import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt
transit_stops = gpd.read_file('C:/Users/jtrum/pennmusa/MUSA8010/repository/data/ridership.geojson')
transit_stops = transit_stops.to_crs(epsg=4269)
transit_stops
RT | TP | longitude | latitude | avg_ons | avg_offs | geometry | |
---|---|---|---|---|---|---|---|
0 | 2 | 1707 Myrtle\Williams | -106.470347 | 31.768641 | 0.261719 | 0.496094 | POINT (-106.47035 31.76864) |
1 | 2 | 1900 Magoffin\Laurel | -106.467481 | 31.768037 | 0.360784 | 1.752941 | POINT (-106.46748 31.76804) |
2 | 2 | 1931 Myrtle\Eucalyptus | -106.467916 | 31.770229 | 3.019531 | 2.636719 | POINT (-106.46792 31.77023) |
3 | 2 | 2023 Myrtle\Willow | -106.466690 | 31.770923 | 1.308594 | 1.039062 | POINT (-106.46669 31.77092) |
4 | 2 | 2114 Magoffin\Walnut | -106.464387 | 31.770018 | 0.129412 | 0.074510 | POINT (-106.46439 31.77002) |
... | ... | ... | ... | ... | ... | ... | ... |
3424 | 500 | Stanton St/Cincinnati Ave | -106.502172 | 31.777396 | 1.655425 | 2.766862 | POINT (-106.50217 31.77740) |
3425 | 500 | Stanton St/Kerbey Ave | -106.499769 | 31.774824 | 1.005856 | 2.035139 | POINT (-106.49977 31.77482) |
3426 | 500 | Stanton St/Missouri Ave | -106.488914 | 31.762469 | 0.885630 | 0.391496 | POINT (-106.48891 31.76247) |
3427 | 500 | Stanton St/Rim Rd | -106.496622 | 31.771112 | 0.566618 | 0.814056 | POINT (-106.49662 31.77111) |
3428 | 500 | Stanton\Yandell | -106.490297 | 31.764011 | 0.802053 | 0.728739 | POINT (-106.49030 31.76401) |
3429 rows × 7 columns
final_hex = gpd.read_file('C:/Users/jtrum/pennmusa/MUSA8010/repository/ElPaso-Bus-Network/final_hex4.geojson')
final_hex = final_hex.to_crs(epsg=4269)
final_hex
uniqueID | ridership | totalPop | hlPop | whitePop | blackPop | aiPop | asianPop | nhPop | otherRacePop | ... | major_road.nn3 | major_road.nn5 | stops_in_hex | bays_in_hex | cvID | prediction | error | ridership_per_stop | pred_ridership_per_stop | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 192.697819 | 149.407509 | 175.915293 | 1.463092 | 0.000000 | 0.279709 | 0.000000 | 14.286663 | ... | 0.006613 | 0.007121 | 0.0 | 0.0 | 88 | 0.998888 | 0.998888 | 0.0 | 0.0 | POLYGON ((-106.63329 31.86642, -106.63579 31.8... |
1 | 2 | 0 | 38.915167 | 30.191817 | 35.454301 | 0.291479 | 0.001266 | 0.055724 | 0.000000 | 2.917649 | ... | 0.005748 | 0.006669 | 0.0 | 0.0 | 3 | 1.000461 | 1.000461 | 0.0 | 0.0 | POLYGON ((-106.63329 31.87508, -106.63579 31.8... |
2 | 3 | 0 | 175.428773 | 136.018021 | 160.150251 | 1.331974 | 0.000000 | 0.254642 | 0.000000 | 13.006332 | ... | 0.002750 | 0.003626 | 0.0 | 0.0 | 64 | 0.999877 | 0.999877 | 0.0 | 0.0 | POLYGON ((-106.63079 31.86209, -106.63329 31.8... |
3 | 4 | 0 | 192.827021 | 149.507686 | 176.033243 | 1.464073 | 0.000000 | 0.279896 | 0.000000 | 14.296242 | ... | 0.005156 | 0.005415 | 0.0 | 0.0 | 74 | 1.000771 | 1.000771 | 0.0 | 0.0 | POLYGON ((-106.63079 31.87075, -106.63329 31.8... |
