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1 Conformal Invariance and the Conformal Group

Conformal field theories (CFTs) are, unsurprisingly, quantum field theories (QFTs) that satisfy conformal
invariance. As a result, to understand the properties of CFTs, we first examine conformal invariance and
its consequences. Here, we primarily follow [1–5], with some additional insights from [6–11].

1.1 Conformal Transformations and Identities

We start with the 𝑑-dimensional manifolds 𝑀 and 𝑁 , with metric tensors 𝑔 and g respectively. If we
examine differentiable maps 𝜑 ∶ 𝑈 → 𝑉 for the open subsets 𝑈 ⊂ 𝑀 and 𝑉 ⊂ 𝑁 , 𝜑 is a conformal
transformation if it satisfies 𝜑∗𝑔 = Λ𝑔 for some positive scale factor Λ ∈ ℝ+. Considering flat space with
the signature (𝑝, 𝑞, 𝑟 = 0), imposing 𝑁 = 𝑀 (so that we have g = 𝑔), and labelling everything by their
coordinates (so that 𝜑(𝑥) ∈ 𝑉 is 𝜑(𝑥) = 𝑥′)), the conformality requirement 𝜑∗𝑔 = Λ𝑔 is given by:

𝑔𝜌𝜎
𝜕𝑥′𝜌

𝜕𝑥𝜇
𝜕𝑥′𝜎

𝜕𝑥𝜈 = Λ(𝑥) 𝑔𝜇𝜈 (1.1)

(Here, the line element is d𝑠2 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈.) These correspond to angle-preserving maps on 𝑀 ; an
example of this is depicted in Figure 1. (Using that example, we can see that conformal transformations
preserve the angles between vectors, but not necessarily the lengths of the vectors themselves.) The
Jacobian of conformal transformations is given from (1.1) by:

𝐽 = ∣𝜕𝑥′𝜇

𝜕𝑥𝜈 ∣ = √det{Λ(𝑥) 𝑔𝜇𝜈} = 1
Λ𝑑/2 (1.2)

Figure 1: An example of a conformal transformation, which preserves the angles between vectors (but
not necessarily the lengths of the vectors themselves). Taken from [1].

Unsurprisingly, if we impose (1.1) onto 𝑔𝜇𝜈 ↦ 𝑔𝜌𝜎 when examining infinitesimal coordinate transfor-
mations 𝑥𝜇 ↦ 𝑥𝜇 + 𝜖𝜇(𝑥) + O(𝜖2) up to first order in 𝜖(𝑥) ≪ 1, we directly get the Cauchy-Riemann
equations:

𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈 = 2 𝜕𝜇𝜖𝜇
𝑑 = 2(𝜕 ⋅ 𝜖)

𝑑 𝑔𝜇𝜈 (1.3)

– 2 –



This then gives the scale factor to order O(𝜖) as:

Λ(𝑥) = 1 + 2 𝜕𝜇𝜖𝜇
𝑑 (1.4)

(These expressions are derives in §A.1.) Algebraically manipulating the Cauchy-Riemann equations (1.3)
give us two important identities mentioned in [1, 2], derived in §A.11:

[(𝑑 − 2)𝜕𝜇 𝜕𝜈 + 𝑔𝜇𝜈 □](𝜕 ⋅ 𝜖) = 0 ⟹ (𝑑 − 1)□(𝜕 ⋅ 𝜖) = 0 (1.5a)

𝜕𝜇 𝜕𝜈 𝜖𝜌 = 1
𝑑 (𝑔𝜌𝜇 𝜕𝜈 + 𝑔𝜈𝜌 𝜕𝜇 − 𝑔𝜇𝜈 𝜕𝜌)[𝜕 ⋅ 𝜖] (1.5b)

We note something quite important about (1.5a), following [2]. The 𝑑−2 term highlights that the identity
we get from further manipulations will hold specifically for 𝑑 ≥ 3. Conversely, this expression doesn’t apply
(or, more precisely, vanishes identically) for 2D CFTs; this is just one of the many ways that 2D CFTs
are particularly special. ([2] also discusses the 𝑑 = 1 case; i.e., conformal quantum mechanics (CQM).)

Finally, we also note that the Poincaré group is the semidirect product of translations and the Lorentz
group: ISO(𝑑, 1) = T(𝑑) ⋊ O(𝑑, 1). Thus, the Poincaré group is a subgroup of the conformal group;
namely, Poincaré transformations have Λ = 1. As a result, conformal invariance is more restrictive than
Poincaré invariance: only some QFTs satisfy conformal invariance.

1.2 The Conformal Group

The identity (1.5b) restricts (𝜕 ⋅ 𝜖) to be at most linear in 𝑥𝜇, since its second derivative □(𝜕 ⋅ 𝜖) is zero.
Thus, (𝜕 ⋅ 𝜖) (a scalar) must at most look like 𝐴 + 𝐵𝜇𝑥𝜇 (a scalar plus a covariant vector contracted with
𝑥𝜇). From this restriction on (𝜕 ⋅ 𝜖), the infinitesimal transformation 𝜖𝜇 must be at most quadratic in 𝑥𝜇;
i.e., at most, we have:

𝜖𝜇 ≈ 𝑎𝜇 + 𝑏𝜇𝜈 𝑥𝜈 + 𝑐𝜇𝜈𝜌 𝑥𝜈 𝑥𝜌 (1.6a)

(We note that 𝜖𝜇 is a vector, so 𝑎𝜇 is a vector, 𝑏𝜇𝜈 is a rank-2 tensor to contract with 𝑥𝜈, and 𝑐𝜇𝜈𝜌 is
rank-3 to contract with 𝑥𝜈 𝑥𝜌.) Since 𝑐𝜇𝜈𝜌 is contracting with 𝑥𝜈 𝑥𝜌, it’s symmetric in the last two indices:
𝑐𝜇𝜈𝜌 = 𝑐𝜇𝜌𝜈. Finally, we note that 𝜖𝜇 is an infinitesimal transformation, so 𝑎𝜇, 𝑏𝜇𝜈, and 𝑐𝜇𝜈𝜌 ≪ 1.

