VEDIT PLUS

USER GUIDE

-109-

VEDIT PLUS User Guide

-110-

VEDIT PLUS User Guide
Ready To Use Macros

READY TO USE MACROS

VEDIT PLUS includes four ready to use command macros - a print
formatting macro, a file comparison macro, a mailing list sort
macro and a main-menu macro. A 780 to 8086 Assembly Language
Translator macro and a Mail Merge macro are available as additional
cost options.

Print Formatter Command Macro

The supplied command macro PRINT.VDM performs simple print

formatting. This macro can be used as an alternative to the "PR"
print command which also prints the filename and page number at the
top of each page. Much more sophisticated formatters can be

written with VEDIT PLUS macros; PRINT.VDM is intended as a macro
example which 1is relatively easy to understand and expand.
Possible enhancements include 1line numbering, header and footer
messages and more.

To get ready to use PRINT.VDM enter Command Mode and issue the
command:

RLP PRINT.VDM This loads the print formatter.

This 1loads the macro into text register "P" where it will remain
unless you insert other text into the register.

To print your text, issue the command:
MP This prints the entire edit buffer.

The entire file should begin printing. To stop the printing before
it is done press <CTRL-C)>,

If you use PRINT,VDM a lot, you can automatically load it into
VEDIT PLUS by placing the command YRLP PRINT.VDM" into the
VEDIT.INI file, which is executed each time VEDIT PLUS is invoked.

Feel free to modify the PRINT.VDM macro to suit your needs.

Modifying this macro is also an informative way to learn more about
VEDIT PLUS macros.

-111-~

VEDIT PLUS User Guide
Ready To Use Macros

File Comparison/Merge Macro

The file comparison macro can compare two text files of arbitrary
size. One file, called the "active file" can also be edited while

it is being compared to the "template file". The files can be
merged by copying blocks of text from the "template" file to the
"active" file. You will find many uses for this file comparison.

Possibilities include merging the work done by several pecple or
simply determining which is the most up to date version of a file.

The macroc uses "windows" to give you a split-screen comparison of
the two files. Remember that the macro can only save changes you
make to the "active file", not to the "template file". To perform
the file comparison issue the commands:

VPLUS Invokes VEDIT PLUS.
RLZ COMPARE.VDM Loads the macro into register "Z".
MZ This starts the macro execution.

Alternatively, you can invoke VEDIT PLUS with "auto-execution",
which is equivalent to the three commands above:

VPLUS -X COMPARE.VDM

The macro first prompts for the window configuration you want. You
can select a vertical split, a horizontal split or no windows.
Next, the macro prompts for the filename of the '"active file",
which is the file you can also edit. It then prompts for the
filename of the "template file".

COMPARE then displays the active file in Visual Mode, with the
cursor at the first position of the active file that differs from
the template file. Note that COMPARE handles the case where entire
lines have been added or deleted. Since you are in Visual Mode,
you can edit the active file in any way you wish. If you selected
"windows", the template file will also be displayed with its own
cursor.

To continue the file comparison, position the cursor where the
files are again identical for at least 24 characters and press
[VISUAL EXIT]. The cursor will then move to the next difference
detected. This process is continued until the end of one or both
files is reached. You are then prompted with a menu, allowing you
to save the active file and/or return to Command Mode.

-112-

VEDIT PLUS User Guide
Ready To Use Macros

If you did not select "windows", you can examine the template by
pressing [VISUAL ESCAPE]. The following menu will appear:

This menu gives you the choice of examining the template file,
examining (and editing) the active file, or continuing the file
comparison. Although you cannct change the template file, you can
copy text from the template file to the active file using text
registers "0" through "9".

You can also switch to the template file by pressing
[WINDOW]-Switch and "P". You can then switch back to the active
file by pressing [WINDOW]-Switch and RETURN.

When you press [VISUAL EXIT] while examining the active file,
COMPARE takes the 24 characters following the cursor and attempts
to match them in the template file; if successful, it resumes the
file comparison. This is the same as selecting option 4 from the
menu.

On the other hand, when you press [VISUAL EXIT] while examining the
template file, COMPARE immediately resumes the file comparison from
the current cursor positions. This is the same as selecting option
3 from the menu.

COMPARE attempts to align the template file with the active file by
looking within the template file for the 24-character string
following the active-~file cursor. If it cannot find a match within
the twenty lines preceding the template cursor nor within the
hundred lines following, it issues the error: "Unable to realign
template file".

Realignment failure is most likely due to the active file cursor
being positioned where the files are not identical for the next 24
characters. It could also be due to the cursor having been moved
too far forward or backward. To continue the cowmparison,
reposition the active file cursor and press [VISUAL EXIT].

Occasionally, COMPARE will be unable to realign the files. To

continue the file comparison you must then manually realign the
cursor in both files and then select opticn 3 from the above menu.

-113-

VEDIT PLUS User Guide
Ready To Use Macros

Mailing List Sort Macro

The "SORT.VDM" macrce can alphabetically sort a simple mailing list
consisting of address lines separated by one or more blank lines.
The sort is based on the first address line, assumed to be a name.
For example, the following list could be sorted:

Svinicki, John

236 Bluelake Dr.
Marquette, MI 48123
-(313) 123-4567
-Wrestling Coach

Fortson, Rick
3219 Space Ct.
Albany, NY 14311
-Neuroscientist

Touleyrou, Diane
642 Sunset Blvd.
Miami, FL 32103
-{305) 321-7654

-News Reporter

To run the SORT macro first enter VEDIT PLUS:

VPLUS
RLZ SORT.VDM Loads the macro into register "Z".
MZ This starts the macro execution.

Alternatively, you can invoke VEDIT PLUS with "auto-execution",
which is equivalent to the three commands above:

VPLUS -X SORT.VDM

SORT prompts you for the filename of the file to be sorted and for
the name of the file to contain the sorted output. Just press
RETURN if the latter is the same as the former. SORT will then:
gort the list; gsave the new ligt on disk; and return to the
Command Mode of VEDIT PLUS. VYou can then use the "EQ" command to
exit VEDIT PLUS.

It takes a few seconds per address to sort a medium sized file.

~114-

VEDIT PLUS User Guide
Ready To Use Macros

Command Mode Menu Macro

The command macro "MENU.VDM" may be used to repilace the normal
Command Mode prompt "COMMAND:" with a "menu" of the most common
Command Mode operations. This macro will be useful to some people
and also serves as an example of how to write "menu" macros for
VEDIT PLUS.

It is best to use the "auto-startup" feature to automatically load
the menu macro into VEDIT PLUS each time it is used. This can be
done by renaming the supplied file "MENU.INI" to "VEDIT.INI".
{(VEDIT.INI most likely needs to be in the "\VEDIT" subdirectory.)

Each time you exit Visual Mode, the screen displays a menu. The
menu's top line displays which edit buffer is active (see Multiple
File Editing) and which file you are editing in it. For instance,
the menu might read:

er Yo

Most choices involve additional prompts and/or confirmation.
Choice (3) is used when you want to sequentially edit one file
after another. Choice (4) is used when you want to simultaneously
edit several files. Choice (5) allows you to display the directory
of any drive and MS-DOS subdirectories. Choice (6) allows you to
erase any disk file. Choice (7) displays a sub-menu of all the
edit switches (ES command) with the currently set switch wvalues.
Choice (8) does the same with the edit parameters (EP command).
Choice (9) disables the menu and puts you into Command Mode as
indicated by the normal "COMMAND:" prompt.

You are encouraged to change this menu macro in any way you wish.

115.

VEDIT PLUS User Guide
Ready To Use Macros

Even if you do not understand its operation, you should be able to
change any screen messages by simply editing the file "MENU.VDM".
Technical Note: The menu macro executes 1in text register "Z";

therefore, register "Z" is unavailable for other uses when this
macro is in use.

280 to 8086 Assembly Language Translator

(This macro needs to be purchased as an option.)

This macro converts a Z80 or 8080 assembly language file into a
ready to assemble 8086 assembly language file. The 280 file is
assumed to use extended Intel mnemonics. Although the entire 8080
instruction set is supported, the 280 "IX" and "IY" registers,
"Bit" instructions and alternate registers are not supported. (The
supplied macro ZIL~INT.EXC converts from Zilog to Intel
mnemonics.) This description assumes you are familiar with
assembly language.

To run the translator give the DOS command:
VPLUS -X 280-8086.VDM

Z80-8086 prompts you for the name of the file to be translated. It
writes the translated code into a file with the same name, but with
an extension of ".A86". The translation takes approximately one
minute for each 10K of commented source code.

The resulting code normally requires some assembler directives and
a few 8086 instructions to properly set up the 8086 segment
registers. The translated code should then be ready to assemble.
The following easily corrected assembly errors are possible.

Some Z80 relative jump instructions will be "out of range'". Since
the 8086 does not have conditional long jump instructions, two 8086
instructions are needed for each conditional long jump. For

example, the 8080/Z80 "JZ LABEL" instruction is translated into a
"JINZ $+5 ! JMP LABEL" instruction sequence. You will have to hand
translate any relative jump instructions which are out of range.

If a 280 "LDA" or "STA" instruction accesses a two byte storage

area, the translated instruction will cause an "Instruction
Mismatch" error. This is corrected by preceding the storage
reference with "BYTE PTR" in the 8086 code, i.e. "MOV AL,

BYTE PTR WORD1". Similarly, byte storage references accessed by 16
bit registers must be preceded with "WORD PTR", i.e. "MOV BX,
WORD PTR BYTE2".

~-116-

VEDIT PLUS User Guide
Ready To Use Macros

7280 self-modifying code will also lead to 8086 assembly errors,
since the 8086 assembler will not allow direct modification of the
code segment. However, this can be circumvented. Assume that the
780 self-modifying code is:

MVI A,0C9H ;Get machine cede for RET instruction

STA ROUTIN sDisable ROUTIN with a RET instruction

The translated "MOV ROUTIN,AL" will result in an error because of
the attempt to directly change the code segment. The 8086
equivalent which will assemble and work correctly is:

MOV BX,0FFSET ROUTIN

MOV CS:[BX],0C3H

The "CS:" code segment override is very important in case your
assembler directives separate the code and data segments. Note
that the machine code for an 8086 "RET" instruction is "OQC3H"
versus "OC9H" for the Z80. Because of the potential for
self-modifying code, it is impossible for any translator to
guarantee that the translated program will operate correctly.

If you examine the translated 8086 code, you will surely notice
that some obvious optimizations are possible. You may alsc wonder
why the seemingly innocuous Z80 "INX H" instruction is translated
into the sequence "PUSHF ! INX BX ! POPF". The reason is that
the 7Z80 instruction does not alter any condition flags, while the
8086 instruction does alter the flags. Therefore, the correct
translation involves saving the flags.

Since the 8086 does not have direct equivalents of the Z80 "LDAX"
and "STAX" instructions, the translator simulates these by copying
the "CX" or "DX" register into the "DI" register which can be used
for indirect memory references. This is only significant should
you later hand optimize any routines and in the process also use
the "DI" register.

-117-

VEDIT PLUS User Guide
Commmand Mcde - Basics

Command Mode Notation

$ is a shorthand for "<ESC>". Wherever "$" appears in a
Command Mode example, press the <ESC> key.

<ESC> is the special control character <ESC> generated by
pressing the <ESC> key. It is entered into the command
line to end "search strings", "text strings" and
filenames, This manual often uses the shorthand of "$§"
for <ESC> because "$" is what VEDIT PLUS displays in
Command Mode for the <ESC> character. (In rare cases
where you have no <ESC> key, you can customize any other
control character to act as the <ESC> key - see
Installation Task 8.5.)

<TAB> represents the tab character - press the <(TAB> key.

RETURN indicates pressing the RETURN key (labelled "<--'" on the
IBM PC and "Enter" or "CR" on most other keyboards).
Pressing RETURN ends the command line and starts a new
screen line. It also enters the <CR> <LF> pair into the
command line.

<CR> represents "carriage return", which is generated by
pressing the RETURN key. Note that pressing RETURN
usually generates two control characters = "carriage

return” and "line feed", represented as "<CR><LF>".

<CTRL-x> Control characters such as "<CTRL-U>" are typed by
holding down the CTRL key like a SHIFT key and typing the
indicated letter, in this case "U".

[] The bracket characters are used for iteration loops.

Command Lines

In Command Mode you are prompted for "ecommand 1ines" by the
"COMMAND:" prompt. The first few command prompts are preceded by a
help message to remind you of the most used commands. Fach command
line you enter consists of a single command, multiple commands or a
special sequence of commands called an “"iteration loop". Each
command line is ended by pressing RETURN or the <ESC> key twice, at
which time the command line is executed.