4 | 5 | 0 | 71.358125 | 57.918821 | 55.418041 | 0.000000 | 0.171809 | 0.000000 | 0.000000 | 9.697680 | ... | 0.004352 | 0.005308 | 0.0 | 0.0 | 77 | 1.000009 | 1.000009 | 0.0 | 0.0 | POLYGON ((-106.63079 31.87941, -106.63329 31.8... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2112 | 2115 | 0 | 543.652444 | 450.740202 | 459.666269 | 28.793764 | 5.012733 | 6.046690 | 0.314114 | 26.359382 | ... | 0.005634 | 0.006134 | 0.0 | 0.0 | 74 | 1.000663 | 1.000663 | 0.0 | 0.0 | POLYGON ((-106.22329 31.77115, -106.22579 31.7... |
2113 | 2116 | 0 | 543.602526 | 450.698816 | 459.624063 | 28.791120 | 5.012272 | 6.046135 | 0.314085 | 26.356962 | ... | 0.002491 | 0.003027 | 0.0 | 0.0 | 61 | 0.999908 | 0.999908 | 0.0 | 0.0 | POLYGON ((-106.22329 31.77981, -106.22579 31.7... |
2114 | 2117 | 0 | 543.552597 | 450.657419 | 459.581847 | 28.788476 | 5.011812 | 6.045580 | 0.314056 | 26.354541 | ... | 0.005917 | 0.006791 | 0.0 | 0.0 | 46 | 0.999658 | 0.999658 | 0.0 | 0.0 | POLYGON ((-106.22329 31.78847, -106.22579 31.7... |
2115 | 2118 | 0 | 543.364693 | 450.305350 | 459.409980 | 28.837100 | 5.000581 | 6.008357 | 0.310526 | 26.292744 | ... | 0.003640 | 0.004312 | 0.0 | 0.0 | 12 | 1.000274 | 1.000274 | 0.0 | 0.0 | POLYGON ((-106.22329 31.79713, -106.22579 31.7... |
2116 | 2119 | 0 | 178.687388 | 142.226068 | 150.690837 | 11.231522 | 1.360943 | 0.927236 | 0.000000 | 7.073915 | ... | 0.005618 | 0.006706 | 0.0 | 0.0 | 86 | 1.000633 | 1.000633 | 0.0 | 0.0 | POLYGON ((-106.22329 31.80579, -106.22579 31.8... |
2117 rows × 150 columns
# Set max rows to be seen to 61
pd.set_option('display.max_rows', 61)
routes_to_hex = gpd.overlay(transit_stops, final_hex, how='intersection')
# Plot the route
fig, ax = plt.subplots(figsize=(10,10))
routes_to_hex.plot(ax=ax, color='red', markersize=1)
plt.show()
# Get the hexagon IDs for every hexagon that intersects with the route, and only include the left side of the join
joined = gpd.sjoin(final_hex, routes_to_hex, how='inner', predicate='intersects')
joined.head()
# Select only the columns we want
joined = joined[['RT', 'ridership_per_stop_left', 'pred_ridership_per_stop_left', 'whitePop_left', 'blackPop_left', 'asianPop_left', 'hlPop_left', 'otherRacePop_left', 'nhPop_left', 'aiPop_left', 'disability_left', 'medHHInc_left', 'employmentHHMix_left']]
joined
# Aggregation of the data
joined = joined.groupby('RT').agg({'ridership_per_stop_left': 'sum', 'pred_ridership_per_stop_left': 'sum', 'whitePop_left': 'mean', 'blackPop_left': 'mean', 'asianPop_left': 'mean', 'hlPop_left': 'mean', 'otherRacePop_left': 'mean', 'nhPop_left': 'mean', 'aiPop_left': 'mean', 'disability_left': 'sum', 'medHHInc_left': 'mean', 'employmentHHMix_left': 'mean'})
joined.head(61)
ridership_per_stop_left | pred_ridership_per_stop_left | whitePop_left | blackPop_left | asianPop_left | hlPop_left | otherRacePop_left | nhPop_left | aiPop_left | disability_left | medHHInc_left | employmentHHMix_left | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RT | ||||||||||||