Using (1.3) and (1.5), we can determine the overall shape of 𝑎𝜇, 𝑏𝜇𝜈, and 𝑐𝜇𝜈𝜌, and most importantly
associate them with specific types of transformations. This is done in the unabridged version; here, we
simply report the results.

• For 𝑎𝜇, the derivation is trivial: we have 𝜖𝜇 ≈ 𝑎𝜇. Since 𝑎𝜇 is a constant, the derivatives all go to zero.
𝑎𝜇 gives the translations 𝑥𝜇 ↦ 𝑥𝜇 + 𝑎𝜇, generated by the translation operator ̂𝑃𝜇 = −i ̂𝜕𝜇.

• A

1Since we’re in Minkowski space, the Riemann tensor 𝑅𝜆
𝜎𝜇𝜈 = 𝜕𝜇Γ𝜆

𝜈𝜎 − 𝜕𝜈Γ𝜆
𝜇𝜎 vanishes everywhere, and thus the covariant

derivatives 𝜕𝜇 equal partial derivatives ∇⃗. Thus, [𝜕𝜇, 𝜕𝜈] = 0. These properties were used in the derivations in the appendix.
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• For 𝑏𝜇𝜈, we insert 𝜖𝜇 ≈ 𝑎𝜇 + 𝑏𝜇𝜈 𝑥𝜈 into (1.3), which ends up giving:

𝑏𝜇𝜈 + 𝑏𝜈𝜇 = 2
𝑑 (𝑔𝜌𝜎 𝑏𝜎𝜌) 𝑔𝜇𝜈 (1.6b)

Thus, the symmetric part of 𝑏𝜇𝜈 is proportional to the metric 𝑔𝜇𝜈. We can then split 𝑏𝜇𝜈 into a
symmetric part and an antisymmetric part, where the symmetric part is proportional to the metric:

𝑏𝜇𝜈 = 𝛼𝑔𝜇𝜈 + 𝑚𝜇𝜈 (1.6c)

• A– The symmetric term 𝛼𝑔𝜇𝜈 gives dilations 𝑥𝜇 ↦ (1 + 𝛼) 𝑥𝜇. These are generated by the dilation
operator �̂� = −i𝑥𝜇 ̂𝜕𝜇. (Dilations are also sometimes referred to as scale transformations and dilata-
tions.)

• A
– The antisymmetric term 𝑚𝜇𝜈 gives rotations 𝑥𝜇 = (𝛿𝜈

𝜇 + 𝑚𝜇
𝜈 ) 𝑥𝜇. These are generated by the angular

momentum operator �̂�𝜇𝜈 = i(𝑥𝜇 ̂𝜕𝜈 − 𝑥𝜈 ̂𝜕𝜇).
• A
• For 𝑐𝜇𝜈𝜌, we insert 𝜖𝜇 ≈ 𝑎𝜇 + 𝑏𝜇𝛼 𝑥𝛼 + 𝑐𝜇𝛼𝛽 𝑥𝛼 𝑥𝛽 into (1.5b), which ends up giving:

𝑐𝜌𝜈𝜇 + 𝑐𝜌𝜇𝜈 = 𝑐𝜌𝜇𝜈 = 𝑔𝜌𝜈 𝑔𝛼𝛽 𝑐𝛼𝛽𝜇 + 𝑔𝜈𝜌 𝑔𝛼𝛽 𝑐𝛼𝛽𝜇 − 𝑔𝜇𝜈 𝑔𝛼𝛽 𝑐𝛼𝛽𝜌
𝑑 (1.6d)

Defining 𝑏𝜈 ≔ 𝑔𝛼𝛽 𝑐𝛼𝛽𝜈/𝑑, this gives:

𝑐𝜌𝜇𝜈 = 𝑔𝜌𝜇 𝑏𝜈 + 𝑔𝜈𝜌 𝑏𝜇 + 𝑔𝜇𝜈 𝑏𝜌 (1.6e)

𝑐𝜌𝜇𝜈 gives special conformal transformations (SCTs), which we can write in terms of 𝑏𝜈 as:

𝑥𝜇 ↦ 𝑥𝜇 + 2(𝑥 ⋅ 𝑏)𝑥𝜇 − (𝑥 ⋅ 𝑥)𝑏𝜇 = 𝑥𝜇 − (𝑥 ⋅ 𝑥)𝑏𝜇

1 − 2(𝑏 ⋅ 𝑥) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥) (1.6f)

These are generated by the operator �̂�𝜇𝜈 = −i(2𝑥𝜇 𝑥𝜈 ̂𝜕𝜈 − (𝑥 ⋅ 𝑥) ̂𝜕𝜇).

