%matplotlib inline
import pandas as pd
import geopandas
pd.options.display.max_rows = 10
countries = geopandas.read_file("zip://./data/ne_110m_admin_0_countries.zip")
cities = geopandas.read_file("zip://./data/ne_110m_populated_places.zip")
rivers = geopandas.read_file("zip://./data/ne_50m_rivers_lake_centerlines.zip")
An important aspect of geospatial data is that we can look at spatial relationships: how two spatial objects relate to each other (whether they overlap, intersect, contain, .. one another).
The topological, set-theoretic relationships in GIS are typically based on the DE-9IM model. See https://en.wikipedia.org/wiki/Spatial_relation for more information.
(Image by Krauss, CC BY-SA 3.0)
Let's first create some small toy spatial objects:
A polygon (note: we use .squeeze()
here to to extract the scalar geometry object from the GeoSeries of length 1):
belgium = countries.loc[countries['name'] == 'Belgium', 'geometry'].squeeze()
Two points:
paris = cities.loc[cities['name'] == 'Paris', 'geometry'].squeeze()
brussels = cities.loc[cities['name'] == 'Brussels', 'geometry'].squeeze()
And a linestring:
from shapely.geometry import LineString
line = LineString([paris, brussels])
Let's visualize those 4 geometry objects together (I only put them in a GeoSeries to easily display them together with the geopandas .plot()
method):
geopandas.GeoSeries([belgium, paris, brussels, line]).plot(cmap='tab10')
<matplotlib.axes._subplots.AxesSubplot at 0x7f9975ca11d0>
You can recognize the abstract shape of Belgium.
Brussels, the capital of Belgium, is thus located within Belgium. This is a spatial relationship, and we can test this using the individual shapely geometry objects as follow:
brussels.within(belgium)
True
And using the reverse, Belgium contains Brussels:
belgium.contains(brussels)
True
On the other hand, Paris is not located in Belgium:
belgium.contains(paris)
False
paris.within(belgium)
False
The straight line we draw from Paris to Brussels is not fully located within Belgium, but it does intersect with it:
belgium.contains(line)
False
line.intersects(belgium)
True
The same methods that are available on individual shapely
geometries as we have seen above, are also available as methods on GeoSeries
/ GeoDataFrame
objects.
For example, if we call the contains
method on the world dataset with the paris
point, it will do this spatial check for each country in the world
dataframe:
countries.contains(paris)
0 False 1 False 2 False 3 False 4 False ... 172 False 173 False 174 False 175 False 176 False Length: 177, dtype: bool
Because the above gives us a boolean result, we can use that to filter the dataframe:
countries[countries.contains(paris)]
iso_a3 | name | continent | pop_est | gdp_md_est | geometry | |
---|---|---|---|---|---|---|
55 | FRA | France | Europe | 67106161.0 | 2699000.0 | (POLYGON ((2.513573032246114 51.14850617126189... |
And indeed, France is the only country in the world in which Paris is located.
Another example, extracting the linestring of the Amazon river in South America, we can query through which countries the river flows:
amazon = rivers[rivers['name'] == 'Amazonas'].geometry.squeeze()
countries[countries.crosses(amazon)] # or .intersects
iso_a3 | name | continent | pop_est | gdp_md_est | geometry | |
---|---|---|---|---|---|---|
22 | BRA | Brazil | South America | 207353391.0 | 3081000.0 | POLYGON ((-57.625133429583 -30.21629485445423,... |
35 | COL | Colombia | South America | 47698524.0 | 688000.0 | POLYGON ((-66.87632585312258 1.253360500489336... |
124 | PER | Peru | South America | 31036656.0 | 410400.0 | POLYGON ((-69.52967810736496 -10.9517343075021... |
Overview of the different functions to check spatial relationships (spatial predicate functions):
equals
contains
crosses
disjoint
intersects
overlaps
touches
within
covers
See https://shapely.readthedocs.io/en/stable/manual.html#predicates-and-relationships for an overview of those methods.
See https://en.wikipedia.org/wiki/DE-9IM for all details on the semantics of those operations.
We will again use the Paris datasets to do some exercises. Let's start importing them again:
districts = geopandas.read_file("data/paris_districts_utm.geojson")
stations = geopandas.read_file("data/paris_sharing_bike_stations_utm.geojson")
Point
object for the Notre Dame cathedral (which has x/y coordinates of (452321.4581477511, 5411311.330882619))from shapely.geometry import Point
notre_dame = Point(452321.4581477511, 5411311.330882619)
stations.distance(notre_dame)
0 2143.292639 1 4138.525426 2 4053.291188 3 6427.098278 4 6059.063211 ... 1221 2549.427604 1222 3575.859934 1223 1521.203550 1224 5961.745568 1225 2347.675288 Length: 1226, dtype: float64
districts.contains(notre_dame)
0 False 1 False 2 False 3 False 4 False ... 75 False 76 False 77 False 78 False 79 False Length: 80, dtype: bool
districts[districts.contains(notre_dame)]
id | district_name | population | geometry | |
---|---|---|---|---|
15 | 16 | Notre-Dame | 4087 | POLYGON ((453143.5543612476 5410820.043549786,... |
Next to the spatial predicates that return boolean values, Shapely and GeoPandas also provide operations that return new geometric objects.