Since no commands are executed until you press RETURN (or <ESC>
twice), the line may be edited with most common line editing

~118~-

VEDIT PLUS User Guide
Commmand Mode - Basics

characters. They are described in detail below. Once execution
begins, it may often be aborted by pressing <CTRL-C>. This results
in the "*BREAK*" message and a new command prompt. VEDIT PLUS
checks for the <CTRL-C> before any new command is executed, when
anything is displayed on the screen and during commands which
repeatedly access the disk.

Commands such as "I", "F" and "S", which take "text string”
arguments must end in the "text delimiter'", typically <ESC>. It
you press RETURN before the final delimiter, the <{CR><LF> pair
becomes part of the string and the command waits for the rest of
its string. This is indicated by the command prompt changing to
"-" as a reminder.

Prompt: "-" This means VEDIT PLUS is waiting for the text
delimiter.
If you have made a mistake, receive the "-" prompt and do not know

what the delimiter is, press <CTRL-C> tc abort the command.

Commands such as "ED" are followed by a "filename". The filename
may be followed by a RETURN, which also ends the command line.
However, if the filename is to be followed by other commands, you
must end the filename with a <SPACE>, a <TAB> or an <ESC)>.

In the very rare case that the command line should exhaust the
amount of memory space available to it, VEDIT PLUS will beep and
not accept any more characters. You will have to edit the current
command line in order to end it and should then rectify the full
memory situation.

Occasionally you may see a "<<{" displayed at the end of a line
preceding the command prompt. This only indicates that the
previous line did not end in a carriage return-line feed. It
typically occurs with the "-T" command.

Command Line Editing

Several common control characters are recognized in Command Mode as
line editing characters. They are:

{CTRL-H> or <BACKSPACE> Delete the last character typed and back
the cursor up.

<CTRL~U> Delete the entire command line, display a
"#" and start new line.

{CTRL-X> Identical to <CTRL-U>.

-119-

VEDIT PLUS User Guide
Commmand Mode - Basics

To search for one of these characters in the text, or use one
within any other string, you must precede it with a <CTRL-Q>.
<CTRL-Q> causes the following character to be taken literally, and
not be interpreted as a line editing character, a RETURN or any
other special character.

Command Syntax

Each command consists of a one or two letter mnemonic. Many
commands are preceded by a number which is a numeric argument to
the command. The meaning of this number, which can also be
negative, depends wupon the particular command. Tf no number is
given, a "1" is used as the default. Wherever a number is allowed,
you can also use the "#" character to represent the maximum number
65535, Some commands are followed by additional arguments such as
text strings, filenames or text register names.

Multiple commands may be typed one after another on a command line.
They are always executed left to right. Their effect is the same
as if each command had been typed on its own command line. For
clarity's sake, you can leave a space between the commands. For
example, the three command lines, each with a single command:

B <RETURN>
#PR <RETURN>
v <RETURN>

are equivalent in operation to the command 1line with three
commands :

B #PR V <RETURN> {(or you can leave the spaces out)
A group of commands may be repeatedly executed by enclosing the
desired group of commands within brackets "[" and "]". Such a
group of commands is called an "{teration loop"™. The initial "["

is preceded by a number, called the "iteration count", which
specifies how of'ten the group of commands will be repeated.

You will often want to use a sequence of commands, particulariy
iteration loops, over and over again. You can do this by storing
the sequence of commands in one of the 36 text registers and then
executing the commands in the text register. Any sequence of
commands executed in a text register is called a "command macro".
Command macros may be stored on disk and loaded back into a text
register for later re-use.

-120~-

VEDIT PLUS User Guide
Commmand Mode - Basics

Command Operation

Many of the commands operate on the text at the position determined
by the "edit pointer". The edit pointer is very much 1like the
cursor in Visual Mode, it is just not as readily seen. Commands
exist to move the edit pointer a character at a time, a line at a
time or to the beginning or the end of the edit buffer. The number
of lines or characters the edit pointer moves is determined by the
numeric argument for the command. Negative numbers mean backward
movement, towards the beginning of the edit buffer. The "T"
command types out a given number of lines before or after the edit
pointer to display the contents of the file and "show" where the
edit pointer is.

The commands which alter the text all operate from the position of
the edit pointer. The search and replace commands all start their
search at the edit pointer position. The "V" command puts the
editor into Visual Mode and initially sets the cursor at the edit
pointer position. When returning to Command Mode, the edit pointer
is set from the cursor position,

Controlling Screen Display

Any screen output in Command Mode from commands such as "T", "RT",
"EL" and "ED" can be temporarily stopped for easier reading by
pressing <CTRL-S>. Pressing any other key, but typically another
<CTRL-S>, will then resume the screen output. You can also abort
the command by pressing <CTRL~C)>.

The "RT" (type text register) command also responds to <CTRL-S>
characters that are in the text, automatically stopping the screen
display when the <CTRL~S> "stop character" is encountered. The
display resumes with the next key typed. This is useful with
macros which display several screens of text, such as a long menu.
However, be careful when printing files which contain <CTRL-S>,
since it may have an unexpected effect on the printer.

If the screen output in Command Mode is too fast, you can slow it
down with the "EP 6" parameter. For example, the following command
adds 50 seconds delay toc every displayed line:

EP 6 50 Add 50 milliseconds delay per line.

-121-

VEDIT PLUS User Guide
Commmand Mode - Basics

Displaying Current Settings

Several commands change various settings used by VEDIT PLUS. These
settings remain in effect until you explicitly change them again.
You can display the current settings by typing the corresponding
command followed by an immediate RETURN. The commands to display
these settings are:

EP <RETURN> Display the "edit parameter'" values

ES <RETURN> Display the "edit switch" values

ET <RETURN> Display the tab position values

PP <RETURN> Display the "print parameter" values
ER <RETURN> Display the input (read) filename

EW <RETURN> Display the output (write) filename

EU <RETURN> Display current drive and subdirectory

These commands are fully described later, but it is always safe to
enter them with an immediate RETURN to see the current values.
Note that several of the Visual Mode menu-functions alsc change the
settings.

Help Command

Separate interactive on-line help is available in the Command and
Visual Modes. There are two types of help available in Command
Mode via the "H" and "EH" commands. "H" gives help with any
particular command, such as a list of all the edit switches or
parameters. "EH" is more oriented toward help with common editing
tasks.

Both help commands are interactive - they first display several
screens of a help menu from which you pick the desired help topic.
Alternatively, you can skip the menu by directly following the "H"
or "EH" with the topic name. For example, for a list of all edit
switches give the command:

H ES List edit switches, skipping help menu
Technically, the "H" and "EH" commands and even the Visual Mode
[HELP] function operate identically, only the particular help files
used on disk are different. The "H" command wuses the file
"VPHELP.HLP", "EH" uses "VPEHELP.HLP" and {HELP] uses "VVHELP.HLP".

The three help files are standard text files which may be edited

ng the file
you will not
e following
d if you are
he operation

ucture, just
one screen
a prompt to
isplayed as
First, it
ows the user
cnse is just
ext <CTRL-S>
VEDIT PLUS

VEDIT PLUS User Guide

Commmand Mode - Basics

with VEDIT PLUS. If you desire, you can change and expand the
on-line help to suit your purposes. You can also very easily
create on-line help for a print formatter, such as V-PRINT, or for
a compiler you are using. This is described below.

All three help files are designed for screens 24 lines deep by 80

characters wide, If your screen is smaller, you will have to edit
the help files. This is described below.

Modifying On-Line Help Files (Technical)

If you are a new VEDIT PLUS user, you should skip this technical
topic until later.

The three on-line help files used by VEDIT PLUS are standard text
files and are easily changed and/or expanded. Once you are
comfortable with VEDIT PLUS you may want to experiment with the
help files and alter them to better serve your particular needs.
Since two help commands are available in Command Mode, you may even
want to let one command give you on-line help for some other
program, such as the V-PRINT print formatter or the programming
compiler you are using. It is very easy to even create a custom
help file from scratch.

The simplest type of modification is changing the keyboard layout
displayed by the [HELP]} function. You will need to de this if you
are not using the preconfigured keyboard layout for the IBM PC
version, or the "Default Keyboard Layout" for all other versions.
To change the digplayed keyboard layout, edit the file
"VVHELP.HLP". The keyboard layout appears at the very beginning of
the file, exactly as it appears on the screen. Simply edit the
control/function key names shown after each edit function until

they correspond with your customized keyboard layout.

For this discussion we will assume that you are examini
"VPHELP.HLP" 1in Visual Mode. (If you print the file,
be able to see the control characters in it.) Th
complex sounding discussion is much easier to understan
actually viewing the help files and are familiar with t
of the on-line help.

All three supplied help files have an identical str
their content is different. Each help file begins with
full of straight text. The last line on the screen is
the user. Notice that it is followed by a <CTRL-S> (d
"~S" in Visual Mode). The <CTRL~S> serves twoc purposes
stops the screen display at this point. Second, it all
to enter a response on the keyboard. 1f the resp
RETURN, the following text in the help file up to the n
is displayed. If the user enters a text "string",

VEDIT PLUS User Guide
Commmand Mode - Basics

searches the remaining help file for that string enclosed by
backslashes "\". Once found, the text following the "\string\" is
displayed. The text is displayed until either another <CTRL-S> is
reached or a backslash in column one is reached. The latter also
ends the help command.

Notice how the menu screens in VPHELP.HLP are simply separated by a
<CTRL-S>. Following the text for the menu screens is the text for
each topic which can be selected from the menu. The first topic is
the "A" command. Notice that a "\A\" appears just before the "A"
command description. This is followed by a "\B\" and a description
of the "B" command. This is repeated for each help topic.

The text for a help topic wusually ends with the backslash "\"
starting the next topic. However, the topic could display a
sub-menu ending with a <CTRL-S>. Any user response would then be
used as a search string to a sub-topic. In this way the on-line
help can be hierarchical, with any desired number of sub-menus.

The [HELP] function and associated VVHELP.HLP file use one
additional feature. Following the keyboard layout menu, the user
is prompted to press the function/control key corresponding to the
desired visual function. In the VVHELP.HLP file this prompt is
followed by a <CTRL-V>. The <CTRL-V> is similar to <CTRL-S> in
that it stops the display and waits for a wuser response. With
<CTRL-V>, however, the response is expected to be a control/
function key. This key is converted into a two letter mnemonic
code corresponding to the edit function it performs. This two
letter code is then used as a search string in the customary way.

For example, the function/control key corresponding to [CURSOR UP]
is converted into the code "CU". A "\CU\", therefore, appears at
the beginning of the help text for [CURSOR UP]. A response of just
RETURN is handled a little differently. RETURN is also an edit
function with a code of "RT". The second screen of the keyboard
layout, therefore, must begin with a "\RT\". In effect, the second
and third menu screens are sub-menus.

Any text file, such as a command reference for another program, can
be converted into a help file accessible from within VEDIT PLUS.
The first step is to simply place <CTRL-S> “stop characters" within
the file after each screen full of text. If you then rename the
file to be "VPEHELP.HLP" the text will be viewable, one screen at a
time, via the "EH" command. You do not even have to get fancy and
use menus with search strings.

There is no need for a custom help file to be editing oriented. By

using the menu and sub-menu features, you could create a help
system for virtually any topic, even non-computer topics.

-124-

VEDIT PLUS User Guide
File Editing Commands

FILE EDITING COMMANDS

NOTE:

For simplicity, the following discussion assumes you are
only editing one file at a time. The following heading
"Multiple File Editing" explains the differences when you
are simultaneously editing two or more files.

Exiting with Saving

You can perform the equivalent of the Visual Mode [FILE]-Exit
function with the "EX" command. It will save the file being edited
to disk and exit VEDIT PLUS.

EX Save file on disk and exit VEDIT PLUS.
Alternatively, you can save the file on disk and remain in VEDIT

PLUS with the "EY" command. "EY" is useful when you are finished
editing one file and want to edit a new file.

EY Save file on disk and remain in VEDIT PLUS.

Quitting without Saving (Abandoning)

You can perform the equivalent of the Visual Mode [FILE]-Quit
function with the "EQ" and "EZ" commands. These commands let you
quit editing without saving the edit changes. "EQ" abandons the
file and returns you to the operating system, while "EZ" abandons
the file and remains in VEDIT PLUS with an empty edit buffer.

EQ Abandon file and quit VEDIT PLUS.
EZ Abandon file and remain in VEDIT PLUS.

Both commands require confirmation of the decision to abandon the
file. You can skip the confirmation prompt by including a "Y' in
the quit command: "EQY" or "EZY".

