usually expanded. Therefore, "YP T" will expand
control characters - for example, instead of sending a
<CTRL-H> to the printer, it will send the two
characters ""H".

Commands: YI, T, RT, XT
YP ED Prints the directory on the printer.

YP RT6 Prints the contents of register 6 on
the printer. (Similar to "RP6".)

mYS Strip High Bit

12vS # VS

This command strips the high bit (bit 8) from all
characters in the specified line range. (Line range
is same as for "T" command.) "YS" is predominately
used to convert Wordstar and similar word processing
files into a format easier to use with VEDIT PLUS.

Be careful not to use this command on IBM PC
"graphics" characters which also have their high bit
set.

Convert WordStar Files

B # YS Strips the high bit from all
characters in the file.

-286-

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

YTtext<ESC> Type Text String

@YT/Part 1 is done/

This command displays 'text' on the console. 'text'
may be several lines long with a RETURN at the end of
each line. The command form "+YTtext" displays the
text on the status line.

"YT" is often used in command macros to display
messages, menus, forms and prompts.

The "YEH" and "YEV" cursor positions commands can be
used to display the text at any position in the window
(screen).

The commands "YP YTtext<ESC>" can be used to print a
header or footer line on the line printer.

Commands: RQ, XK, XQ, YP
YP @YT/Chapter 1<CR>/
The header 1line "Chapter 1" is

printed. (The <CR> starts a new
line on the printer.)

287

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Command Description

YWD / YWI Delete / Initialize Window

YWI

"YWD" deletes the current window and "YWDw" deletes
window ‘'w'. The remaining window(s) will expand in
size to fill the freed screen area. Only the default
"@" window cannot be deleted. The new active window
is the "parent" of the deleted window. This command
does not change the active edit buffer.

"YWI" deletes all windows and initializes the default
"@" window to the same condition as when VEDIT PLUS
was invoked - it fills the entire screen (except the
status line), clears the window and sets the text and
"clear screen" attributes to to their Installation
values.

You may need a "YWS" command to switch to the desired
window following a window deletion.

[WINDOW] function

YWD4 YwS1 Delete window "4" and switch to
window "1".

-288-

as needed
>w window),
line and 15
> the new
1.

jow can be
i PC this
colors.

columns in
e current
0 display

5 lines in
1t window.
1sed by the

VEDIT PLUS

Example:

Description:

YWB / YWL / YWR / YWT

Command Description

Create Window

YWR 1 40

These commands create a new window by
current window into two windows.

new window with name 'w'

bottom of the
creates window
"YWRw n" creates

right of the current window.
columns at

'w!' with 'n’'

single character name.

displayed in

must be picked.

the window,
The window with name "$" will be used

YWB § 5

splitting the
"YWBw n" creates a
and size of 'n' lines in the

current window. Similarly, "YWTw n"
LR § eaa 4+t et B I =] - P A
w w1l LIi i1 L1IIICED auv (92915 LUP .

window 'w' with 'n' columns in the

"YWLw n" creates window
the left. 'w' may be any
If an edit buffer is to be
the name of the edit buffer

by the Command Mode.

Notes:

See Also:

Example:

The current window is reduced in size
(including the border line needed for the n
but cannot be reduced smaller than one
columns. These commands do not switch t
window; this is done with the "YWSw" comman

The screen attributes for the new win
changed with the "YEA" command. On an IB
allows windows to be displayed in different

Commands: YEA, YWD, YWI, YWS
[WINDOW] function

YWR1 40 Create window "1" with 40
the right part of t
window. It can be used
edit buffer "1".

YWBS 5 Create window "$" with
the bottom of the curre

It will automatically be
Command Mode,

289

VEDIT PLUS

Example:

Description:

Notes:

See Also:

Example:

Example:

Description:

Notes:

See Also:

Example:

Command Description

YWSw Switch Window
YWS1 YWS$
This command switches to the window 'w'. If window
'w' does not exist, the command is ignored - no error
is given. "YWS" only switches to a different window;

it does not also switch edit buffers.

If "YWS" switches to a window which was last used for
Visual Mode the text is scrolled up one line and the
cursor positioned at the bottom of the window;
otherwise the cursor is positioned to its previous
position in the window.

Whenever you exit Visual Mode to Command Mode, VEDIT
PLUS will automatically switch to the "$" window if it
exists. Otherwise it will use the previcus Command
Mode window.

Commands: RQ, XK, XQ, YP
[WINDOW] function

YWS1 Switch to window "1".

YWZ Zoom Window

YWZ

This command "zooms" the current window so that it
fills the entire screen (except for the status line).
It is often easier to edit in the larger window.

Anytime VEDIT PLUS switches windows and one window was
"zoomed", all windows are redrawn on the screen.
Therefore, entering Visual Mode will usually cause the
windows to be redrawn. You can "zoom" the Visual Mode
window with the [WINDOW]-Zoom function.

When redrawing the screen, VEDIT PLUS restores the
contents of all Visual Mode windows, but it cannot
restore the contents of Command Mode windows.

Commands: YWI, YWS

YWZ Zoom the current window to fill the
screen.

-290-

VEDIT PLUS Command Description

This Page Reserved For Your Notes

-291-

VEDIT PLUS Command Description

This Page Reserved For Your Notes

~292-