1.3 Understanding Special Conformal Transformations

Amongst the four types of transformations, two of them (translations and rotations) are already familiar,
whereas dilations and SCTs are new ingredients. Dilations are a bit intuitive, but the nature of SCTs are
(at least to me) somewhat unintuitive just looking at the table above. In order to understand these, we
first start by defining inversion in the sphere:

𝑥𝜇 ↦ ̂ℐ[𝑥𝜇] ≔ 𝑥𝜇

𝑥 ⋅ 𝑥 (1.7)

(This is the same sphere inversion that we’re familiar with from having suffered through electromag-
netism.) Since sphere inversion is a map based only on the input point values and not a continuous param-
eter, it’s a discrete transformation like parity (�̂�[(𝑡, ⃗𝑟)] ≔ (𝑡, − ⃗𝑟)) and time reversal (�̂�[(𝑡, ⃗𝑟)] ≔ (−𝑡, ⃗𝑟)),
as opposed to the continuous transformations we just tabled above. Stated slightly more formally, while

– 4 –



̂ℐ is in O(𝑑), it’s not in SO(𝑑), and is thus also not in the connected part of the conformal group. This is
why this didn’t show up when we considered (1.6a): since it’s not in the connected part of the conformal
group, it doesn’t show up by exponentiating a Lie algebra element (or, equivalently, looking at the set
of infinitesimal transformations, which are generated by exponentiating the Lie algebra elements).

Figure 2: A sample SCT, given by the composition of a sphere inversion (the first arrow), a translation
outside the sphere (the second arrow), and a second sphere inversion (the third arrow). Taken from [1].

Using (1.7), we can express SCTs as a sequence of a sphere inversion, a translation (outside the sphere),
and another sphere inversion. This is shown in Figure 2, taken from [1]. In terms of inversions, the
expression for finite SCTs simplifies substantially. In terms of the labelling in the figure, this corresponds
to the process:

𝑥𝜇 ↦ 𝑥𝜇

𝑥 ⋅ 𝑥 ↦ 𝑥′𝜇

𝑥′ ⋅ 𝑥′ ≔ 𝑥𝜇

𝑥 ⋅ 𝑥 + 𝑏𝜇 ↦ 𝑥′𝜇

𝑥𝜇 ↦ 𝑥′𝜇 ≔ 𝑥𝜇 − (𝑥 ⋅ 𝑥)𝑏𝜇

1 − 2(𝑏 ⋅ 𝑥) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥)

(1.8)

These SCTs are a “new” type of transformation, unique to the conformal group. For SCTs, the scale
factor Λ(𝑥) for 𝑔𝜇𝜈 ↦ Λ(𝑥) 𝑔𝜇𝜈 is given by:

Λ(𝑥) = (1 − 2(𝑏 ⋅ 𝑥) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥))2 (1.9)

Although we used the sphere inversion to derive a more comprehensible form of the SCTs, we note that
invariance under inversion and translations isn’t quite the same as invariance under SCTs. In particular,
since ̂ℐ isn’t in the connected component of SO(𝑑) (as mentioned above), invariance under ̂ℐ is stronger
condition. We mentioned earlier that inversion is a discrete transformation like parity and time reversal;
in fact, parity and sphere inversion are conjugate transformations in the conformal group [8]. As such,
parity-invariant conformal field theories are sphere-inversion-invariant, and vice-versa2.

We finally note that SCTs aren’t globally defined; in fact, for every 𝑥𝜇, we can choose a specific 𝑏𝜇

2[8] specifically refers to CFT calculations checking inversion invariance rather than SCT invariance as “pedestrian”. Pretty
strong language, but it certainly helps me keep a mental note not to do that.
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(namely, 𝑏𝜇 = (𝑏 ⋅ 𝑏)𝑥𝜇) such that the denominator 1 − 2(𝑏 ⋅ 𝑥) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥) vanishes. This specific value
of 𝑏𝜇 maps 𝑥𝜇 to ∞, and even if we include the numerator, L’Hôpital’s rule doesn’t help out. Thus, when
trying to define the set of all finite conformal transformations, we need to embed our ℝ𝑑, 0 or ℝ𝑑 − 1, 1

into a compact manifold. The embedding itself must, of course, be a conformal map. The manifold must
also have the overall inner product structure we’re familiar with from relativity (i.e., the normal inner
product as always, and one dimension having the opposite sign); these are called Lorentzian manifolds.
The embedding of a not-necessarily-compact Lorentzian manifold into a compact Lorentzian manifold
using a conformal embedding map is a conformal compactification.

1.4 Table of Conformal Transformations

Grouping everything in §1.2 and §1.3 together, indicating the number of each transformations in a system
with signature (𝑝, 𝑞, 𝑟 = 0) (as in (1.1)), and indicating the scale factor of the transformation using (1.1),
we have:

Type Finite Version Generator

Translations 𝑥𝜇 ↦ 𝑥𝜇 + 𝑎𝜇 ̂𝑃𝜇 = −i ̂𝜕𝜇

Dilations 𝑥𝜇 ↦ 𝛼𝑥𝜇 �̂� = −i𝑥𝜇 ̂𝜕𝜇

Rotations 𝑥𝜇 ↦ 𝑚𝜇
𝜈 𝑥𝜈 �̂�𝜇𝜈 = i(𝑥𝜇 ̂𝜕𝜈 − 𝑥𝜈 ̂𝜕𝜇)

Special Conformal Transformations 𝑥𝜇 ↦ 𝑥𝜇 − (𝑥 ⋅ 𝑥)
1 − 2(𝑏 ⋅ 𝑥) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥)𝑏𝜇 �̂�𝜇 = −i(2𝑥𝜇 𝑥𝜈 ̂𝜕𝜈 − (𝑥 ⋅ 𝑥) ̂𝜕𝜇)

Type Number Scale Factor (Λ)