2 | 134522.944788 | 134534.933482 | 208.267392 | 9.887799 | 2.213135 | 309.054605 | 97.922292 | 0.000000e+00 | 3.221515 | 32.503298 | 2358.714255 | 0.678890 |
4 | 99808.540597 | 99805.952204 | 294.027808 | 17.776914 | 2.035270 | 391.922281 | 102.258638 | 0.000000e+00 | 4.392465 | 39.850378 | 3427.174551 | 0.605265 |
5 | 39859.112121 | 39831.697560 | 300.474488 | 11.754595 | 3.375640 | 313.013460 | 26.172151 | 2.725746e-01 | 7.295883 | 14.683008 | 2764.141157 | 0.627341 |
6 | 70198.159740 | 70151.561310 | 323.780105 | 11.268005 | 3.375640 | 347.711036 | 42.267087 | 6.911012e-01 | 1.863522 | 18.819553 | 2533.982711 | 0.637560 |
7 | 172704.875000 | 172705.516626 | 272.825121 | 16.937637 | 3.704804 | 264.809078 | 35.694635 | 2.042944e-01 | 1.552696 | 447.844155 | 2364.803431 | 0.613350 |
8 | 31700.785109 | 31715.974935 | 345.976548 | 16.826645 | 1.665794 | 346.276938 | 42.570599 | 3.759443e-01 | 3.047165 | 356.473438 | 4101.151177 | 0.672532 |
10 | 180693.320513 | 180688.863148 | 293.626300 | 26.512654 | 2.220482 | 338.464838 | 86.256646 | 0.000000e+00 | 4.658511 | 0.945881 | 4039.459861 | 0.377877 |
11 | 106647.419048 | 106647.802261 | 181.120285 | 7.650461 | 8.498604 | 170.615978 | 38.439002 | 0.000000e+00 | 1.280814 | 1.630691 | 3272.177597 | 0.555266 |
12 | 85971.939683 | 85869.967130 | 217.193877 | 2.914674 | 3.969830 | 246.261411 | 55.440696 | 4.049652e-01 | 0.811182 | 127.086499 | 3001.717148 | 0.637096 |
13 | 352065.832937 | 351993.357497 | 303.795568 | 6.193875 | 12.329514 | 279.310287 | 63.363140 | 6.113203e+00 | 1.846071 | 222.135478 | 3202.533721 | 0.680011 |
14 | 622898.507567 | 622629.520302 | 260.635485 | 9.297009 | 8.992134 | 256.000005 | 61.420634 | 1.733508e+00 | 1.573087 | 184.408919 | 3837.076096 | 0.598012 |
15 | 480979.640229 | 480916.501601 | 218.530810 | 8.360215 | 8.935973 | 218.787842 | 53.806072 | 2.901344e+00 | 2.268997 | 78.477025 | 2929.195847 | 0.702311 |
16 | 61913.339683 | 61832.045438 | 173.252459 | 1.477653 | 2.870003 | 157.177239 | 23.922623 | 5.762041e-01 | 0.839681 | 69.443286 | 3180.696030 | 0.527821 |
17 | 69928.573016 | 69832.930591 | 260.891003 | 3.844743 | 9.490762 | 267.070524 | 56.813415 | 8.388609e-01 | 0.764677 | 54.377882 | 3760.066077 | 0.720910 |
19 | 92025.039683 | 91947.301004 | 278.905230 | 4.532799 | 11.618772 | 262.231997 | 53.849798 | 1.771287e+00 | 0.696525 | 62.902654 | 4319.978697 | 0.639357 |
20 | 18662.667063 | 18666.881909 | 219.472950 | 4.280203 | 9.281274 | 231.397089 | 58.100654 | 3.531956e-01 | 1.179460 | 37.719113 | 2729.706579 | 0.842817 |
21 | 37845.840747 | 37849.810601 | 333.356175 | 1.840153 | 1.113253 | 378.659996 | 64.390557 | 4.420221e-02 | 1.224643 | 273.700006 | 3125.074943 | 0.502860 |
24 | 122421.171047 | 122415.645083 | 332.246318 | 5.706959 | 0.497646 | 411.517699 | 77.420557 | 0.000000e+00 | 2.410588 | 248.116826 | 3082.695337 | 0.430235 |