Note: The "EZ" command does not affect the contents of the text
registers. When simultaneously editing several files, "EQ" and
"EZ" only affect the current file - "EQ" only quitg the current
edit buffer and remainsg in VEDIT PLUS.

-125-

VEDIT PLUS User Guide
File Editing Commands

Save File and Continue Editing

You can perform the equivalent of the Visual Mode [FILE]-Save
function with the "EA" command. If you are spending a lot of time
editing a file, it is a good habit to routinely save the file on
disk and then continue editing it. Otherwise, all of your edit
changes could be lost should a power or hardware failure occur.
This also protects you from your own mistakes. The command to save
a file on disk and then continue editing it is:

FA Save file on disk and continue editing it.

The "EA" command does not affect your current editing position, the
text markers or the text registers.

NOTE: The "EA" command starts a new edit session. Therefore, if
an "EA" is later followed by an "EQ", you will only ignore
those changes made after the "EA" command. Those changes
made before the "EA" command will have already been saved on
disk.

Editing a New File

You can perform the equivalent of the Visual Mode [FILE]-New
function with a combination of the "EY" and "EB" commands. This
allows you to finish editing one file and begin editing another
file. (Although VEDIT PLUS allows you to edit several files
simultaneously, it is a 1little easier to edit one file after
another.)

The "EY" command saves the current file being edited on disk, in
preparation for editing another file. The "EB" command is followed
by the name of the new file to be edited. The commands to {inis
editing one file and begin editing a new file (NEWFILE.TXT) are:

EY EB newfile. txt

Notice that spaces may be added between commands and in front of a
filename to improve readability. The filename must be terminated
with a RETURN or an <ESC>.

When VEDIT PLUS is invoked you can specify a single file to be
edited, or a separate input file and ocutput file. Similarly, the
"EB" command allows you to alsc specify a separate input file and
output file.

For example, if you want to edit the text in the file "INFILE.TXT"

and in the process create a new file with the name "QUTFILE.TXT",
invoke VEDIT PLUS with the command:

-126-

VEDIT PLUS User Guide
File Editing Commands
VPLUS INFILE.TXT OUTFILE.TXT
You can achieve the equivalent result from within VEDIT PLUS
{typically following "EY" to edit a new file or following an "EE"
command to simultaneously edit another file) with the command:
EB INFILE.TXT OUTFILE.TXT
The two filenames following the "EB" command must be separated by

one or more spaces. The last filename must be terminated by <ESC>
or a RETURN.

Directory Display

You can perform the equivalent of the Visual Mode [FILE]}-Directory
function with the "ED" command. "ED" lists the directory of the
disk. Drive specifiers and the "wildcard characters" "?" and "#*"
can also be used. Some examples are:

ED Lists the directory of the current drive.
ED A: Lists the directory of drive "A".
ED *, ASM Lists the directory of all ",ASM" files.

Deleting (Erasing) Files

Files can be deleted with the "EK" command. In case the disk
becomes full and VEDIT PLUS gives you a "NO DISK SPACE" or "NO DIR
SPACE" error, you can first use the "ED" command to determine what
files can be deleted. Then use "EK" followed by the name of the
file to be deleted. Some examples are:

EK OLDFILE.TXT Deletes one file.
EK * BAK Deletes all ".BAK" files.

Before deleting the files, "EK" displays a list of the files to be
deleted and requests confirmation. This is a safeguard, especially
when using wildcard characters.

NOTE: WHEN DELETING FILES, DO NOT DELETE ANY ".$$$" or ".R"
FILES FROM WITHIN VEDIT PLUS! THESE ARE THE TEMPORARY EDIT
FILES VEDIT PLUS IS USING. DELETING THESE FILES WILL RESULT
IN LOST TEXT. THE EDITOR ITSELF ~ VPLUS.COM - CAN BE
DELETED I1F NECESSARY.

-127-

VEDIT PLUS User Guide
File Editing Commands

MS-DOS / PCDOS Pathnames

With the MS-DOS (and PCDOS) versions of VEDIT PLUS any filename may
opticnally include a standard "pathname" to any subdirectory. For
example, the command to edit the file "LETTER.TXT" in the
subdirectory (relative to the Root) "BUSINESS" would be:

EB \BUSINESS\LETTER.TXT
The command to list all files in the same subdirectory would be:

ED \BUSINESS\

Note above that you must include the second "\". The "ED" command
lists both files and subdirectories - subdirectories are indicated
with a "*" instead of the normal "." at the end of the filename.

Pathnames can also be specified when VEDIT PLUS is invoked. For
example you could edit the file "LETTER.TXT" above with the
invocation:

VPLUS \BUSINESS\LETTER.TXT

CP/M User Numbers

The CP/M (and CP/M-86) versions of VEDIT PLUS support filenames
with an optional user number. The user number is specified by

following the filename with a "=" and the number. Some examples
are:
ED =5 Display directory of user "5".
ED B:=4 Display directory of drive "B", user
number "4,
EB LETTER.TXT=10 Edit file LETTER.TXT in user 10.

VPLUS LETTER.TXT=10 Invoke VEDIT PLUS

Changing Current (Logged-In) Drive / Directory

If you are constantly accessing files in another MS-DOS
subdirectory (or CP/M user number) it is easier to change to that
subdirectory with the "EU" command. That way you won't have to
specify the pathname each time a file is referenced. For example,
to access files in the subdirectory "BUSINESS" give the command:

EU \BUSINESS

-128-

VEDIT PLUS User Guide
File Editing Commands

The "EU" command can also be used to change to another drive. For
example:
EU C: Change to drive C:.
EU C:\BUSINESS Change to drive C: and subdirectory
"BUSINESS".

You can verify which drive and subdirectory are current with the
command:

EU Display the current drive and
subdirectory.

With CP/M the "EU" command may be used to change to (log into) a
different user number. For example:

EU 4 Change to user number 4,

EU BA4: Change to drive B: and user number
by,

EU Display the current drive and wuser
number.

VEDIT PLUS User Guide
Auto-Startup & Auto-Execution

AUTO-STARTUP & AUTO-EXECUTION

Automatic Startup

VEDIT PLUS can automatically execute a startup file on disk as a
command macro. This can be used to set up various editing
parameters or to program function keys on a CRT terminal. When
invoked, VEDIT PLUS attempts to read the file "VEDIT.INI" into text
register "Z", and then execute this register as a command macro.

The file VEDIT.INI may contain "EP", "ES" and "ET" commands tc set
up the various parameters, switches and tab positionsg. The startup
file may also contain commands to load other text registers with
text or commonly used command macros. For example, the VEDIT.INI
file could include the command "RLP PRINT.VDM" to automatically
load the Print Formatter macro into register "P" each time VEDIT
PLUS is invoked.

Some CRT terminals have programmable function keys which are
initialized by sending (usually obscure) character strings to the
terminal . The VEDIT PLUS startup file can perform this
automatically. It is best done by loading the character strings
into a second text register, typing out the register, and finally
emptying the register. The CRT versions of VEDIT PLUS come with
several example files to program a CRT's function keys.

To accommodate personal preferences and hardware configurations, it
is possible to select on which drives VEDIT PLUS searches for the
VEDIT.INI and the three help files - VPHELP.HLP, VPEHELP.HLP and
VVHELP.HLP. This is described under the following topic "Automatic
File Searching".

The entire auto-startup feature can also be turned off during
installation. (See Task 9.1.) This is recommended when you don't
have a VEDIT.INI file, since it will save a few seconds each time
VEDIT PLUS is invoked.

Auto-Execution

VEDIT PLUS also has an "auto-execution" feature which allows you to
specify a different command file to execute in place of, or in
addition to, the VEDIT.INI file. The auto-execution of a command
file is controlled with two invocation switches:

~-X Execute the follewing file in addition to
VEDIT.INI.

-I Execute the following file in place of
VEDIT.INI

-130-

VEDIT PLUS User Guide
Auto-Startup & Auto-Execution

For example, the command to print the file DATAFILE.DAT using the
supplied Print Formatter macro is:

VPLUS -1 PRINT.VDM DATAFILE.DAT

In this case the VEDIT.INI file is not executed; PRINT.VDM is
executed in its place. If the commands in VEDIT,INI must also be
executed, perhaps to properly initialize your hardware, use the
"-X" switch instead. With the "-X" switch, the commands in
VEDIT.INI are executed first, followed by the commands in
PRINT.VDM. In either case, the auto-execution file is loaded into
text register "Z" and executed from there.

The auto-execution feature makes it much easier for a user without
any knowledge of VEDIT PLUS to run an application macro such as the
supplied File Comparison, Mailing List Sort and Print Formatting
macros or one which you have written. It also saves a few
keystrokes.

As another example, instead of executing the main menu macro
MENU.VDM from the VEDIT.INI file, you can use it when desired with
the command:

VPLUS -X MENU.VDM
When an auto-execution file is specified, VEDIT PLUS will search
for this file in the same way that it searches for a VEDIT.INI
file. Auto-execution can be used even if "auto-startup" has been
disabled - in this case "-I" and "-X" are equivalent since the
VEDIT.INI will not be executed.
HINTS:

1. You can disable the VEDIT.INI auto-startup feature on an
occasional basis by using "-I" followed by a non-existent file.

2. You can execute the VEDIT.INI file when auto-startup is
disabled by using "~I VEDIT.INI".

Automatic File Searching

VEPIT PLUS can automatically search another drive and/or
subdirectory for the three help files, the VEDIT.INI file, any
auto-execution file, and the file specified for the "RX" and "RL"
commands. The file searching 1is controlled by two installation
parameters {see Tasks 9.2 and 9.3).

Installation Task 9.2 determines whether VEDIT PLUS searches for
files on the current (logged-in) drive. When enabled with a value

-131-

VEDIT PLUS User Guide
Auto-Startup & Auto-Executicn

of "1", VEDIT PLUS first searches for the files on the current
drive and in the current MS-D0S subdirectory (or CP/M user number).
If Task 9.2 1is set to a value of "2", VEDIT PLUS additionally
searches on the current drive and in the root directory (or CP/M
user number Q).

Installation Task 9.3 determines whether VEDIT PLUS searches for
the files on a specified drive. The search is first on the
specified drive and the special subdirectory "\VEDIT". If not
found, it will last search on the specified drive and the root
directory. (Under CP/M this search will only be on user number
0.) Setting up the "\VEDIT" subdirectory is described in the
Introduction under "Organizing Your Files".

For convenience in accessing macro files from within VEDIT PLUS,
the "RX" and, opticnally, the "RL" commands search for their
specified files using this same extended search. The command form
"+RL filename" selects the extended search option. For example,
the command to load the file comparison macro from the typical
"\VEDIT" subdirectory is:

+RLZ COMPARE.VDM Search for COMPARE.VDM file.

NOTE: For normal operation, at least one of the two installation
parameters pertaining to file searching must be enabled.
Otherwise the auto-startup, auto-execution and on-line help
features will not be available. Likewise, extended file
searching for the "RX" and "+RL" commands will be disabled.

-132-

VEDIT PLUS User Guide
Multiple File Editing

MULTIPLE FILE EDITING

VEDIT PLUS has 36 text registers, named "0" through "9" and "A"
through "Z". Besides being temporary storage areas for holding
blocks of text, the contents of the text registers can be directly
edited (in Visual or Command Mode).

The command to edit a text register is "EEr", where 'r' is the
register name. The "EE" command is equivalent to the Visual Mode
[WINDOW]~Switch function. Note that [WINDOW]-Switch can be used

even if you haven't split you screen into "windows". For example:
EE3 Command to edit text register 3.
[WINDOW]-S-3 Equivalent command in Visual Mode.

The first time you edit a text register, the text register is
converted into an "edit buffer". Edit buffers are a little
different from text registers - the main difference being that edit
buffers can be used to edit a separate file.

VEDIT PLUS makes no distinction between edit buffers which are text
registers and the main edit buffer. The main edit buffer has the
nawe of "@". If you prefer, think of VEDIT PLUS as having 37 text
registers - when it is invoked, you are first editing register "@".

At any time only one edit buffer is the "current" or "active" one

being edited. Except for the main edit buffer, the name of the
current edit buffer is always displayed on the status line, i.e.
"EO" - "E9" or "EA" - "EZ". Once a text register is made into an

edit buffer it remains an edit buffer. Use the "EE" command (or
[WINDOW]-Switch) to switch from one edit buffer tc another.