Translations (𝑝 + 𝑞) = 𝑑 1

Dilations 1 1
𝛼2

Rotations (𝑝 + 𝑞 + 1)(𝑝 + 𝑞 − 1)
2 = (𝑑 + 1)(𝑑 − 1)

2 1

Special Conformal Transformations (𝑝 + 𝑞) = 𝑑 (1 − 2(𝑏 ⋅ 𝑏) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥))2

1.5 The Conformal Algebra in 𝑑 ≥ 3

As always, by taking the commutators of everything with everything else, we derive the algebra, which
is done the same way as in Homework 2. This gives the algebra as:

[�̂�, ̂𝑃𝜇] = i ̂𝑃𝜇

[�̂�, �̂�𝜇] = −i�̂�𝜇

[�̂�𝜇, ̂𝑃𝜈] = 2i(𝑔𝜇𝜈 �̂� − �̂�𝜇𝜈)

[�̂�𝜌, �̂�𝜇𝜈] = i(𝑔𝜌𝜇 �̂�𝜈 − 𝑔𝜌𝜈 �̂�𝜇)

[ ̂𝑃𝜌, �̂�𝜇𝜈] = i(𝑔𝜌𝜇 ̂𝑃𝜈 − 𝑔𝜌𝜈 ̂𝑃𝜇)

[�̂�𝜇𝜈, �̂�𝜌𝜎] = i(𝑔𝜈𝜌 �̂�𝜇𝜎 + 𝑔𝜇𝜎 �̂�𝜈𝜌 − 𝑔𝜇𝜌 �̂�𝜈𝜎 − 𝑔𝜈𝜎 �̂�𝜇𝜌)

(1.10)
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Unsurprisingly, if we get rid of �̂� and �̂�𝜇, this reduces to the Poincaré algebra. For 𝑑 ≥ 3, we have 𝑑
translations, 𝑑 SCTs, 𝑑(𝑑 − 1)/2 rotations, and 1 dilation. Overall, this gives (𝑑 + 2)(𝑑 + 1)/2 generators,
which is exactly the number of generators for an 𝔰𝔬(𝑑 + 2)-type algebra. This isn’t a coincidence: we can
define the alternate generators ̂𝐽𝑚𝑛 by:

̂𝐽𝜇𝜈 = �̂�𝜇𝜈; ̂𝐽−1𝜇 =
̂𝑃𝜇 − �̂�𝜇

2 ; ̂𝐽−10 = �̂�; ̂𝐽0𝜇 =
̂𝑃𝜇 + �̂�𝜇

2 (1.11)

This gives ̂𝐽𝑚𝑛 with 𝑚, 𝑛 = −1, 0, 1, ⋯ , 𝑑 − 1 satisfying the commutation relations:

[ ̂𝐽𝑚𝑛, ̂𝐽𝑟𝑠] = i(𝑔𝑚𝑠 ̂𝐽𝑛𝑟 + 𝑔𝑛𝑟 ̂𝐽𝑚𝑠 − 𝑔𝑚𝑟 ̂𝐽𝑛𝑠 − 𝑔𝑛𝑠 ̂𝐽𝑚𝑟) (1.12)

• For 𝑑-dimensional Euclidean space ℝ𝑑, 0, 𝑔𝑚𝑛 = diag(−1, 1, ⋯ , 1). Then, [ ̂𝐽𝑚𝑛, ̂𝐽𝑟𝑠] is the commuta-
tion relation for 𝔰𝔬(𝑑 + 1, 1).

• For the 𝑑-dimensional Minkowski space ℝ𝑑 − 1, 1, 𝑔𝑚𝑛 = diag(−1, −1, 1, ⋯ , 1). Then, [ ̂𝐽𝑚𝑛, ̂𝐽𝑟𝑠] is the
commutation relation for 𝔰𝔬(𝑑, 2).

Thus, in general for 𝑑 = 𝑝 + 𝑞 ≥ 3, the conformal group of ℝ𝑝, 𝑞 is SO(𝑝 + 1, 𝑞 + 1) .

1.6 Matrix Representations of the Conformal Algebra in 𝑑 ≥ 3

Now, we consider the matrix representations of the algebra acting on fields. For the Poincaré subgroup,
these expressions are already familiar from perturbative QFT. In particular, for a field ફ(𝑥 = 0), the
matrix representation of �̂�𝜇𝜈 acting on ફ(0) is given by:

�̂�𝜇𝜈 ફ(0) = 𝑆𝜇𝜈 ફ(0) (1.13)

Here, 𝑆𝜇𝜈 is the spin operator corresponding to the spin structure of ફ. Similarly, we can denote the
matrix representations of �̂� and �̂�𝜇 at the origin by:

�̂� ફ(0) = Δ̃ ફ(0) (1.14)

�̂�𝜇 ફ(0) = 𝜅𝜇 ફ(0) (1.15)

(𝑆𝜇𝜈, Δ̃, and 𝜅𝜇 continue to follow the commutation relations with each other given in (1.10).) Translating
�̂�𝜇𝜈 away from the origin via ei𝑥𝜎�̂�𝜎 �̂�𝜇𝜈 e−i𝑥𝜎�̂�𝜎 and using the Baker-Campbell-Hausdorff expansion, we
have:

ei𝑥𝜎�̂�𝜎 �̂�𝜇𝜈 e−i𝑥𝜎�̂�𝜎 = �̂�𝜇𝜈 − 𝑥𝜇 ̂𝑃𝜈 + 𝑥𝜈 ̂𝑃𝜇 (1.16)