25 | 85211.193939 | 85213.359826 | 248.000134 | 2.703231 | 0.746362 | 273.513526 | 37.572968 | 2.290862e-01 | 1.245279 | 156.374937 | 2474.481847 | 0.676294 |
26 | 75149.279895 | 75170.468097 | 230.363305 | 3.597488 | 2.273301 | 320.572720 | 84.137631 | 0.000000e+00 | 0.998893 | 27.590168 | 2350.389283 | 0.626042 |
32 | 89786.133117 | 89819.274260 | 391.892723 | 10.954668 | 3.338142 | 418.893187 | 50.212330 | 4.634834e-07 | 1.410105 | 248.587744 | 3713.123084 | 0.354143 |
33 | 139203.941558 | 139245.216131 | 330.384085 | 4.914969 | 1.920133 | 349.624606 | 43.265217 | 1.664783e-01 | 0.704070 | 357.749929 | 3100.087203 | 0.557372 |
34 | 233473.055575 | 233521.007256 | 348.550397 | 13.615040 | 4.468771 | 396.171870 | 73.100073 | 0.000000e+00 | 4.031467 | 176.733030 | 3974.680069 | 0.511730 |
35 | 301469.718615 | 301429.061166 | 432.892573 | 11.140815 | 3.939210 | 459.834850 | 57.564989 | 9.304611e-02 | 2.673003 | 383.505733 | 4821.666297 | 0.560738 |
36 | 223034.837876 | 223033.080681 | 341.594838 | 13.890318 | 3.574373 | 375.280980 | 58.407137 | 0.000000e+00 | 2.991883 | 345.213472 | 3497.843724 | 0.492910 |
37 | 405965.933333 | 405853.282068 | 281.590568 | 17.835954 | 6.148458 | 315.299166 | 59.950050 | 0.000000e+00 | 1.671791 | 228.081755 | 2734.914991 | 0.426441 |
41 | 100968.400000 | 100992.533399 | 307.232031 | 15.689165 | 5.209317 | 333.195980 | 48.113433 | 0.000000e+00 | 1.188075 | 330.633750 | 2889.642805 | 0.318899 |
43 | 146544.766667 | 146450.246174 | 282.834047 | 23.579636 | 7.161005 | 294.625179 | 57.838204 | 4.695201e-04 | 2.407509 | 145.937095 | 2935.823932 | 0.390286 |
44 | 191258.266667 | 191192.397839 | 351.666212 | 42.591637 | 7.176825 | 348.848159 | 51.828271 | 1.366525e-01 | 1.893701 | 541.265492 | 4114.832294 | 0.417645 |
46 | 60323.833333 | 60374.530492 | 301.959543 | 37.629617 | 10.895082 | 285.502556 | 43.224666 | 0.000000e+00 | 1.636080 | 277.053220 | 4015.943173 | 0.460820 |
50 | 584818.566214 | 584834.674639 | 314.140816 | 6.978516 | 2.516955 | 342.499512 | 53.074771 | 1.068349e-01 | 2.854014 | 506.285536 | 3222.771377 | 0.609286 |
51 | 108179.156168 | 108188.780606 | 501.687139 | 18.734744 | 6.192684 | 477.391775 | 37.600306 | 6.789015e-01 | 2.373191 | 414.526060 | 5498.521503 | 0.453391 |
52 | 60272.185460 | 60297.463282 | 500.511921 | 18.866005 | 7.771088 | 484.252887 | 38.156436 | 7.766051e-01 | 2.432707 | 603.608824 | 6318.355886 | 0.424681 |
53 | 170722.063220 | 170681.473226 | 450.232567 | 12.749701 | 4.771019 | 423.184847 | 32.136942 | 5.991110e-01 | 2.437072 | 324.065390 | 5674.202288 | 0.625288 |
54 | 85306.533550 | 85318.399332 | 481.588203 | 19.682970 | 6.922146 | 469.435214 | 29.543268 | 6.425049e-01 | 2.497703 | 203.026244 | 4077.102058 | 0.610594 |
56 | 6913.780303 | 6930.661764 | 430.938946 | 29.019033 | 4.721459 | 421.723888 | 33.285783 | 2.302183e-01 | 3.217713 | 163.147985 | 2297.223626 | 0.439487 |