The primary purpose for additional edit buffers dis to
simultaneously edit several files - one is edited in the main edit
buffer and the others are edited in selected text registers. For
example, assume that you want to simultaneously edit the three
files "REPORT.TXT", "TABLE.TXT" and "INDEX.TXT". Invoke VEDIT PLUS
with the first file and use two text registers to edit the other
files - picking mnemonic names:

VPLUS REPORT.TXT Invoke VEDIT PLUS with the main file.

[VISUAL EXIT] Go into Command Mode.

EET Begin editing in register "T",
EB TABLE,TXT Edit the file TABLE.TXT.

EEI Begin editing in register "I".
EB INDEX.TXT Edit the file INDEX.TXT.

.133

VEDIT PLUS User Guide
Multiple File Editing

At this point you are editing the file "INDEX.TXT". To switch to
editing the file REPORT.TXT in the main edit buffer give the
command:

EE@ Switch to editing the main edit buffer.
As a typing convenience, any "EE" command not followed by a valid
text register name switches back to the main edit buffer.

Therefore, the easier to type "EE." or even "EECRETURN>" switches
back to the main edit buffer.

Edit Buffer Details

All text vregisters converted intc edit buffers and the main edit
buffer share the same properties. The primary property of edit
buffers is that they can edit separate files - each of unlimited
size and with automatic disk buffering.

The "RU" (register usage) command displays the number of bytes
stored in each text register/edit buffer. It precedes the number
with a "*" to indicate which text registers are also edit buffers.
Since edit buffers differ in important ways from text registers, it
is important to make a clear distinction between them.

Many text register commands can also be performed on edit buffers -
you can insert the contents of another edit buffer into the current
edit buffer, save the edit buffer on disk or execute it as a
command macro. The main difference is that you cannct change the
contents of an edit buffer except when it is the "agetive" edit
buffer. Therefore, you can perform the [BLOCK]-Insert function
with edit buffers, but cannot perform the [BLOCK]-Copy or
[BLOCK]-Move functiens. Also, you cannot use the "RC", "RQ", "RI",
or "RL" commands on an edit buffer. Attempting to do so results in
the error "INVALID EDIT BUFFER CPERATION". Since the primary
purpose for edit buffers is to edit additional disk files, this
limitation on changing an edit buffer helps prevent you from
inadvertently altering a disk file.

It 1is possible to change an edit buffer back into a text register.
When you issue an "EX" or "EQ" command (saving or not saving any
file 1in 1it), VEDIT PLUS changes the current edit buffer into an
empty text register and switches you to ancother edit buffer. The
"EX" and "EQ" commands are more fully described below. Only the
main edit buffer always remains an edit buffer, even if it has been
emptied.

In practice there is a limit on how many files can be edited at one

time because of memory constraints. This is fully described later

under "Memory Management" On a typlcal 2 6K machlne, four or five
e pr

aroo 4
aL5c files is yLuUauJy LIl

EIFN PR

L)UL LU Or more Smail

o]
©
O
o
b
d
W
jun
-
i
B U
i

-

VEDIT PLUS User Guide
Multiple File Editing

files could be edited at any one time.

Sometimes VEDIT PLUS needs to perform disk buffering when switching
from one edit buffer to another - part of the edit buffer you are
leaving will be written to disk in order tc make more memory space
free. This is fairly rare on a machine with more than 196K of
memory, but is common with CP/M versions. This auto-buffering on
the "EE" command can be disabled with the command form "-EEr".
(See "Memory Management" for more details.)

Moving Text Between Edit Buffers

You can copy or move text from one edit buffer to another by using
an intermediate text register.

1. Make the edit buffer containing the text active with the "EE"
command if necessary.

2. Copy or move the text from the edit buffer to an available
text register with the [BLOCK]-Copy or [BLOCK]-Move functions
{or the "RC" command).

3. Give the "EE" command for the edit buffer which is to receive
the text.

4, Position the cursor at the place the text is to be inserted.

5. Insert the text with the [BLOCK]-Insert function (or the "RG"
command) .

If the text being copied is already in a disk file, you may want to
use the "EL" command to locate it and then use the "EG" command to
copy it directly from the disk file.

Exiting and Quitting During Multiple File Editing

The "EX" and "EQ" commands operate a little differently when
editing multiple files than when editing only one file. "EX" saves
the file and exits back to the operating system, while "EQ"
abandons the file and exits back to the operation system.

When there is at least one other edit buffer, "EX" and "EQ" do not
exit VEDIT PLUS, but rather only exit the current edit buffer - in
effect performing an automatic "EE" command. In the process of
exiting the edit buffer, "EX" and "EQ" also convert the edit buffer
back into an empty text register (except for the main edit buffer).

If an edit buffer has no output file associated with it, the "EX"

_135..

VEDIT PLUS User Guide
Multiple File Editing

command gives the error "NO OUTPUT FILE"., This is a reminder that
any contents in the buffer cannot yet be saved on disk. Use the
"EW" command to open an output file and then save the contents with
the "EX" command.

Generally it is very easy to exit and save all files being edited
with successive "EX" commands. If you are confident that all edit
buffers which are to be saved have an output file open, you can use
the special "EXA" (Exit All) command to exit all buffers and exit
VEDIT PLUS. This command should be USED WITH CARE, because any
text without an open output file will be lost. We recommend
successive "EX" commands until you are familiar with VEDIT PLUS.
When developing complex command macros, you may find yourself
simultaneously editing small macros in 10 or 20 edit buffers. The
"EXA" command is convenient here, since it allows you to exit VEDIT
PLUS without having to exit each of the many edit buffers.

Similarly, the "EQA" (Quit All) command quits all edit buffers
without saving any changes and exits VEDIT PLUS.

-136-

VEDLIT PLUS User Guide
Multiple File Editing

WINDOW COMMANDS

The [WINDOW] function allows windows to be managed from Visual
Mode. Command Mode allows windows to be managed with additional
flexibility. Window commands can be used individually or can be
used in command macros for "pop-up windows" and much more. Macros
can perform smart "CRT emulation" within each window with cursor
positioning, line and screen erase and control over reverse video
and/or color.

Although windows are typically wused to simultaneously display
multiple edit buffers, windows are completely independent of edit
buffers. Windows may have any single character name - even names
which are not valid text register names.

Windows are created by spitting an existing window into two
windows, either vertically or horizontally. Any new or resulting
window may then be split further. A window may be as small as one
line and/or 15 columns (not including the border drawn around the
window}. Overlapping windows (ala Macintosh) are not supported.
There are four commands for creating windows, depending upon how
the existing window is to be split:

YWBw Create window

n 'w! of 'n' lines at bottom.
YWLw n Create window 'w' of 'n’ columns at left.
YWRw n Create window 'w' of 'n' columns at right.
YWIw n Create window 'w' of 'n' lines at top.

Once a window is created, you can switch to it with the command:

TWSw Switch to window 'w'.
YWS Switch to the default window "@".

Note that this command is very different from the [WINDOW]-Switch
function - "YWS" only switches to a different window, while
[WINDOW]~Switch switches to a different edit buffer! In effect,
[WINDOW]-Switch performs an "EE" and a "YWS" command.

Three more window commands are:

YWDw Delete window 'w'
YWD Delete the current window.
YWI Initialize - delete all windows and

initialize to the default "@" window for
the entire screen. Reset to the installed
attributes.

YWZ Zoom the current window to full screen.

137

VEDIT PLUS User Guide
Multiple File Editing

Changing Screen/Window Color

The "YEA" command allows the foreground and background color of a
window to be changed (IBM PC CGA and EGA only) and/or a window to
be displayed in reverse video (all machines). The default colors
are set during installation. "YEA" changes the color for the
current window and all windows created thereafter; different
windows can be displayed in different colors.

For non-IBM PC versions, "YEA" sets reverse video and "OYEA"" sets
normal video.

For monochrome IBM PC, "112YEA" sets reverse video and "7YEA" (or
just "YEA") sets normal video. For color IBM PC, the command form
is "nYEA" where 'n' is taken from the table below:

n Character Background n Character Background
16 Black on Blue 1 Blue on Black
32 Green 33 Green
48 Cyan 49 Cyan

64 Red 65 Red

80 Magenta 81 Magenta
96 Brown 97 Brown
112 White 113 White

2 Green on Black 3 Cyan on Black
18 Blue 19 Blue

50 Cyan 35 Green
66 Red 67 Red

82 Magenta 83 Magenta
98 Brown 99 Brown
114 White 115 White

4 Red on Black 5 Magenta on Black
20 Blue 21 Blue

36 Green 37 Green
52 Cyan 53 Cyan

84 Magenta 69 Red

100 Brown 101 Brown
116 White 117 White

6 Brown on Black 7 White on Black
22 Blue 23 Blue

38 Green 39 Green
54 Cyan 55 Cyan

70 Red 71 Red

86 Magenta 87 Magenta
118 White 103 Brown

VEDIT PLUS User Guide
Searching And Pattern Matching

Most searching and replacing of text is done from Visual Mode with
the [FIND] and [REPLACE] functions. The following describes the
additional flexibility available with the corresponding Command
Mode commands "F" and "S". It also describes "pattern matching” in
detail. Pattern matching is a very powerful and useful search
feature which can also be used with [FIND] and [REPLACE].

Forward and Backward Searching

The text to search for is specified with a "search string".
Usually the search string consists of the exact characters you want
to search for. For example, the command to search for the next
occurrence of the word "today" is:

Ftoday$$ where "$" is the <ESC> key.
If the search is successful the "edit pointer” is positioned at the
character immediately following "today". 1If not, the command gives
the error message "CANNOT FIND".
To search for the next occurrence of the same word, you could give
the same command again. However, since VEDIT PLUS always remembers
the last used search string, you can give the simpler command:

F$$ Search with last used search string.

If you immediately want to search for the "nth" occurrence of

"today" use the command form "nFstring". For example:
7Ftoday$$ Search for the seventh occurrence of
"today".

All searches are normally forwards, toward the end of the file.
However, you can also search backwards toward the beginning of the
file. The command form "-Fstring" performs a backwards {recverse)
search. For example:

-Fhouse$$ Search backward for the nearest
occurrence of "house".

One difference with the reverse search is that if the search is
successful the "edit pointer” is positiconed at the first character
of "house", i.e. at the "h".

As a matter of personal preference, you may want to use "explicit

delimiters" to mark the beginning and the end of the search string.
To use this option, you must precede the command with the "@"

139

VEDIT PLUS User Guide
Searching And Pattern Matching
modifier. The previous examples then become:
@F/today/
7@F/ today/
-@F/house/
Notice that the <ESC>'s are no longer needed; you can use RETURN
instead. The delimiter is shown as a "/", but any other character

can be used. Note that the "-" must precede any other command
modifiers.

When searching for a word, you usually don't care if the first
letter is capitalized, or even if the entire word is capitalized.
This presents no problem when searching since VEDIT PLUS normally
equates upper and lower case letters. However, when needed, there
is an option to make a distinction between upper and lower case
letters. This option is selected with the command "EP 5 0".

A following topic "Command Modifiers" covers other options for the
"F" command. The Programming Guide also covers more advanced
search topics.

Replacing
The "S" (substitute) command is used to search for text and replace

it with new text. For example, the command to replace the next
occurrence of "today" with "not today" is:

Stoday$not today$$ where "3" is the <ESC> key.
The "S$" command can be thought of as an extension of the "F"
command - the search string is followed by the replacement "text
string”. Although there is no reverse substitute command, all

other options of the "F" command apply. For example:
@S/ today/not today/ using "explicit delimiters"™.

4@8s/today/not today/ replace the next four occurrences
of "today" with "not today”.

A common use of the substitute command is to replace all
occurrences of a word (perhaps a misspelled one) with another
word(s). You could precede the "S$" command with a big number, but
it is preferable to use the special number "#":

#Stoday$not today$$ replace all occurrences of
Ytoday'" with "not today".

~140-

ing

ord

VEDIT PLUS User Guide
Searching And Pattern Matching

Another use for the "S" command is to delete all occurrences of
some particular text. For example the command to find and delete
all occurrences of the word "junk' is:

#Sjunk$$ Find and delete all occurrences of
"Junk", i.e. "junk" is being replaced
with nothing.

#@S/junk// Equivalent command.

Pattern Matching

"Pattern matching" is a powerful searching feature that greatly
extends the types of editing you can do. It can be used with the
“F" "8Y and "EM" commands and with the [FIND] and [REPLACE]
functions.

Pattern matching makes it possible to search not only for
particular characters, but also for types of characters such as
"any digit", or for characters that meet special conditions such as
"occurring at the beginning of a line". You can even search for
any five letter word beginning in "t" and ending in "n".

These sophisticated searches are performed by using 'pattern
matching codes" within the search string. Each pattern matching
code consists of the special character "!" followed by another
character - typically a mnemonic letter.

