Author: Jørgen S. Dokken and Garth N. Wells
This section shows how to solve the hyperelasticity problem for deformation of a beam.
We will also show how to create a constant boundary condition for a vector function space.
We start by importing DOLFINx and some additional dependencies.
Then, we create a slender cantilever consisting of hexahedral elements and create the function space V
for our unknown.
from dolfinx import log, default_scalar_type
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.nls.petsc import NewtonSolver
import pyvista
import numpy as np
import ufl
from mpi4py import MPI
from dolfinx import fem, mesh, plot
L = 20.0
domain = mesh.create_box(MPI.COMM_WORLD, [[0.0, 0.0, 0.0], [L, 1, 1]], [20, 5, 5], mesh.CellType.hexahedron)
V = fem.functionspace(domain, ("Lagrange", 2, (domain.geometry.dim, )))
We create two python functions for determining the facets to apply boundary conditions to
def left(x):
return np.isclose(x[0], 0)
def right(x):
return np.isclose(x[0], L)
fdim = domain.topology.dim - 1
left_facets = mesh.locate_entities_boundary(domain, fdim, left)
right_facets = mesh.locate_entities_boundary(domain, fdim, right)
Next, we create a marker based on these two functions
# Concatenate and sort the arrays based on facet indices. Left facets marked with 1, right facets with two
marked_facets = np.hstack([left_facets, right_facets])
marked_values = np.hstack([np.full_like(left_facets, 1), np.full_like(right_facets, 2)])
sorted_facets = np.argsort(marked_facets)
facet_tag = mesh.meshtags(domain, fdim, marked_facets[sorted_facets], marked_values[sorted_facets])
We then create a function for supplying the boundary condition on the left side, which is fixed.
u_bc = np.array((0,) * domain.geometry.dim, dtype=default_scalar_type)
To apply the boundary condition, we identity the dofs located on the facets marked by the MeshTag
.
left_dofs = fem.locate_dofs_topological(V, facet_tag.dim, facet_tag.find(1))
bcs = [fem.dirichletbc(u_bc, left_dofs, V)]
Next, we define the body force on the reference configuration (B
), and nominal (first Piola-Kirchhoff) traction (T
).
B = fem.Constant(domain, default_scalar_type((0, 0, 0)))
T = fem.Constant(domain, default_scalar_type((0, 0, 0)))
Define the test and solution functions on the space $V$
v = ufl.TestFunction(V)
u = fem.Function(V)
Define kinematic quantities used in the problem
# Spatial dimension
d = len(u)
# Identity tensor
I = ufl.variable(ufl.Identity(d))
# Deformation gradient
F = ufl.variable(I + ufl.grad(u))
# Right Cauchy-Green tensor
C = ufl.variable(F.T * F)
# Invariants of deformation tensors
Ic = ufl.variable(ufl.tr(C))
J = ufl.variable(ufl.det(F))
Define the elasticity model via a stored strain energy density function $\psi$, and create the expression for the first Piola-Kirchhoff stress:
# Elasticity parameters
E = default_scalar_type(1.0e4)
nu = default_scalar_type(0.3)
mu = fem.Constant(domain, E / (2 * (1 + nu)))
lmbda = fem.Constant(domain, E * nu / ((1 + nu) * (1 - 2 * nu)))
# Stored strain energy density (compressible neo-Hookean model)
psi = (mu / 2) * (Ic - 3) - mu * ufl.ln(J) + (lmbda / 2) * (ufl.ln(J))**2
# Stress
# Hyper-elasticity
P = ufl.diff(psi, F)
{admonition}
To illustrate the difference between linear and hyperelasticity, the following lines can be uncommented to solve the linear elasticity problem.
# P = 2.0 * mu * ufl.sym(ufl.grad(u)) + lmbda * ufl.tr(ufl.sym(ufl.grad(u))) * I
Define the variational form with traction integral over all facets with value 2. We set the quadrature degree for the integrals to 4.
metadata = {"quadrature_degree": 4}
ds = ufl.Measure('ds', domain=domain, subdomain_data=facet_tag, metadata=metadata)
dx = ufl.Measure("dx", domain=domain, metadata=metadata)
# Define form F (we want to find u such that F(u) = 0)
F = ufl.inner(ufl.grad(v), P) * dx - ufl.inner(v, B) * dx - ufl.inner(v, T) * ds(2)
As the varitional form is non-linear and written on residual form, we use the non-linear problem class from DOLFINx to set up required structures to use a Newton solver.
problem = NonlinearProblem(F, u, bcs)
and then create and customize the Newton solver
solver = NewtonSolver(domain.comm, problem)
# Set Newton solver options
solver.atol = 1e-8
solver.rtol = 1e-8
solver.convergence_criterion = "incremental"
We create a function to plot the solution at each time step.
pyvista.start_xvfb()
plotter = pyvista.Plotter()
plotter.open_gif("deformation.gif", fps=3)
topology, cells, geometry = plot.vtk_mesh(u.function_space)
function_grid = pyvista.UnstructuredGrid(topology, cells, geometry)
values = np.zeros((geometry.shape[0], 3))
values[:, :len(u)] = u.x.array.reshape(geometry.shape[0], len(u))
function_grid["u"] = values
function_grid.set_active_vectors("u")
# Warp mesh by deformation
warped = function_grid.warp_by_vector("u", factor=1)
warped.set_active_vectors("u")
# Add mesh to plotter and visualize
actor = plotter.add_mesh(warped, show_edges=True, lighting=False, clim=[0, 10])
# Compute magnitude of displacement to visualize in GIF
Vs = fem.functionspace(domain, ("Lagrange", 2))
magnitude = fem.Function(Vs)
us = fem.Expression(ufl.sqrt(sum([u[i]**2 for i in range(len(u))])), Vs.element.interpolation_points)
magnitude.interpolate(us)
warped["mag"] = magnitude.x.array
Finally, we solve the problem over several time steps, updating the z-component of the traction
log.set_log_level(log.LogLevel.INFO)
tval0 = -1.5
for n in range(1, 10):
T.value[2] = n * tval0
num_its, converged = solver.solve(u)
assert (converged)
u.x.scatter_forward()
print(f"Time step {n}, Number of iterations {num_its}, Load {T.value}")
function_grid["u"][:, :len(u)] = u.x.array.reshape(geometry.shape[0], len(u))
magnitude.interpolate(us)
warped.set_active_scalars("mag")
warped_n = function_grid.warp_by_vector(factor=1)
warped.points[:, :] = warped_n.points
warped.point_data["mag"][:] = magnitude.x.array
plotter.update_scalar_bar_range([0, 10])
plotter.write_frame()
plotter.close()