58 | 57577.551313 | 57589.476710 | 401.171436 | 13.943126 | 3.460870 | 379.106941 | 22.476502 | 3.255794e-01 | 2.574096 | 300.178032 | 3818.747723 | 0.498902 |
59 | 31940.600654 | 31947.858909 | 291.255384 | 12.909488 | 1.154495 | 322.994807 | 58.059301 | 8.326188e-01 | 3.509223 | 0.000000 | 3641.673270 | 0.729460 |
60 | 197420.717079 | 197321.111906 | 211.656480 | 5.464838 | 0.945457 | 247.686517 | 42.634054 | 1.793349e-01 | 5.685922 | 190.416203 | 2229.294792 | 0.597746 |
61 | 254286.115697 | 254247.490267 | 263.648754 | 4.466586 | 0.794033 | 336.602360 | 72.887624 | 0.000000e+00 | 1.938614 | 290.812589 | 2668.145628 | 0.577633 |
62 | 177872.914216 | 177864.884855 | 284.652982 | 4.275840 | 0.796263 | 362.092008 | 76.828017 | 0.000000e+00 | 2.037210 | 437.145689 | 2776.231394 | 0.459794 |
63 | 191308.330411 | 191208.756162 | 303.258465 | 6.466490 | 0.471597 | 359.330963 | 63.386103 | 3.051031e-01 | 4.285515 | 751.678445 | 2634.557845 | 0.538122 |
64 | 193934.674654 | 193832.039293 | 319.956888 | 3.297993 | 0.476294 | 377.969575 | 66.603760 | 1.229366e+00 | 1.771440 | 223.776246 | 3001.624291 | 0.504488 |
65 | 268705.528770 | 268635.363922 | 245.750030 | 3.544280 | 0.660387 | 313.968077 | 67.811746 | 0.000000e+00 | 2.123849 | 179.193541 | 2502.481736 | 0.518695 |
66 | 234966.724030 | 234927.323055 | 224.337742 | 3.804681 | 0.789005 | 290.193688 | 65.076444 | 0.000000e+00 | 2.139242 | 159.169072 | 2358.336738 | 0.587815 |
67 | 71483.529245 | 71496.764756 | 363.739226 | 7.712595 | 2.164735 | 388.740886 | 50.543796 | 3.731947e-01 | 2.468416 | 264.841789 | 4426.018238 | 0.503898 |
68 | 170664.045350 | 170593.245968 | 341.140023 | 8.252484 | 2.347105 | 366.269992 | 48.291744 | 4.531270e-01 | 2.616498 | 392.200318 | 4290.907032 | 0.627410 |
69 | 255354.614148 | 255243.634342 | 398.194892 | 9.527414 | 2.944664 | 410.627827 | 45.041233 | 9.403005e-01 | 2.721314 | 357.478682 | 4369.969334 | 0.603660 |
72 | 87339.986624 | 87358.478608 | 377.372597 | 15.889928 | 4.414315 | 374.832925 | 39.485434 | 2.887332e+00 | 3.643563 | 452.986644 | 4724.310772 | 0.638322 |
74 | 66822.784739 | 66830.910878 | 352.346539 | 16.132443 | 2.831254 | 356.062812 | 37.960470 | 2.574042e-01 | 2.699090 | 475.832009 | 4006.934807 | 0.667023 |
76 | 90999.920635 | 90987.484131 | 312.441716 | 17.197475 | 3.243708 | 327.146162 | 61.325058 | 4.594797e-01 | 3.788519 | 10.310863 | 5095.375077 | 0.563549 |
82 | 53742.150325 | 53724.244194 | 300.133921 | 1.125199 | 0.485408 | 375.243634 | 73.390082 | 3.570894e-01 | 1.031886 | 120.471432 | 2354.544508 | 0.401188 |
84 | 114379.547619 | 114312.167712 | 165.854765 | 3.771376 | 0.630626 | 214.140747 | 39.632554 | 1.147322e-01 | 11.562392 | 80.578124 | 1575.577614 | 0.598063 |
86 | 109150.480303 | 109099.040451 | 251.080903 | 2.964100 | 0.037449 | 313.327269 | 64.416356 | 0.000000e+00 | 4.026967 | 264.175247 | 1848.524387 | 0.549545 |
87 | 30310.225000 | 30279.747522 | 201.860485 | 4.512516 | 0.240302 | 195.962632 | 19.696657 | 3.365469e-01 | 1.947113 | 30.722840 | 2081.387338 | 0.533753 |