Binary operations:
![]() |
![]() |
![]() |
![]() |
Buffer:
![]() |
![]() |
![]() |
![]() |
See https://shapely.readthedocs.io/en/stable/manual.html#spatial-analysis-methods for more details.
For example, using the toy data from above, let's construct a buffer around Brussels (which returns a Polygon):
geopandas.GeoSeries([belgium, brussels.buffer(1)]).plot(alpha=0.5, cmap='tab10')
<matplotlib.axes._subplots.AxesSubplot at 0x7f997432a080>
and now take the intersection, union or difference of those two polygons:
brussels.buffer(1).intersection(belgium)
brussels.buffer(1).union(belgium)
brussels.buffer(1).difference(belgium)
Another useful method is the unary_union
attribute, which converts the set of geometry objects in a GeoDataFrame into a single geometry object by taking the union of all those geometries.
For example, we can construct a single object for the Africa continent:
africa_countries = countries[countries['continent'] == 'Africa']
africa = africa_countries.unary_union
africa
print(str(africa)[:1000])
MULTIPOLYGON (((49.54351891459575 -12.46983285894055, 49.80898074727909 -12.89528492599955, 50.05651085795716 -13.55576140712198, 50.21743126811407 -14.7587887508768, 50.47653689962553 -15.22651213955054, 50.37711144389596 -15.70606943121913, 50.20027469259318 -16.00026336025677, 49.86060550313868 -15.41425261806692, 49.67260664246086 -15.71020354580248, 49.86334435405016 -16.45103687913878, 49.77456424337271 -16.8750420060936, 49.49861209493412 -17.10603565843827, 49.43561852397031 -17.95306406013437, 49.04179243347394 -19.11878101977445, 48.54854088724801 -20.49688811613413, 47.93074913919867 -22.39150115325108, 47.54772342305131 -23.78195891692852, 47.0957613462266 -24.94162973399045, 46.28247765481709 -25.17846282318411, 45.40950768411045 -25.60143442149309, 44.83357384621755 -25.34610116953894, 44.03972049334976 -24.98834522878231, 43.76376834491117 -24.46067717864999, 43.69777754087445 -23.5741163062506, 43.34565433123763 -22.77690398528387, 43.254187046081 -22.05741301848412, 43
GeoPandas (and Shapely for the individual objects) provides a whole lot of basic methods to analyse the geospatial data (distance, length, centroid, boundary, convex_hull, simplify, transform, ....), much more than the few that we can touch in this tutorial.
Below, the coordinates for the Seine river in the neighbourhood of Paris are provided as a GeoJSON-like feature dictionary (created at http://geojson.io).
Based on this `seine` object, we want to know which districts are located close (maximum 150 m) to the Seine.
# created a line with http://geojson.io
s_seine = geopandas.GeoDataFrame.from_features({"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":{"type":"LineString","coordinates":[[2.408924102783203,48.805619828930226],[2.4092674255371094,48.81703747481909],[2.3927879333496094,48.82325391133874],[2.360687255859375,48.84912860497674],[2.338714599609375,48.85827758964043],[2.318115234375,48.8641501307046],[2.298717498779297,48.863246707697],[2.2913360595703125,48.859519915404825],[2.2594070434570312,48.8311646245967],[2.2436141967773438,48.82325391133874],[2.236919403076172,48.82347994904826],[2.227306365966797,48.828339513221444],[2.2224998474121094,48.83862215329593],[2.2254180908203125,48.84856379804802],[2.2240447998046875,48.85409863123821],[2.230224609375,48.867989496547864],[2.260265350341797,48.89192242750887],[2.300262451171875,48.910203080780285]]}}]},
crs={'init': 'epsg:4326'})
# convert to local UTM zone
s_seine_utm = s_seine.to_crs(epsg=32631)
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20, 10))
districts.plot(ax=ax, color='grey', alpha=0.4, edgecolor='k')
s_seine_utm.plot(ax=ax)
<matplotlib.axes._subplots.AxesSubplot at 0x7f99742abda0>
# access the single geometry object
seine = s_seine_utm.geometry.squeeze()
seine_buffer = seine.buffer(150)
seine_buffer
districts_seine = districts[districts.intersects(seine_buffer)]
fig, ax = plt.subplots(figsize=(20, 10))
districts.plot(ax=ax, color='grey', alpha=0.4, edgecolor='k')
districts_seine.plot(ax=ax, color='blue', alpha=0.4, edgecolor='k')
s_seine_utm.plot(ax=ax)
<matplotlib.axes._subplots.AxesSubplot at 0x7f99741e5908>