NOTE: Although the mnemonic letter may be entered in upper or
lower case, for purposes of clarity all examples show these
letters in upper case. In case your keyboard does not have
the "I" character, you can customize VEDIT PLUS to use a
different character (see Installation Task 8.2).

Here are a few examples of search commands using pattern matching:

FID|D$3 Search for two consecutive digits.
FIDID|N!D$3 Search for next two digit number.
will not match a three digit number
Fl<note$$ Search for the word "note" appear
at the beginning of a line.
Ft|AlA!AnS Search for any five letter w

beginning in "t" and ending in "n".

~141-

VEDIT PLUS User Guide
Searching And Pattern Matching

The complete set of pattern matching codes are:

1A Matches any alphabetic letter, upper or lower case.

!B Matches a blank - a single space or a tab.

1C Matches any control character - a character with a value of 0
- 31 (decimal}.

iD Matches any numeric digit - "O" through "9".

'F Matches any alphanumeric character - a letter or a digit.

'L Matches any line terminator - Line Feed, Form Feed or End Of
File. Also matches the <CR> <LF> pair.

M Matches multiple characters - zero, one or more characters so
that the string following the "I!M" is satisfied.

N Matches any character which dis NOT the following single
character or pattern matching code.

Pr Use the contents of text register 'r' as a "pattern set".

|Rr Use the contents of text register 'r' as a "search string".

S Matches any separator - a character which is not a letter or

digit.

IT Matches selected separators (terminators).

1y Matches any upper case letter.

v Matches any lower case letter.

IW Matches "white space" - one or more spaces and/or tabs.

IX Matches any single character.

'Y Matches zero, one or more characters until the following
character or pattern matching code.

1< Matches the beginning of line (zero length match).

1> Matches the end of line (zero length match).

] Matches a "|{" =~ this is the literal "|". Actually, any
undefined pattern matching code will match a literal "|".

A commonly used pattern matching code is "!8" which matches a

"separator" - any character which is not a letter or a numeric

digit. Notice that a simple search for the word "and" would result

in matches by "sand", "Andres" and others. A search for " and "

would be better, but would fail if the "and" appeared at the

beginning or end of a line. |S" will match a space, punctuation,

RETURN or any other character which is not a letter or a digit.
Therefore, the preferred command to search for the word "and" is:

F|Sand|S$$ Best search command for the word "and".

The code "|T" is similar to "!S", but matches fewer characters - it

only matches Space, Tab, ";", ":", * ", wtw rwne o KOR> and <LF>.
This is primarily useful for programming language constructs where
characters such as "$" and "_" may be part of labels.

The code "{X" is the search "wildcard" =~ it matches any single
character.

The code "|N" is a negation, similar to our usage of "Not". The

VEDIT PLUS User Guide
Searching And Pattern Matching

string "|{Na" (think of it as not "a") therefore matches any
character except "a". The command:

Fexam|Ns$$
will find occurrences of "exam", "examiner", but not "exams".

Most pattern matching codes match a single character; however, some
will match zero, one or even many characters. The code "|W"
matches "white space" - one or more spaces and/or tab characters.
For example, the command to vreplace all white space at the
beginning of a line with a single tab character is:

#S! CIWS<TAB>$S

The codes "!<" and "|>" match zerc characters; they only ensure
that the entire search string matches at the beginning or end of
the line, respectively. Remember when using the "S" command and
[REPLACE] functiocn that ALL text characters that are matched by the
search string are replaced by the new text.

The code "|M" is useful for finding text where the beginning and
end are defined, but the middle does not matter. Besides being
useful in searches, the "!M" code can be used to delete large

blocks of text. For example, the following command would delete
this paragraph:

8S/The code|Mparagraph:// End with a RETURN,

In assembly language programming, any text following a ";"
character is considered a comment. Instructions are often followe
by a few tabs (to align the comments), the ";" and the comment.
The following command will delete the tabs (and/or spaces) and the
comment which follows any instruction. Lines which are entirely
comments are left unchanged.

#@S/ !W; | MCRETURN>

/<RETURN>

/ This command strips comments.
Often the "|[M" code is too unrestricted. For example, the search
string "|Sa/Mtion{S" will match words beginning in "a" and ending
in "tion". However, it will also match the next word beginning in

"a" followed by any text until it finds a word ending in "tion".

The code "!Y" also can match multiple characters, but is more
restrictive than "!M". The code "|M" matches ever more characters
until the rest of the search string is satisfied, or the end of the
file is reached. Once that portion of the search string in front
of the "|M" is matched, it is never searched for again; there is no

-143-

VEDIT PLUS User Guide
Searching And Pattern Matching

need. On the other hand, "|Y" matches ever more characters only
until the very next character (or pattern) matches. If the rest of
the search string then fails, the entire search string is
re-searched.

For example, we want to search for the following two lines:

MOV BL,DL ;There could be anything at the end of the line
MOV BH,DH

We want to be certain that the second line immediately follows the
first line. As indicated, the critical part of the first line
could be followed by unknown text. The command to find these two
lines is:

@F/MOV BL,DL|Y|LMOV BH,DH/
Notice that substituting "|M" for "|Y" would not perform the same

function - we could no longer be sure that the second line
immediately followed the first line.

Using Text Registers in Search Strings

The contents of a texl register or edit buffer can be used as partc
of a search string. The register contents are accessed with the
pattern matching code "|Rr" where 'r' is the name of the register
to use. This makes it possible to have "variable" search strings,
or a search string consisting of more than 30 characters.

IRr Use the contents of text register 'r'
in this position in the search string
(or filename).

For example, assume the following text register contents:

Register 1 containg: "Nice"
Register 2 contains: "a walk"
Then the following three search commands are all equivalent. Note

that explicit delimiters (terminators) are used:
@F/Nice night for a walk/
@F/!R1 night for a walk/
@F/{R1 night for |R2/

ch string can also contain
4 \ 5 v
19

ies any i

VEDIT PLUS User Guide
Searching And Pattern Matching

set, then the overall match is successful. Each item in the
pattern set can itself be a search string. The items are separated
from each other by commas ",". Commas themselves are represented
by "I,". The pattern match code "|Pr" uses register 'r' as a
pattern set.

| Pr Use contents of register 'r' as a
pattern set

For example, we want to search for occurrences of the animal names
"CAT", "DOG", "LION" and "MOUSE". We can make these four items
into a pattern set in register "4" with the command:

@RI4/CAT,DOG, LION,MOUSE/

The command to display all lines in the edit buffer which contain
one of these four animal names is:

[@F/!P4/ OTT]

The pattern set is wvery wuseful when searching for alternative
words. Unfortunately, the pattern set executes quite slowly. This
last example would run very slowly since the pattern set has to be
checked for each character in the edit buffer.

As another example, we want to search for cccurrences of the words
"automation" and "automobile". We could of course place the entire
words into the pattern set. As an alternative, we will just place
the word endings into the pattern set:

@RI4/MATION,MOBILE/

The command to display all lines in the edit buffer which contain
"automation" or "automobile" is:

[@F/auto|Ph/ OTT]

Since the pattern set is only checked when "auto" has already been
found, this search operation will run very quickly.

145

VEDIT PLUS User Guide
Commmand Modifiers

COMMAND MODIFIERS

Three command modifiers can be used to modify the operation of some
commands. These command modifiers are most commonly used with the
search commands, but apply to other commands as well. The command
modifiers are single characters which immediately precede the
command and affect only that command. A command can have more than

one modifier - it can even have all three.

In some instances, especially when writing macros, you will
repeatedly use a modifier on all applicable commands. Since it
would be tedious to have to include it each time, you can select to
have any (or all) of the modifiers included by default. The
modifier is then no longer needed. The default enabling of the
three modifiers is controlled with three "ES" command switches.
The 1initial wvalue of the command switches is set during
installation. The examples in this manual assume that they are all
set to OFF.

Modifier Meaning Affected Commands

_ (underscore) Perform global file operation B, F, K, L, S, T,
Z, EM, PR, RM

@ Use explicit text delimiter F, S, I, EM, RI,
RQ, XK, XQ, YT
Suppress error handling F, L, S
Suppress <CR> <LF> XT, YR, YW
Suppress <CTRL-C> checking XK

Global File Operations

When editing files which are larger than what will fit into memory
at one time, (generally about 50K), you need to use the "global
modifier" when you want a command to operate on the entire file.
Otherwise, most commands only operate on what is in memory. Iif
VEDIT PLUS automatically allowed all commands to operate on the
entire file, the entire editing process would slow down
objectionably.

Many commands can be preceded with the " " (underscore) modifier to
make them "global" to the entire file. With the global modifier,
VEDIT PLUS performs automatic disk buffering when necessary. You
can think of the " " modifier as a command option which makes the

size of files less noticeable.

Common commands using the global modifier are * F" and "_S" to
search or replace to the end of the file instead of just to the end

VEDIT PLUS User Guide
Commmand Modifiers

Note that these global commands will operate even if you have
disabled auto-buffering in the Visual Mode with the "ES 2" command
switch.

You can select to have the global modifiier enabled by default with
the command switch:

ES 10 1 Enable global modifier by default.

Setting the global modifier switch will also make the Visual Mode
[FIND] and [REPLACE] cperate globally.

Text Strings and Explicit Delimiters

Several commands such as "F" and "S" are followed by a "search

string", while others such as "I" and "YT" are followed by a "text
string". For brevity's sake we shall refer to both as "text
strings” - the difference is that search strings may contain

pattern matching codes.

Since a text string can be of any length and contain any character,
including RETURN, there has to be some way of indicating the end of
the text string. This is done with a special character called the
"text delimiter" which is normally the <ESC> character.
Optionally, you can use the "@" modifier to have an "explicit
delimiter" begin and end the text string. With this modifier, the

character immediately following the command ("F", "I", etc.) is the
delimiter. Any character can be the delimiter, but "/" is a good
choice. Note that the text string itself cannot contain the

explicit delimiter. 1In the following examples, the commands on the
left side are equivalent to those on the right.

Fspeled$V @F/speled/V
Sspeled$spelled$V @S/speled/spelled/V
4Fpoint$ L4@F:point:

Ia new line$ @I/a new line/

The explicit delimiter option can be made the default with the
command switch:

ES 91

Although wusing this option requires more characters to be typed,
many users find that it makes the commands more understandable. It
eliminates the need for <ESC> to terminate any text strings and
nearly eliminates the need for <ESC> entirely. It also allows the
<ESC> character to be searched. For example, the following command

-147-

VEDIT PLUS User Guide
Commmand Modifiers

searches for the string "h<ESC><ESC>":
@F/h<ESC><ESC>/

Note that <ESC> <ESC> therefore does not end a command when it
appears between explicit delimiters. If you type <ESC> <ESC> or
RETURN between explicit delimiters, the command prompt changes to
"-" to remind you that VEDIT PLUS is still waiting for the
delimiter. For example, tc find "LABEL" at the beginning of a
line, you can use the command:

F<RETURN>
LABEL<ESC><ESC> Note: Prompt changes to "-" here.

The actual screen display just before typing the second <ESC> is:

The "-" command prompt is normal for text strings which contain
RETURN. However, if you get a "-" by mistake, press <CTRL-C> to
abort the command.

NOTES:

1. The command "F$$" always searches for the last used string,
even if explicit delimiters were used for the original command.

2. Commands which take filenames cannot use explicit delimiters.

Literal Character in Text Strings

The "literal character" <CTRL-Q> operates similar to the
[NEXT CHAR LITERAL] in Visual Mcde - the next character is treated
literally and not interpreted. The literal character is only
meaningful inside of text strings. This is the only way to search
for characters such as <CTRL-U> and <CTRL-H> which are also used
for 1line editing. Tt is also an alternative way to search for the
<ESC> character. In the following examples, one command inserts a
<CTRL-H> into the text and the second command searches for a
<CTRL-H>: br

Iword<CTRL-Q><CTRL-H>$$ Insert a <CTRL-H>.

Fword<CTRL-Q><CTRL~H>$$ Search for a <CTRL-H>.

-148-

VEDIT PLUS User Guide
Commmand Modifiers

MS-D0OS, CP/M and VEDIT PLUS all require that lines end in a
<CR> <LF> pair. However, when files are transferred from mainframe
computers, the lines often end in a <CR> without the <LF>»>. These
lone <CR>'s must be changed to <CR> <LF> pairs. One cannot simply
search for a <CR> by pressing the RETURN key because it is expanded
into <CR> <LF>, unless the RETURN is preceded with a <CTRL-~Q>.
Therefore, the command to change all lone <CR>'s to <CR> <LF> pairs
is:

b#S<CTRL-Q><CR>$<CR>$$ Change <CR> to <CR><LF>.