89 | 124524.436126 | 124485.234078 | 303.826812 | 7.667245 | 1.191275 | 324.084106 | 37.632111 | 3.197981e-01 | 8.812845 | 62.771705 | 3863.154590 | 0.586516 |
205 | 299681.378783 | 299592.707962 | 217.929947 | 9.835670 | 9.330200 | 221.535831 | 54.939539 | 2.151090e+00 | 2.904398 | 16.842071 | 2926.609618 | 0.650941 |
206 | 238975.674216 | 238868.787783 | 271.659480 | 4.721598 | 0.697541 | 351.862214 | 79.698529 | 2.754881e-01 | 2.098728 | 97.317359 | 2606.694487 | 0.589749 |
207 | 530627.898633 | 530496.553495 | 388.078190 | 15.849512 | 3.781185 | 445.046984 | 79.401489 | 0.000000e+00 | 2.592672 | 119.368904 | 3676.151628 | 0.596090 |
208 | 133550.241026 | 133552.619235 | 329.023799 | 9.853762 | 2.490395 | 326.705800 | 31.580602 | 2.837028e-01 | 2.004973 | 109.419825 | 3008.279850 | 0.591694 |
500 | 165112.148907 | 165100.949397 | 234.181211 | 20.733320 | 2.202552 | 290.423778 | 82.137842 | 0.000000e+00 | 5.098681 | 4.177935 | 4284.519484 | 0.641251 |
# Export to json
# joined.to_json('C:/Users/jtrum/pennmusa/MUSA8010/repository/data/ridership_joined.json', orient='index')
# # Plot one route
# route2 = transit_stops[transit_stops['RT'] == 2]
# route2
# # Plot the route
# fig, ax = plt.subplots(figsize=(10,10))
# final_hex.plot(ax=ax, color='grey', edgecolor='white')
# route2.plot(ax=ax, color='red', markersize=1)
# plt.show()
# route2_hex = gpd.overlay(route2, final_hex, how='intersection')
# route2_hex
# # Plot the route
# fig, ax = plt.subplots(figsize=(10,10))
# route2_hex.plot(ax=ax, color='red', markersize=1)
# plt.show()
# # Get the hexagon IDs for every hexagon that intersects with the route, and only include the left side of the join
# joined = gpd.sjoin(final_hex, route2_hex, how='inner', predicate='intersects')
# joined.head()
# # Select only the columns we want
# joined = joined[['RT', 'ridership_per_stop_left', 'pred_ridership_per_stop_left', 'whitePop_left', 'blackPop_left', 'asianPop_left', 'hlPop_left', 'otherRacePop_left', 'nhPop_left', 'aiPop_left', 'disability_left', 'medHHInc_left', 'employmentHHMix_left']]
# joined
# # Aggregation of the data
# joined = joined.groupby('RT').agg({'ridership_per_stop_left': 'sum', 'pred_ridership_per_stop_left': 'sum', 'whitePop_left': 'mean', 'blackPop_left': 'mean', 'asianPop_left': 'mean', 'hlPop_left': 'mean', 'otherRacePop_left': 'mean', 'nhPop_left': 'mean', 'aiPop_left': 'mean', 'disability_left': 'sum', 'medHHInc_left': 'mean', 'employmentHHMix_left': 'mean'})
# joined
RT | TP | longitude | latitude | avg_ons | avg_offs | geometry | |
---|---|---|---|---|---|---|---|
0 | 2 | 1707 Myrtle\Williams | -106.470347 | 31.768641 | 0.261719 | 0.496094 | POINT (-106.47035 31.76864) |
1 | 2 | 1900 Magoffin\Laurel | -106.467481 | 31.768037 | 0.360784 | 1.752941 | POINT (-106.46748 31.76804) |
2 | 2 | 1931 Myrtle\Eucalyptus | -106.467916 | 31.770229 | 3.019531 | 2.636719 | POINT (-106.46792 31.77023) |