Similarly, we can translate the dilation and SCT operators away from the origin:

ei𝑥𝜎�̂�𝜎 �̂� e−i𝑥𝜎�̂�𝜎 = �̂� + 𝑥𝜎 ̂𝑃𝜎 (1.17)

ei𝑥𝜎�̂�𝜎 �̂�𝜇 e−i𝑥𝜎�̂�𝜎 = �̂�𝜇 + 2𝑥𝜇�̂� − 2𝑥𝜈�̂�𝜇𝜈 + 2𝑥𝜇(𝑥𝜈 ̂𝑃𝜈) − 𝑥2 ̂𝑃𝜇 (1.18)
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From (1.16), we can derive the expected relations for the actions of the Poincaré elements:

̂𝑃𝜇ફ(𝑥) = −i𝜕𝜇ફ(𝑥) (1.19)

�̂�𝜇𝜈ફ(𝑥) = i(𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇)ફ(𝑥) + 𝑆𝜇𝜈 ફ(𝑥) (1.20)

The same way, we derive the relation for the actions of the dilation and SCT operators:

�̂� ફ(𝑥) = (−i𝑥𝜎𝜕𝜎 + Δ̃)ફ(𝑥) (1.21)

�̂�𝜇ફ(𝑥) = (𝜅𝜇 + 2𝑥𝜇Δ̃ − 𝑥𝜎𝑆𝜇𝜎 − 2i𝑥𝜇𝑥𝜎𝜕𝜎 + i𝑥2𝜕𝜇)ફ(𝑥) (1.22)

From (1.10), we see that Δ̃ commutes with 𝑆𝜇𝜈; from Schur’s Lemma, this tells us that Δ̃ is a multiple
of the identity (i.e., a c-number). Since dilations correspond to a noncompact transformation, this is a
nonunitary operator, and so we have Δ̃ = −iΔ, where Δ is the scaling dimension of ફ(𝑥):

ફ(𝜆𝑥) = 𝜆−Δ ફ(𝑥) (1.23)

From (1.14), we see that the scaling dimension is an eigenvalue of the dilation operator (which is maybe
unsurprising, given what the dilation operator does). The relationship Δ̃ = −iΔ𝟙 further gives the prop-
erty that the matrices 𝜅𝜇 vanish. Applying these two relations to (1.19)–(1.22) gives us the transformation
rules for ફ under the action of the conformal algebra. (In the interests of space, I’ll simply skip rewriting
this.)

2 Correlator Expressions from Conformal Invariance

From conformal symmetry alone, without even writing down a Lagrangian, it already is possible to
derive important properties of any CFT. In particular, we can constrain several properties of 𝑛-point
functions, as well as properties of the dimensions of operators; here, we look at the forms of 2-, 3-, and
4-point correlation functions. In principle, this can be expanded to correlation functions involving more
operators; however, it turns out that higher-order terms can be reduced to products of these, as will be
discussed in §6.1.

2.1 General Two-Point Correlator and the Definitions of Primaries and Descendants

The conformal algebra (1.10) and its matrix representations (1.13)–(1.15) (along with the relations
Δ̃ = −iΔ𝟙 and 𝜅𝜇 = 0) are already enough to substantially constrain the form of expectation values.
In particular, from (1.21) and from rotation and translation invariance, we require that the two-point
function of two generic operators ओ̂𝑖, ओ̂𝑗 depend only on the magnitude of the distance between them:

⟨ओ̂𝑖 ओ̂𝑗⟩ = ⟨0∣T{ओ̂𝑖(𝑥𝑖) ओ̂𝑗(𝑥𝑗)}∣0⟩ = 𝑓(∣𝑥𝑖 − 𝑥𝑗∣) (2.1)

If we further impose that the vacuum be scale invariant (which seems like an eminently reasonable
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assumption), we have:
�̂� |0⟩ = 0 (2.2)

From this, we have ⟨0∣[�̂�, ओ̂]∣0⟩ = 0 for any operator ओ̂. This, of course, includes the product ओ̂𝑖 ओ̂𝑗.

Expanding out the expectation value of the commutator [�̂�, ओ̂𝑖 ओ̂𝑗], we have:

⟨0∣[�̂�, ओ̂𝑖 ओ̂𝑗]∣0⟩ = ⟨0∣[�̂�, ओ̂𝑖]ओ̂𝑗 + ओ̂𝑖[�̂�, ओ̂𝑗]∣0⟩ = 0

(𝑥𝜇
𝑖 𝜕𝜇𝑖 + Δ𝑖 + 𝑥𝜇

𝑗 𝜕𝜇𝑗 + Δ𝑗) ⟨0∣ओ̂𝑖 ओ̂𝑗∣0⟩ = 0
(2.3)

The solution to this gives a power law expression, up to a multiplicative constant k ∈ ℝ:

⟨ओ̂𝑖 ओ̂𝑗⟩ = k

∣𝑥𝑖 − 𝑥𝑗∣
Δ𝑖 + Δ𝑗

(2.4)

In addition to this relationship, derived purely from the action of �̂� on generic operators, we also note
that �̂�𝜇 is a sort of lowering operator for dimension:

�̂�{�̂�𝜇ओ̂} = ([�̂�, �̂�𝜇] + �̂�𝜇�̂�) ओ̂ = (−i�̂�𝜇 + iΔ�̂�𝜇) ओ̂ = i(Δ − 1)�̂�𝜇ओ̂ (2.5)

As a result, there must be some operator ̂प such that �̂�𝜇 lowers ̂प to zero:

�̂�𝜇 ̂प = 0 (2.6)

This is our first definition of a primary operator of dimension Δ. A different definition involving the
Jacobian (1.2) is that ̂प, with spin corresponding to the irreducible representation (irrep) ℛ of SO(𝑑) (as
before, implemented by 𝜌𝑎

𝑏 ∈ ℛ{SO(𝑑)}), transforms for local conformal transformations as:

̂प(𝑥) ↦
𝜌𝑎

𝑏 ((𝑚𝜇
𝜈 )−1)

ΛΔ/2
̂प(𝑥′) (2.7)

(Here, as before, 𝑚𝜇
𝜈 ∈ SO(𝑑).) In the case that (2.7) is only satisfied for global conformal transformations,

̂प is defined as a quasi-primary operator. (Operators that are neither primary nor quasi-primary are called
secondary operators.)