149

VEDIT PLUS User Guide
Command Mode Features

COMMAND MODE FEATURES

Edit Parameters and Switches

The numerous parameters and switches controlled with the "EP" and
"ES" commands give you tremendous flexibility in using VEDIT PLUS.
Typing "EP" or "ES" and a RETURN displays the current parameter or
switch settings.

EP Display the current values of all parameters.

If you forget the parameter or switch numbers, use the on-line help
to see a list of the parameters or switches.

HES Display on-line help for "ES" command.

The initial values for the "EP" parameters and "ES" switches can be
changed with the Installation program (See Installation Tasks 5 and
6). You will want to do this if you find yourself always changing
a particular parameter or switch.

The "ET" command is used to change the tab positions. Typing "ET"
and a RETURN displays the current tab positions:

ET Display the current tab positions.

Following the "ET" by a single number sets the tab positions
uniformly, i.e. at every eight columns:

ET 8 Set tab positions at every eight columns.

Alternatively, the "ET" may be followed by two or more numbers
specifying the tab positions. Up to 33 tab positions may be set.
For example:

ET 10 18 35 Set tab positions at 10, 18 and 35.

NOTE: Since tab positions begin with column 1, setting them at
every eighth column sets them to 9, 17, 25, 33, 41, 49, etc.

VEDIT PLUS maintains a separate set of "EP", "ES" and "ET" values
for each edit buffer. This allows you, for example, to have word
wrap enabled in one edit buffer, but not in another. Changing
these values will affect the current and all subsequently created
edit buffers (but not previously created edit buffers).
Alternatively, you can use the command forms "-EP", "-ES" and "-ET"
to change only the values for the current edit buffer.

VEDIT PLUS User Guide
Command Mode Features

Printing Text

Text can be printed from Visual Mode with the [PRINT] function, or
from Command Mode with the "PR" command. "PR" takes a numeric
argument identical to the "T" command to specify how many lines
before or after the edit pointer are to be printed. For example:

40PR Print the following 40 lines.
-5PR Print the preceding five lines.
B #PR Print entire edit buffer (file).

When text is printed all lines are offset from the left edge of the
paper by a selectable "printer margin". You can also select how
many lines are printed on each page and the physical number of
lines per page - these numbers are typically 60 and 66 for 11 inch
long pages. You can also select whether VEDIT PLUS advances to a
new page by sending line-feeds ({blank lines) or by sending a
"form-feed" character. These four selections are made with the
"PP" (print parameter) command. Typing "PP" and a RETURN displays
the values of the current printing parameters:

PP Display values of print parameters.

All but the "physical number of lines" can also be selected with
the [PRINT] function. The default print parameters are set during
installation.

The "PE" (page eject) command advances the printer to the next
page:

PE Eject - advance printer to next page.

When writing a command macro to print labels, it may help to set
the "physical number of 1lines" to the size of the labels -
typically nine lines. Then use "PE" to advance to the next label.

If you set the "printer margin" to zero and the number of "printed
lines" equal to the "physical number of lines" (typically 66), the
text will be "dumped" to the printer. This is desirable when
printing text which has already been formatted for a printer, such
as the ".DOC" files created with V-PRINT.

The supplied macro PRINT.VDM printg the entire file and
additionally prints the filename and page number at the top of each
page. Examining this short macro is instructive for understanding
the print commands better.

-151-

VEDIT PLUS User Guide
Command Mode Features

WordStar (tm) Files

WordStar (tm) files and files from other word processors often
contain characters which have their "High"” or "8th" bit set. These
are often difficult to edit with VEDIT PLUS - the high bit
characters are displayed as graphics characters on an IBM PC and in
reverse video on a CRT terminal. Such files can be converted to
normal text files with the "YS" command which "strips" the 8th bit.
Exanples of the command are:

B #_YS Strip the 8th bit from every character
in the file.

10YS Strip the 8th bit from all characters
in the next 10 lines.

If the paragraphs from the word processor are justified, you will
find them easier to edit if you first have VEDIT PLUS "unjustify"
them to remove the extra spaces between words. This is described
under "Justification" in the Tutorial.

If you read a document created with VEDIT PLUS into WordStar, it
will treat each text line as a new paragraph, due to the "hard
carriage-returns” in the document. If this is annoying, you can
use the following "macro" to convert a document, before saving it
on disk, so that it is better suited for WordStar. Before running
the macro, you should also "unjustify" the document.

The following macro converts a VEDIT PLUS document for use with

WordStar. It changes all single carriage-returns into "soft
carriage-returns” which have their high bit set. Multiple
carriage-returns between paragraphs are left unchanged. It also

ensures that each soft carriage-return is preceded by at least one
space. (The Programming Guide guide describes macros in detail.)

B
[@_F/<RETURN>
/

@EM/ <RETURN>
/

(.evO0)
(.c="Z) [@YT/End of File reached/ JO]
-3C
@EM/ /
(.rv<>0) [C 32EI]
-(.c+128)E1
-(.c+128)EI
]

-152-

VEDIT PLUS User Guide
Text Registers

TEXT REGISTERS

The 36 text registers serve three primary purposes. One is for
"cut and paste" operations, where they temporarily hold a block of
text. The second is to hold sequences of commands which may be
executed as "macros". The last is as additional edit buffers for
simultaneously editing several files. In all cases, the registers
are holding textual material; only the manner in which the text is
used is different.

Text Register Commands

The text registers have additional flexibility in Command Mode.
They can be loaded directly from disk or saved to disk and their
contents can be displayed on the screen. All register commands are
two letter commands beginning with "R". Except for "RU", each
command is immediately followed by the name of the register.

Lines of text may be copied to a register with the "RC" command:
35RCS Copy the next 35 lines to register 5.
-6RC+4 Append previous 6 lines to register 4.
A text register can be emptied with the "RE" command:
RE2 Empty register 2.

The "RG" (get register) command inserts the contents of the
specified register at the edit pointer:

RG2 Insert (get) register 2 at the edit
pointer.

The "RS" command saves the contents of the specified register in a
disk file. Various portions of a file or files may therefore be
copied (or appended) to a text register, which is then saved as a
new disk file.

RSZ B:SOMEFILE.TXT Save contents of register Z in
"SOMEFILE.TXT" on drive "B".

The "BL" command loads a register from a disk file. This is often
used to load command macros from disk. Note that edit bhuffers
cannot be loaded with the "RL" command.

RLY B:SOMEFILE.TXT Load register Y from "SOMEFILE.TXT" on
drive "B".

153

VEDIT PLUS User Guide
Text Registers

The contents of a text register can be displayed with the "RT"
command. Press <CTRL-S> to stop and resume the screen display.

RT9 Type out contents of register 9.

The "RT" command expands control characters, displays <ESC> as a
"$" and pauses when a <CTRL-8> is encountered. Since this is not
suitable for initializing a terminal (programmable function keys,
etc.), the "RD" command is provided, which does not expand control
characters:

RD9 Dump out contents of register 9.

The "RP" command prints the contents of a text register. This 1is
useful for examining the contents of a text register. 1t also
allows a disk file to be printed after first loading it into a text
register.

RPZ Print contents of register Z.
The "RU" command displays the number of characters contained in
each of the text registers. The register name is preceded with a

"#" to indicate which registers are edit buffers. It also displays
the three memory usage numbers displayed by the "U" command.

Text Register Usage

With 36 text registers available, you may find yourself forgetting
which register contains what. Although you can use any
organizational scheme you wish, you may want to consider the
following scheme for using the registers:

A-Y Are used to contain command macros, the chosen letter
being a mnemonic for the function the macro perfornms.

Z This is the register used by the auto-startup VEDIT.INI
and any auto-execution macros.

0 This 1is the default "cut and paste" register, since it 1is
the easiest to use with the Visual mode [BLOCK] function.

4 -9 Are used as additional "cut and paste'" registers.
1 -3 Are used or reserved as edit buffers, for editing

additional files.

For simplicity's sake, the examples in this manual use "0O" thru "9"
as simple text registers for "cut and paste" and use "A" thru "Z"
either as edit buffers or as registers containing command macros.

,15q_

VEDIT PLUS User Guide
Text Registers

Using Text Registers in Filenames

Several commands such as "EB", "EG" and "EW" are followed by a
'filename' which may include an optional drive designator, filename
extension and MS-DOS pathname (or CP/M user number). The contents

of a text register may he used in place of a normal filename. The
register contents are accessed with the pattern matching code "!Rr"
where 'r' designates the register to use. "}Rr" can also specify

the DOS command to be executed with the "0OC" command.

|Rr Use contents of text register 'r' for all
or part of a 'filename'.

The "|Rr" can be used for the entire filename, or for just a part
of it, such as the drive designator, pathname, filename extension,
or CP/M user number. This makes it possible to specify a

"variable" filename.

Numerous methods can be used to store the desired filename in a
text register. The topic "Interactive Input and Qutput" in the
Programming Guide describes how you can interactively enter a
filename from the keyboard.

Examples:

EB |R4 Use the contents of register 4 as the full
name of a file to be opened for editing.

ER datafile.|R3 Use the contents of register 3 as the
filename extension with the filename
"datafile", which dis to be opened for
reading. Note that the "." is part of the
"ER" command. Alternatively, it could be
the first character in register 3.

EL |R5:help.txt List the entire file "help.txt" with
register 5 containing the drive
designator. Note that register 5 nust
contain a single letter in the range "A" -
"P" or an error will result.

When specifying a line range for the "EG" and "EL" commands, the
"[" 1is considered the 1last character of the filename. The line
number range cannot be specified with the "|R" pattern. Instead,
the numeric registers can be used to specify a variable line range.
See the topic "Numeric Registers" in the Programming Guide.

..155_

VEDIT PLUS User Guide
Text Registers

Comparing Two Files or Blocks of Text

The supplied macro "COMPARE.VDM" can perform a very sophisticated
comparison of two files. However, you often only need to know how
much of two files match or if two blocks of text are eqguivalent.
This can be done with the "RMr" command, which is more fully
described in the Programming Guide.

It is very easy to quickly compare two files. First open the files
for editing in two edit buffers and position the edit pointer
(cursor) at the beginning of each file. Then from one edit buffer
give the command " _RMr" where 'r' is the name of the second edit
buffer. Go into Visual Mode. If the cursor is at the end of the
file the files match, otherwise the cursor in each edit buffer is
at the point of their first mismatch. If desired you can manually
re-align both edit pointers and repeat the " _RMr" command to find
the next mismatch.

You can also compare a block of text (here called the "template')
against the text in your current edit buffer. For example, you may
want to know if a previously written subroutine is identical to a
subroutine in your current file. First copy the block of text
(template) to a text register. Then position the cursor at the
beginning of the text to be compared in the edit buffer. Give the
command "RMe" command where 'r' is the name of the text register.
Go into Visual Mode. The cursor will have moved past all
characters which matched those in the text register (template).

-156-

VEDIT PLUS User Guide
Visual Mode Topics (Technical)

VISUAL MODE TECHNICAL TOPICS

Screen Display

On CRT terminals the cursor is produced by the terminal and VEDIT
PLUS cannot change its appearance. However, on the IBM PC (and
other memory mapped systems) VEDIT PLUS produces its own cursor and
its appearance 1is user selectable. You can chooge an underline
character, a solid block or a blinking block. FEven the blink rate
is selectable. This is strictly a matter of personal preference.
The options are more fully described under the "EP" command and
Task 5 of the Installation.

VEDIT PLUS's interruptable screen updating allows the screen to be
updated in the fastest way possible when you are performing rapid
screen changes. This dis primarily applicable to CRT terminals,
whose screen cannot be updated "instantaneously" as can a memory
mapped screen. With CRT terminals, you do not have to wait for the
screen to finish updating before you continue editing. Operations
such as [PAGE DOWN] require the entire screen to be updated. If
you press another [PAGE DOWN] while the screen is updating, VEDIT
PLUS interrupts the unwanted update and restarts to display the
most current screen. VEDIT PLUS therefore, does not necessarily
update the screen in the order in which you perform edit changes.
It skips the intermediate screen displays and goes directly to the
current screen display.

The leftmost column of the screen is reserved for continuation
characters. Due to technical reasons, the rightmost column of most
CRT terminals is not used at all.

On CRT terminals the line and column numbers on the status line are
not updated immediately following every cursor movement, but only
after you stop typing for about 1/2 of a second. This reduces
annoying screen flicker.

157

VEDIT PLUS User Guide
Visual Mode Topics (Technical)}

Lower and Upper Case Conversion

This topic is primarily applicable to programmers.