3 | 2 | 2023 Myrtle\Willow | -106.466690 | 31.770923 | 1.308594 | 1.039062 | POINT (-106.46669 31.77092) |
4 | 2 | 2114 Magoffin\Walnut | -106.464387 | 31.770018 | 0.129412 | 0.074510 | POINT (-106.46439 31.77002) |
5 | 2 | 222 Campbell\First | -106.483134 | 31.756794 | 1.000000 | 1.078125 | POINT (-106.48313 31.75679) |
6 | 2 | 2302 Magoffin\Palm | -106.462529 | 31.771204 | 2.862745 | 7.133333 | POINT (-106.46253 31.77120) |
7 | 2 | Cotton\Bassett | -106.473659 | 31.765381 | 2.609375 | 2.425781 | POINT (-106.47366 31.76538) |
8 | 2 | Downtown Transit Ctr Bay B | -106.489452 | 31.753149 | 76.767442 | 49.550388 | POINT (-106.48945 31.75315) |
9 | 2 | Five Points Terminal Bay F | -106.462582 | 31.781775 | 41.769531 | 36.171875 | POINT (-106.46258 31.78178) |
10 | 2 | Magoffin\Cotton | -106.473197 | 31.764500 | 4.742188 | 3.878906 | POINT (-106.47320 31.76450) |
11 | 2 | Magoffin\Dallas | -106.469792 | 31.766546 | 0.243137 | 0.682353 | POINT (-106.46979 31.76655) |
12 | 2 | Magoffin\Eucalyptus | -106.466224 | 31.768835 | 6.207843 | 8.976471 | POINT (-106.46622 31.76884) |
13 | 2 | Magoffin\Lee St. | -106.470973 | 31.765799 | 1.560784 | 5.176471 | POINT (-106.47097 31.76580) |
14 | 2 | Magoffin\Ochoa | -106.481350 | 31.760229 | 0.468750 | 0.304688 | POINT (-106.48135 31.76023) |
15 | 2 | Myrtle\Dallas | -106.471543 | 31.767864 | 0.140625 | 0.476562 | POINT (-106.47154 31.76786) |
16 | 2 | Myrtle\Florence | -106.483486 | 31.760174 | 0.464844 | 2.687500 | POINT (-106.48349 31.76017) |
17 | 2 | Myrtle\Palm | -106.464270 | 31.772482 | 1.316406 | 1.609375 | POINT (-106.46427 31.77248) |
18 | 2 | Paisano\Stanton | -106.485464 | 31.755833 | 1.412698 | 8.357143 | POINT (-106.48546 31.75583) |
19 | 2 | Piedras\Alameda | -106.461671 | 31.773800 | 2.359375 | 4.378906 | POINT (-106.46167 31.77380) |
20 | 2 | Piedras\Alameda | -106.461459 | 31.773017 | 2.359375 | 4.378906 | POINT (-106.46146 31.77302) |
21 | 2 | Piedras\Gateway West | -106.461569 | 31.779130 | 1.371094 | 0.496094 | POINT (-106.46157 31.77913) |
22 | 2 | Raynor\Missouri | -106.459890 | 31.779435 | 0.478431 | 2.443137 | POINT (-106.45989 31.77944) |
23 | 2 | San Antonio Transit Terminal | -106.482454 | 31.759522 | 6.480469 | 1.320312 | POINT (-106.48245 31.75952) |
24 | 2 | San Antonio\Cotton | -106.474008 | 31.762369 | 3.660156 | 0.902344 | POINT (-106.47401 31.76237) |
25 | 2 | San Antonio\Park | -106.476305 | 31.761216 | 29.369650 | 20.463035 | POINT (-106.47630 31.76122) |
26 | 2 | San Antonio\Park | -106.476130 | 31.761476 | 29.369650 | 20.463035 | POINT (-106.47613 31.76148) |
27 | 2 | San Antonio\St.Vrain | -106.479437 | 31.759983 | 0.402344 | 1.140625 | POINT (-106.47944 31.75998) |
28 | 2 | San Antonio\Tays | -106.477835 | 31.760688 | 2.683594 | 1.058594 | POINT (-106.47783 31.76069) |
29 | 2 | Virgina\Magoffin | -106.480653 | 31.760530 | 0.269531 | 1.183594 | POINT (-106.48065 31.76053) |