Analogously to how the SCT operator �̂�𝜇 acts as a lowering operator for dimension, the momentum
operator ̂𝑃𝜇 acts as a raising operator for dimension:

�̂�{ ̂𝑃𝜇ओ̂} = ([�̂�, ̂𝑃𝜇] + ̂𝑃𝜇�̂�)ओ̂ = (i ̂𝑃𝜇 + iΔ ̂𝑃𝜇)ओ̂ = i(Δ + 1) ̂𝑃𝜇ओ̂ (2.8)

From the raising operator properties of the momentum operator, we can operate on a primary operator
̂प with ̂𝑃𝜇 (ad infinitum) to get the level 𝑁 ≥ 1 descendant operators ̂𝑃𝜇1

⋯ ̂𝑃𝜇𝑁
̂प of dimension Δ + 𝑁 .
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The set of ̂प along with all of its descendants is defined as a conformal family:

C(प) ≔ { ̂प, ̂𝑃𝜇1
̂प, ⋯ , ̂𝑃𝜇1

⋯ ̂𝑃𝜇𝑁
̂प} (2.9)

This is reminiscent of how we constructed irreps of SU(2) from the highest-weight state; here, the only
difference is that we’re constructing representations of the conformal group (obviously) and that we’re
starting instead from the lowest-weight state. The fact that ̂𝑃𝜇 and �̂�𝜇 act as raising and lowering
operators for dimension gives us additional structure, which we discuss in §3.

2.2 Primary Field Two-Point Correlators

Primary fields and operators have stronger constraints than general operators, which similarly even more
strongly constrain the form of expectation values. (In deriving these, we follow [2–4, 9, 12].) For a unitary
transformation ̂𝑈 generated by a transformation, we require the 𝑛-point function of the product of 𝑛
primary operators satisfy:

⟨ ̂प(𝑥1) ⋯ ̂प(𝑥𝑛)⟩ = ⟨( ̂𝑈 ̂प(𝑥1) ̂𝑈−1) ⋯ ( ̂𝑈 ̂प(𝑥𝑛) ̂𝑈−1)⟩

= ℛ1{(𝑚1
𝜇
𝜈 )−1}(Λ(𝑥′

1))Δ1 ⋯ ℛ𝑛{(𝑚𝑛
𝜇
𝜈 )−1}(Λ(𝑥′

1))Δ𝑛 ⟨ ̂प(𝑥′
1) ⋯ ̂प(𝑥′

𝑛)⟩
(2.10)

In addition to this, for conformal transformations specifically, we have the relationship:

(𝑥𝑖 − 𝑥𝑗)
2 = (𝑥′

𝑖 − 𝑥′
𝑗)

2

Λ(𝑥′
𝑖)Λ(𝑥′

𝑗)
(2.11)

Applying (2.10) and (2.11) to (2.4) (without the spin representation factors), we have the two-point
function of scalar (spinless) primaries as:

⟨ ̂प𝑖(𝑥𝑖) ̂प𝑗(𝑥𝑗)⟩ =
k 𝛿Δ𝑖Δ𝑗

∣𝑥𝑖 − 𝑥𝑗∣
2Δ (2.12)

The two-point function for primary operators with spin is slightly more complicated to derive; here, we
follow [3, 4]. By relating (2.10) to (2.4) (with the spin representation factors), we can extract a general
expression for the two-point function in terms of a two-point function for two arbitrary but fixed points.
From this, examining the stabiliser group of SO(𝑑 + 1, 1) for those specific points (i.e., the subgroup of
SO(𝑑 + 1, 1) that leaves two specific points invariant), and further examining the requirement of invariance
under the sphere inversion ̂ℐ defined in (1.7), gives us an expression for the two-point function. For
the spin-𝑠𝑖 and spin-𝑠𝑗 primary operators ̂प𝜇1⋯𝜇𝑠𝑖 and ̂प𝜇1⋯𝜇𝑠𝑗 respectively (in the symmetric traceless
representation), this procedure gives:

⟨ ̂प𝜇1⋯𝜇𝑠𝑖
𝑖 (𝑥𝑖) ̂प𝜇1⋯𝜇𝑠𝑗

𝑗 (𝑥𝑗)⟩ =
k 𝛿Δ𝑖Δ𝑗

𝛿𝑠𝑖𝑠𝑗

∣𝑥𝑖 − 𝑥𝑗∣
2(Δ − 𝑠) (𝜕(𝜈1

̂ℐ(𝜇1 ⋯ 𝜕 𝜈𝑠) ̂ℐ𝜇𝑠) −
𝑠

∏
𝑛, 𝑚 = 1

𝛿𝜇𝑛⋯𝜇𝑚
) (2.13)

(Here, the parentheses around the indices represent symmetrisation over those indices. Also, as always,
we leave the full derivations for the unabridged notes.)
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2.3 Primary Field Three-Point and Four-Point Correlators