Several modes are available for converting between lower and upper
case letters as they are typed on the keyboard. (These modes do
not affect upper and lower case letters which are already in the
text.)

The "EP 4" command parameter allows four options for converting
from lower to upper case in Visual Mode:

0. No conversion is made.

1. All lower case letters are converted to upper case.

2. Conditional conversion of lower case to upper case for
assembly language programming and other special applications.

3. Similar to 2 - upper and lower case letters are reversed.

Mode "1" is similar to the "Caps Lock" on a keyboard, the 26 lower
case letters are converted to upper case.

Modes "2" and "3" are specifically designed for assembly language
programming. In Mode "2" lower case letters are converted to upper
case if they occur to the left of a special character, called the
"conditional conversion character", typlcally ;" To the right of
the ";" they are not converted. In this manner an assembly
language program can be entered or edited with all lower case
letters and VEDIT PLUS will automatically convert the labels,
opcodes and operands to upper case while leaving the comment fields
alone. This can also be used for FORTRAN programs and other
special applications. The "conditional convert character" may be
changed with the "EP 5" command parameter.

Mode "3" is almost identical to Mode "2"; instead of converting
lower case to upper case, it reverses the case of letters appearing
before the ":". This mode makes it easier to enter lower case

literals into a program.

EP 4 2 Switch to LC/UC conversion Mode 2 to
simplify editing assembly language
programs. Pertains only to Visual
Mode.

Upper and lower case letters can also be unconditionally reversed;
i.e., lower case are converted to upper case and upper case are
converted to lower case. This was originally designed for the
Radio Shack TRS-80 Model I, whose keyboard normally produces upper
case letters and lower case with the Shift key. This reversal is
done immediately when a keyboard character is received and before
any resulting lower case letter ig converted to u

nner cage as
> AUpper Case as

VEDIT PLUS User Guide
Vigual Mode Topics {(Technical)

described above. The letters are also reversed for the Command
Mode. This mode may also be handy in the case where most text is
to be entered in upper case, but where an occasional lower case
character is also needed. This mode is selected with the command:

ES 71 Reverse all upper and lower case
letters, including Command Mode.

End of Lines

Each text line is assumed to end in a <CR> <LF> pair as is required
for other M3-DOS and CP/M programs and the <LF> is the true
terminator of text lines. Pressing RETURN inserts a <CR> <LF> pair
at the cursor position. Pressing [DELETE] at the end of a line
deletes both the <CR> and the <LF>. Although VEDIT PLUS, in Visual
Mode, never creates a line ending in just a <CR> or <LF>, such
lines are handled in Visual Mode, although displayed differently.
(Such lines can be created in Command Mode). If a 1line ends in
only a <LF>, the next line will be displayed with a starting
position directly below the end of the previous line. IT a 1line
contains a <CR> not followed by a <LF>, the <CR> will be displayed
in the normal control character convention as "*M". Such lines may
be corrected by deleting the offending lone <CR> or <LF> with
[DELETE] and then inserting the <CR> <LF> pair with RETURN.

High Bit (Bit 8) Character Support

The IBM PC and other computers (NEC APC) have graphic and special
characters which have their "High" or 8th bit set, i.e. they have
a numeric value between 128 and 255. VEDIT PLUS can be configured
to properly display these characters.

Since some machines, particularly CRT terminals, do not support
special characters, VEDIT PLUS can alternately be configured to
display High bit characters by stripping their High bit and
displaying the resulting character in reverse video.

VEDIT PLUS is normally configured to read and decode all 8 bits
from the keyboard. However, with some CRT terminals, the High bit
is used as a "parity" bit which should be ignored. In this case,
VEDIT PLUS can alternately be configured to ignore the High bit on
keyboard input.

VEDIT PLUS's edit functions are accessed by typing control
characters or function keys. The latter either send a special High
bit character or an Escape sequence. Those control/function keys
which are not assigned to an edit function are normally ignored in
Visual Mode. However, for applications where special characters
are to be entered directly into the text, VEDIT PLUS can be

-159-

VEDIT PLUS User Guide
Visual Mode Topics (Technical)

configured to enter unused function/control keys into the text.
Escape sequences are inserted as the corresponding character with
its High bit set. Only those control sequences which are not wused
in the keyboard layout can be entered. Other characters can be
entered with the [NEXT CHAR LITERAL] function or the "EI" command.

All of these options pertaining to High bit characters are
controlled by the "EP 8 n" command. The default value is set
during installation. The "EP 8 n" parameter is actually three
parameters, The first bit enables High bit keyboard characters,
the second bit enables the display of High bit characters, and the
third bit enables insertion of unused control/function keys. There
are eight possible values, 0 - 7, each representing a combination
of three bit values. The eight values and their meaning are:

GRAPHICS INSERT
ALLOW HIGH BIT CHARACTERS OR UNUSED
ON KEYBOARD REVERSE CONTROL
VALUE INPUT VIDEQ /FUNCTION KEYS
0 NO REVERSE NO
1 YES REVERSE NO
2 NO GRAPHICS NO
3 YES GRAPHICS NO
4 NO REVERSE YES
5 YES REVERSE YES
6 NO GRAPHICS YES
7 YES GRAPHICS YES

The normal value for the IBM PC, NEC APC and other systems with
graphics character is a "3" - allow 8 bits on keyboard input,
display High bit characters as graphics characters and ignore
unused control/function keys. The normal value for CRT terminals
is "1" - allow 8 bits on keyboard input, display High bit
characters in reverse video (if possible) and ignore unused
control/function keys.

NOTE: Whether High bit characters are allowed on keyboard input
has NO EFFECT on High bit characters already in the text.
Such characters are left unmodified when they are read from
disk or written to disk. To strip High bit characters in
the text file (for example WordStar files) use the "YS"
command.

-160-

VEDIT PLUS User Guide
File and Memory Management (Technical)

FILE AND MEMORY MANAGEMENT

This section covers the somewhat more technical topics of file and
memory management by VEDIT PLUS. It explains the automatic disk
buffering used to handle large files and how to override it. It
covers "Disk Write Error Recovery"” - what to do if you accidentally
run out of disk space while using VEDIT PLUS. Last, it explains
how memory beyond 64K is allocated to the edit buffers and text
registers.

For most applications, it is not essential that you have a detailed
knowledge of how VEDIT PLUS manages large files and memory. The
topic "Basic Editing Concepts" in the Introduction covers the
fundamentals of file management.

Automatic Disk Buffering

"Auto-buffering"” is any file reading or writing which VEDIT PLUS
performs automatically, without the user giving explicit read or
write commands. The simplest auto-buffering called "auto-read"
involves reading the input file into the edit buffer, such as when
the editor is invoked with an existing file. "Auto-write" involves
writing from the edit bufter to the output file, such as when the
editor is exited.

VEDIT PLUS can also perform more sophisticated disk buffering when
editing large files. This can be done in either the forward
direction, "“forward disk buffering", or in the backward direction,
"backward disk buffering". The following headings describe these
two types of automatic disk buffering.

If the edit buffer fills up during the course of editing, Visual
Mode will attempt to write out 1K byte sections from the beginning
of the edit buffer to the output file. If the 1K section of text
cannot be written out, either because auto-buffering is disabled,
or because the cursor is positioned within it, VEDIT PLUS displays
the message on the status line. More text cannot be inserted
until manual or automatic disk buffering is then performed.

While VEDIT PLUS performs auto-buffering in Visual Mode to simplify
editing, it only performs auto-buffering in Command Mode for
selected commands. This gives you precise control over the reading
and writing of files, especially with command macros. For special
purposes, you can also fully or partially disable auto-buffering in
Visual Mode. This option is controlled with the command switch
"ES 2” .

~-161-

VEDIT PLUS User Guide
File and Memory Management {Technical)

NOTE: The Visual Mode [GOTO] function, particularly [GOTO]-Begin
and [GOTO]-End always work as intended, even 1if
auto-buffering is disabled with the "ES 2" command switch.

Forward Disk Buffering

When VEDIT PLUS edits a file it reads text from the input file into
the edit buffer, where it is edited, and writes the edited text to
the output file. For a small text file, the operation is guite
simple. The entire input file is dinitially read into the edit
buffer for editing. When editing is complete, the edit buffer is
written to the output file. Things become more complicated when
editing files which are too large to fit into memory all at one
time. Only a portion of the input file is then initially read into
the edit buffer for editing. In order to edit the rest of the
file, some of the edit buffer must be written to the output file
and then more of the input file read in for editing. This must be
repeated until the entire file has been edited.

Conceptually, it helps to consider the displayed screen a "window"
into the edit buffer. This "window" may be readily moved anywhere
within the edit buffer with the [PAGE UP], [PAGE DOWN] and other
cursor movement functions. Furthermore, the edit buffer may be

considered a "window" into the file. Moving this edit buffler
window toward the end of the file is referred to as "forward disk
buffering", and moving it back toward the beginning of the file as

"backward disk buffering".

Forward disk buffering is performed in Visual Mode whenever the
user reaches the end of the edit buffer, which is not yet the end
of the file. VEDIT PLUS then attempts to read more of the input
file and, if necessary, write text to the output file. The minimum
amount to be read from the input file, lcosely called a "File Page"
(typically 8 Kbytes), is determined during installation (Task 9.5).
If this much free memory is not available, a "File Page" is written
from the beginning of the edit buffer to the output file. VEDIT
PLUS then reads more from the input file wuntil the memory is
"nearly" full. "Nearly" is defined as leaving the number of bytes
free that were specified during installation (Task 9.4).

Forward disk buffering is only done automatically in Visual Mode if

it was enabled during installation or with the "ES 2" command
switch. It should normally be enabled.

-162-

VEDIT PLUS User Guide
File and Memory Management (Technical)

Backward Disk Buffering

Backward disk buffering augments the forward disk buffering to
further simplify the editing of large files. When editing a large
file you may want to edit some text which has already passed
through the edit buffer and has been written to the output file.
Without backward disk buffering, you would have to start ancther
edit session.

Backward disk buffering reads text from the output file back intc
the beginning of the edit buffer for further editing. However,
before reading text back from the output file, it needs to make
space free in the edit buffer. VEDIT PLUS does this by writing
text from the end of the edit buffer out to a temporary disk file.
(The file has a name extension of ".3R$" for the main edit buffer
and ".rR$" for the corresponding edit buffer named 'r',)
Subsequently, the forward disk buffering will first read from this
temporary file before it reads more fro the 1input file. The
backward disk buffering also opcrates with text the size of a "File

Page".

Although backward disk buffering works just as automatically and
invigibly as forward disk buffering, it must be used with a little
more care, especially if you are not using a hard disk. Since it
requires an additional temporary file, you are more likely to run
out of disk space. Although VEDIT PLUS always lets you recover
from running out of disk space, it is more complicated if you are
using backward disk buffering.

Since editing a large file requires both an input file and an
output file, the maximum file size which may be edited is 1/2 a
disk. (Reading from the input file does not free up disk space.)
If the input and output files are on different drives, the mnaximum
file size 1is a full disk. Due to the additional temporary file
needed for backward disk buffering, the maximum file size (in the
worst case) is reduced to 1/3 a disk. The temporary file is always
on the current {logged-in) drive. (With a three drive system you
could safely edit a file one disk in length, by making the current,
the input file and output file drives all different.) These file
size limitations arise because in the worst case VEDIT PLUS needs
to create a temporary file which is nearly as large as the output
file, which is generally as large as the input file.

If you only have floppy disks, you may want to customize VEDIT PLUS
with only automatic forward disk buffering enabled in the Visual
Mode. You can alsc control the auto-buffering with the "ES"
command :

163

VEDIT PLUS User Guide
File and Memory Management (Technical)

ES 2 2 Enable automatic forward and backward
disk buffering in Visual Mode.

ES 21 Enable only automatic forward disk
buffering in Visual Mode.

ES 2 0 Disable all automatic disk buffering
in Visual Mode.

Remember that the "ES 2" command switch does not affect Command
Mode nor the [GOTO]-Begin and [GOTO]-End functions.

If you are near the end of a very large file and wish to begin
editing from the beginning again, it may be faster to edit the file
over again by using [FILE]-New or a combination of the "EY" and
"EB" commands.

If you use backward disk buffering and run out of disk space, you
can still recover without losing any edited text. The procedure is
described below under "Disk Write Error Recovery".