Meanwhile, from Poincaré and dilation invariance, the three point function of spinless primary operators
must have the general form:

⟨ ̂प𝑖(𝑥𝑖) ̂प𝑗(𝑥𝑗) ̂प𝑘(𝑥𝑘)⟩ = ∑
𝑎, 𝑏, 𝑐

𝑎 + 𝑏 + 𝑐 = Δ𝑖 + Δ𝑗 + Δ𝑘

𝑓𝑎𝑏𝑐

∣𝑥𝑖 − 𝑥𝑗∣
𝑎∣𝑥𝑗 − 𝑥𝑘∣𝑏|𝑥𝑘 − 𝑥𝑖|

𝑐 (2.14)

(Here, {𝑓𝑎𝑏𝑐} ∈ ℝ.) Imposing invariance under SCTs, using the same series of steps as for (2.12), further
constrains 𝑎, 𝑏, and 𝑐:

𝑎 = Δ𝑖 + Δ𝑗 − Δ𝑘, 𝑏 = Δ𝑗 + Δ𝑘 − Δ𝑖, 𝑐 = Δ𝑘 + Δ𝑖 − Δ𝑗 (2.15)

Applying this to (2.14) gives the final form of the three-point correlator of spinless primary operators as:

⟨ ̂प𝑖(𝑥𝑖) ̂प𝑗(𝑥𝑗) ̂प𝑘(𝑥𝑘)⟩ = 𝑓𝑖𝑗𝑘

∣𝑥𝑖 − 𝑥𝑗∣
Δ𝑖 + Δ𝑗 − Δ𝑘 ∣𝑥𝑗 − 𝑥𝑘∣Δ𝑗 + Δ𝑘 − Δ𝑖 |𝑥𝑘 − 𝑥𝑖|

Δ𝑘 + Δ𝑖 − Δ𝑗
(2.16)

(As before, {𝑓𝑖𝑗𝑘} ∈ ℝ.) To generalise this to the three-point functions of spin-𝑠 primaries, we follow
[12–14]3. Starting with a spin-𝑠 primary operator ̂प𝜇1⋯𝜇𝑠 , we take the product of this with a set of
auxiliary null polarisation vectors {𝜁𝜇𝑖

} (with 𝜁2 = 0). From these, this technique looks for Poincaré-
invariant structures with fixed weight under the dilation operator �̂� and which are invariant under sphere
inversion ̂ℐ defined in (1.7). Notably, by examining the product ̂प𝜇1⋯𝜇𝑠𝜁𝜇1

⋯ 𝜁𝜇𝑖
, we convert the problem

of determining the three-point function of primaries with spin 𝑠 and dimension Δ into a problem of
determining the three-point function of scalar primaries of dimension Δ − 𝑠 (which is already given by
(2.16)), along with determining the specific functions that are Poincaré- and sphere-inversion invariant.

Using this technique, the three-point function for the spin-𝑠𝑖, spin-𝑠𝑗, and spin-𝑠𝑘 primary operators in
the symmetric traceless representation ̂प𝜇1⋯𝜇𝑠𝑖 , ̂प𝜇1⋯𝜇𝑠𝑗 , and ̂प𝜇1⋯𝜇𝑠𝑘 respectively is given by [12, 14]:

⟨ ̂प𝜇1⋯𝜇𝑠𝑖
𝑖 (𝑥𝑖) ̂प𝜇1⋯𝜇𝑠𝑗

𝑗 (𝑥𝑗) ̂प𝜇1⋯𝜇𝑠𝑘
𝑘 (𝑥𝑘)⟩ =

𝐺(𝑠𝑖, 𝑠𝑗, 𝑠𝑘)(𝑃𝑎, 𝑄𝑎, 𝑆𝑎)
∣𝑥𝑖 − 𝑥𝑗∣

𝛿𝑖 + 𝛿𝑗 − 𝛿𝑘 ∣𝑥𝑗 − 𝑥𝑘∣𝛿𝑗 + 𝛿𝑘 − 𝛿𝑖 |𝑥𝑘 − 𝑥𝑖|
𝛿𝑘 + 𝛿𝑖 − 𝛿𝑗

(2.17)

Here, 𝛿𝑎 = Δ𝑎 − 𝑠𝑎, 𝑎 ∈ {𝑖, 𝑗, 𝑘} (where 𝑖, 𝑗, and 𝑘 correspond to the labelling of the primaries), and
𝐺(𝑠𝑖, 𝑠𝑗, 𝑠𝑘) is a polynomial in (𝑃𝑎, 𝑄𝑎, 𝑆𝑎) that is at most linear in 𝑆𝑎 and degree-2𝑠𝑎 homogenous in 𝜁𝑎,

3[3, 4, 15] provide a different approach, using the embedding formalism. However, both approaches are compatible, as
mentioned in both sets of references. I personally found the approach in [12–14] more quickly / easily digestible.
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and 𝑃𝑎, 𝑄𝑎, and 𝑆𝑎 are the Poincaré- and sphere-inversion-invariant structures given by:

𝑃𝑎 = 𝜁𝑏 (𝑥𝑏 − 𝑥𝑐)𝜇𝜎𝜇

|𝑥𝑎 − 𝑥𝑏|2
𝜁𝑐

𝑄𝑎 = 𝜁𝑎 (𝑥𝑎 − 𝑥𝑏)𝜇𝜎𝜇

|𝑥𝑎 − 𝑥𝑏|2
((𝑥𝑏 − 𝑥𝑐)𝜈𝜎𝜈)(𝑥𝑐 − 𝑥𝑎)𝜌𝜎𝜌

|𝑥𝑐 − 𝑥𝑎|2
𝜁𝑎

𝑆𝑖 = i
𝜁𝑘(𝑥𝑘 − 𝑥𝑖)