To calculate if you have enough disk space to edit a file, use the
MS-DOS "DIR" command (or CP/M "STAT") before invoking VEDIT PLUS.
It is always best be to sure that there is enough free disk space
before editing a file. If the amount of free space is twice the
size of the file you wish to edit, you are usually safe {unless the
output file will be significantly larger than the input file). You
can include any ".BAK" version of the file to be edited in the
amount of free space available. If the amount of free space is not
at least equal to the size of the file being edited, you will
encounter a disk full error even without backward disk buffering.

Disk Buffering In Command Mode

Auto-buffering is only performed in Command Mode when the ‘"global

modifier" is used on selected commands ("_F", " B", etc.) or when
the default global option 1is selected with the command switch
"ES 10 1", (The commands "EA", "EX" and "EY" always perform as

much buffering as needed to save the entire file!)

The "ER" command opens a file for reading, but does not actually
read anything in. The file can be read with the "A" command.
Similarly, the "EW" command opens a file for writing, but does not
write anything out. Text can be written out with the "W" command.
Forward disk buffering in Command Mode, therefore, can be done with
successive "W" and "A" commands.

Some commands perform automatic reading/writing when invoked. The
"EB" command performs an auto-read which reads in the entire file
from disk or until the edit buffer is nearly full. The "EY"

-164-

VEDIT PLUS User Guide
File and Memory Management (Technical)

command performs all the reading and writing to finish editing and
saving a file without leaving the editor.

As described earlier, backward disk buffering writes text from the
end of the edit buffer to the temporary ".R" file and then reads
back text written earlier to the cutput file. The "-W" and "-A"
commands give you control over backward disk buffering in Command
Mode. Because of the complexity of these commands, we suggest you
not wuse them wuntil you are thoroughly familiar with all other
aspects of VEDIT PLUS's file handling. Generally, the easy to wuse
".B", " zZ", "_L", "_T" and "_F" commands can perform any additional
disk buffering you will need in Command Mode.

You can also use the "EN" (need memory) command to make more memory
space free for the edit buffer:

10000EN Perform forward and/or backward disk
buffering to make 10000 bytes of
memory free for the edit buffer (if
possible).

The "-nA" and "-0A" commands read back text which was written

earlier to the output file. "-nA" reads back ‘n' lines from the
output file or until the edit buffer {s completely full or the
output file is empty. "~0A" reads back lines until the edit buffer

is "nearly"

full or the entire output file has been read back.

The command "-nW" writes text from the end of the edit buffer out
to the temporary .R file. Its main purpose is to make more
memory space available for performing the "-nA" command.

The "A" command and any auto-buffering always read the contents of
the temporary ".3R$" file before reading more from the input file.
You, therefore, do not need to explicitly remember whether or not
there is any text in the ".$R§" file.

Disk Write Error Recovery

You may occasionally, but especially with floppy disks, run out of
disk space and get the error "NO DISK SPACE"; or you may run out of
directory space and get the error "NO DIR SPACE". Fortunately,
VEDIT PLUS lets you recover from these errors using one of two
recovery procedures. One 1is to delete files from the disk using
the "EK" command until enough space exists to write the rest of
file out. The second is to use the "EF" command write part of the
file on one disk and the rest of the file on another disk. The
following paragraphs describe these procedures in detail and an
example is given in the Tutorial.

The best policy is to avoid "Full Disk" errors by making sure that

165

VEDIT PLUS User Guide
File and Memory Management (Technical)

there is enough space before you begin editing. If you are editing
files more than 1/3 disk in length, it is best to read the input
file from one drive and write the output file on another drive.
For example, if the input file and VEDIT PLUS are on drive A and
the disk in drive B is blank, give the command:

VPLUS infile.ext b:outfile.ext

The simplest and most common recovery is to delete files from the
disk which is full. Use the "ED" command to list the directory of
the disk. If you find files which you can delete, you are all set.
Then re-issue the command which led to the full disk error. Any
".BAK" files can wusually be deleted. You can also consider
deleting any files which you know are backed-up on other disks such
as any ".COM" or ".EXE" files. The file VPLUS.COM can also be
deleted.

Never delete the ".$$3" and ".R" files from within VEDIT PLUS.
(You can delete them after exiting VEDIT PLUS in the unlikely event
they still exist.)

sTOP

If you are still reading this in order to learn more
about VEDIT PLUS, STOP. You are very unlikely to ever
require the following procedures. They are described
here for completeness only.

There may be times when you cannct make enough disk space free by
deleting old files. You then have several alternatives. If a
different disk drive has enough free gspace you can close the
current output file (with the "EF" command) and create a second
output file on the other drive. For example:

EF Close the current output file.
EWA:PART2 Create an output file on another drive,
EX Save the rest of the file and exit.

Then wuse VEDIT PLUS (or CP/M PIP or MS-DOS COPY) to merge the two
partial output files back into one file. (See the Tutorial for
nerging files.)

If all the disks in the drives are full, you will have to either
delete the input file or change disks. In either case you want to
read as much of the input file as possible. Begin by issuing the
command :

#A
Then look at the "FILE" message on the status line, if it reads

"FILE" or "fILE" (last letters are capitalized) the entire input

-166-

VEDIT PLUS User Guide
File and Memory Management (Technical)

file has been read into memory. 1f it reads "File" or "file" the
entire input file has not been read and the procedure becomes more
complicated.

If the entire input file has been read, it 1is often simplest to
delete it from disk with the "EK" command. This will make enough
space available for the rest of the output file. However, this
assumes that you have a backup of the input file or no longer need
it. For example, if the file you are editing is "LETTER.TXT", you
could give the following commands:

EK LETTER.TXT Delete the input file.
EX Save the rest of the file and exit.

If you need to keep the original input file, you can use the "EC"
command to change disks and write the second part of the output
file to an empty disk. For example:

EF Close the current output file.

EC Insert a new disk and press RETURN.
EW PARTZ2 Create a second output file.

EX Save the rest of the file and exit.

You will then have to use VEDIT PLUS (or CP/M PIP or MS-DOS COPY)
to merge your two output files back into one file.

The "EC" command checks that it is safe to change disks - it checks
that no output file is open and that no ".3R" file is being used
for backward disk buffering. It also closes the input file to
prevent reading garbage from a changed disk.

This procedure has several potential difficulties. If you were
using backward disk buffering, the "EC" command may give the error
message "REV FILE OPEN" in which case you cannot change any disks.
You will then have to make more space on the existing disks by
deleting files, possibly the input file. Remember that under
MS-DOS you can delete files in other subdirectories too.

If you were unable to read the entire input file into the edit
buffer, the procedure becomes still more complicated. (Try again
to make more space free on the existing disks!) 1If you have a copy
of your input file on a backup disk, delete the input file, which
should free enough disk space to end the edit session. All text
which you just edited or entered will be in the output file, but
the output file will be missing the last portion of the input file
which was never read in. You must examine the output file to see
how much is missing. Then copy your backup of the original input
file to a blank disk. Edit this file by deleting the entire front
portion up to the text which is missing from the partial output
file. Exit VEDIT PLUS. Then merge the output file and the unread
portion of the original input file back together. This 1is a

167

VEDIT PLUS User Guide
File and Memory Management {Technical)

complicated procedure, but at least none of your edited text is
lost.

If you could not read the entire input file into memory and cannot
delete it because you do not have a backup you will have to use the
"EC" command procedure to write a second output file to a blank
diskette. However, by using the "EC" command, VEDIT PLUS will not
be able to continue reading any unread portion of the input file.
You will therefore have to merge the output file from the original
disk with the second output file, with the unread portion of the
input file.

Memory Management

VEDIT PLUS can simultaneously edit several files, each of unlimited
length. Although you can edit multiple large files with only 128K
of memory on an IBM PC {or 56K of memory on an 8080/Z80 machine),
performance is better on IBM PC/8086/8088 machines with more
memory. When enough memory 1is available, each file has its own
reserved 64K segment of memory. Of this 64K, about 58K is
available for text (the rest is used for internal purposes). The
automatic disk buffering handles all files larger than 58K in the
usual manner.

If you simultaneously edit more files than there are available 64K
segments of memory, the associated edit buffers will share a memory
segment. Normally the memory management pertaining to disk
buffering and memory sharing is handled automatically, making file
size nearly transparent, except for some additional disk access
time.

When VEDIT PLUS is invoked it first tries to reserve a 64K memory
segment for the text registers (and a few other internal buffers).
It then tries to reserve another 64K of memory for the main edit
buffer. If 64K of memory is not available, it will settle for a
48K memory segment. Therefore, with less than 112K of available
memory {about 196K of total memory), all edit buffers and the text
registers will have to share only 64K of memory. Each created edit
buffer also attempts to reserve another 64K memory segment for
itself. If at least 48K is not available, the new edit buffer will
share memory with the most recently created edit buffer.

Consider a typical 256K IBM PC XT. The first 64K of memory is
largely used up by the operating system and the VEDIT PLUS program.
The text registers (which are not edit buffers) have their own 64K
of memory. The main edit buffer also has its own 64K of memory.
The second file you edit will also have its own reserved 64K of
memory. It is not until you create a third edit buffer that any
files will have to share memory. Realistically, you can edit six

or seven large files simultaneously. With 512K of memory, you can

-168-

VEDIT PLUS User Guide
File and Memory Management (Technical)

easily edit ten or more large files simultaneously.

NOTE:

The following discussion applies mostly to
8080/280 machine users and to IBM PC/8086/8088
users who are simultaneously editing many large
files.

Performance is best when each file has its own reserved segment of
memory. Switching between edit buffers is then instant with no
disk buffering performed by VEDIT PLUS. When edit buffers do share
a memory segment, the "EE" command and [WINDOW]~Switch function
will sometimes perform disk buffering to make more memory space
free for the newly active edit buffer.

The "EN" (need memory) command makes more memory space free in the
current edit buffer by buffering some of the file being edited back
to disk. The "EN" command takes three forms:

QEN Buffers out to disk until the customized amount of "“spare
memory" {Installation Task 9.4) is again free. This is
typically 4 - 8K bytes.

nEN Buffers out to disk until 'n' bytes of memory are free.

EN Buffers out to disk wuntil the memory resident file is
reduced in size to the customized size of a file buffering
"page" (Task 9.5) plus 1000 bytes. This is typically 6 -
12K bytes.

The "EN" command does not buffer out any text which is within 2000
bytes of the current edit pointer. If you specify too large a
value, "EN" will not be able to make the total requested amount of
memory free, but will make as much free as possible. Use the "U"
command to confirm how much memory actually is free.

If an "EE" command or {WINDOW]-Switch function switches to an edit
buffer which uses a different memory segment from the current edit
buffer, the operation occurs instantly without any file buffering.
However, if the two edit buffers share a common memory segment and
a large amount of the memory space is being used for the currently
edited file, some of the file will be buffered out to disk to make
more memory space free for the new edit buffer. In the case of
shared memory, the "EE" command performs an "EN" to make more
memory space free and can take each of the three forms available
for the "EN" command. Additionally, the command "-EE" switches
edit buffers without performing any disk buffering.

169

VEDIT PLUS User Guide
File and Memory Management (Technical)

-EE1 Switch to edit buffer "1" without
performing disk buffering to free more
memory space.

When the "EE" command switches between edit buffers sharing memory,
it buffers the old edit buffer out to disk, leaving just one "page"
of text resident. With this in mind, you can compute how many
large files can be edited in the last reserved memory segment. The
size of the last reserved memory segment, typically 48K, divided by
the buffering "page" size gives how many large files can be
simultaneously edited without continuously running into full memory
problems. You may want to take this into account when customizing
the "page" size in Task 9.5. Specifically, you may want to make it
smaller, although 4K bytes should be considered the minimum value.

Multi-Tasking Operating Systems

Some operating systems, such as Digital Research's MP/M and
Concurrent, and Microsoft's XENIX, allow several programs to be run
simultaneously on one computer system by one or more users. These
operating systems must deal with the situation where one program
attempts to access a file which 1is already in use by another
program. In effect, the second program is denied access to the
file, or "locked out". This process is called "file locking". For
example, two users cannot simultaneously run VEDIT PLUS on the same
file.

VEDIT PLUS detects when it is running under these multi-tasking
operating systems and then works in conjunction with their file
locking. Typically, 1if you try to access a file with VEDIT PLUS
which is already in use by another program, the operating system
will first issue you an error message. Then VEDIT PLUS will issue
an additional error wessage "FILE NOT OPENED" to note that the file
was not successfully accessed. You also cannot perform an "EC"
(change disk) command on a disk which is in use by other programs.
VEDIT PLUS ensures that files which it is working on, or will soon
need to access, are locked from use by other programs. VEDIT PLUS
will also release files as socon as it is done with them so that
they may then be wused by other programs. (It closes all input
files as soon as the end of the file is reached.)

-170-