𝜇𝜎𝜇(𝑥𝑖 − 𝑥𝑗)
𝜈𝜎𝜈 𝜁𝑗

∣𝑥𝑖 − 𝑥𝑗∣∣𝑥𝑗 − 𝑥𝑘∣|𝑥𝑘 − 𝑥𝑖|
𝜁𝑗(𝑥𝑗 − 𝑥𝑘)𝜌𝜎𝜌 𝜁𝑘

∣𝑥𝑗 − 𝑥𝑘∣2

𝑆𝑗 = i
𝜁𝑖(𝑥𝑖 − 𝑥𝑗)

𝜇𝜎𝜇(𝑥𝑗 − 𝑥𝑘)𝜈𝜎𝜈 𝜁𝑘
∣𝑥𝑖 − 𝑥𝑗∣∣𝑥𝑗 − 𝑥𝑘∣|𝑥𝑘 − 𝑥𝑖|

𝜁𝑘(𝑥𝑘 − 𝑥𝑖)
𝜌𝜎𝜌 𝜁𝑖

|𝑥𝑘 − 𝑥𝑖|
2

𝑆𝑘 = i
𝜁𝑗(𝑥𝑗 − 𝑥𝑘)𝜇𝜎𝜇(𝑥𝑘 − 𝑥𝑖)

𝜈𝜎𝜈 𝜁𝑖
∣𝑥𝑖 − 𝑥𝑗∣∣𝑥𝑗 − 𝑥𝑘∣|𝑥𝑘 − 𝑥𝑖|

𝜁𝑖(𝑥𝑖 − 𝑥𝑗)
𝜌𝜎𝜌 𝜁𝑗

∣𝑥𝑖 − 𝑥𝑗∣
2

(2.18)

Before continuing, we note that this entire technique involves contracting the primaries with the cor-
responding number of null polarisation vectors. We can retrieve the original primaries via the Thomas
derivative, defined in 𝜁-space [14–18]:

𝐷𝜇
𝜁 = (𝑑 − 2

2 )𝜕𝜁𝜇
+ 𝜁𝜈𝜕𝜁𝜈

𝜕𝜁𝜇
−

𝜁𝜇(𝜕𝜁𝜈
𝜕𝜁𝜈)

2 (2.19)

From this, the primary ̂प𝜇1⋯𝜇𝑠𝑖
𝑖 (𝑥𝑖) can be recovered from the contraction ̂प𝜇1⋯𝜇𝑠𝑖

𝑖 (𝑥𝑖)𝜁𝜇1
⋯ 𝜁𝜇𝑠

by repeatedly
applying the Thomas derivative:

̂प𝜇1⋯𝜇𝑠𝑖
𝑖 (𝑥𝑖) = 𝐷𝜇1

𝜁 ⋯ 𝐷𝜇𝑠
𝜁 [ ̂प𝜇1⋯𝜇𝑠𝑖

𝑖 (𝑥𝑖)𝜁𝜇1
⋯ 𝜁𝜇𝑠

] (2.20)

For four-point functions, conformal invariance is less constraining. In general, translation and rotation
invariance imposes that functions can only depend on the absolute values of distances (as in the two-point
and three-point functions) and their ratios. Under SCTs, the distance separating two points transforms
as:

∣𝑥′
𝑖 − 𝑥′

𝑗∣ = ∣𝑥𝑖 − 𝑥𝑗∣
√1 − 2(𝑏 ⋅ 𝑥𝑖) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥)√1 − 2(𝑏 ⋅ 𝑥𝑗) + (𝑏 ⋅ 𝑏)(𝑥 ⋅ 𝑥)

(2.21)

For two-point and three-point functions, no functions of ratios can emerge, thus constraining these to be of
the forms already derived. For four-point functions, however, the cross-ratios (also known as anharmonic
ratios) are also invariant:

|𝑥1 − 𝑥2||𝑥3 − 𝑥4|
|𝑥1 − 𝑥3||𝑥2 − 𝑥4| ≕ √𝑢 ; |𝑥1 − 𝑥2||𝑥3 − 𝑥4|

|𝑥2 − 𝑥3||𝑥1 − 𝑥4| ≕ √𝑣 (2.22)

In terms of the 𝑢 and 𝑣 defined this way, the general expression of the four-point correlator of spinless
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primary operator is given by:

⟨ ̂प𝑖(𝑥𝑖) ̂प𝑗(𝑥𝑗) ̂प𝑘(𝑥𝑘) ̂प𝑚(𝑥𝑚)⟩ = ∏
𝑖 < 𝑗

𝑔(𝑢, 𝑣)
∣𝑥𝑖 − 𝑥𝑗∣

−(Δ𝑖 + Δ𝑗) + ∑4
𝑛 = 1 Δ𝑛/3

(2.23)

Here, 𝑔(𝑢, 𝑣) is a generic function of 𝑢 and 𝑣. (I haven’t found anywhere an expression for the four-point
function of operators with spin, and the discussion and result of [19] seems to imply that a closed-form
expression is yet to be derived.) We note that this is invariant under permutations of the points the
operators are evaluated at; this gives rise to the invariance conditions on 𝑔(𝑢, 𝑣) given by:

𝑔(𝑢, 𝑣) = 𝑔(𝑢
𝑣 , 1

𝑣), 𝑔(𝑢, 𝑣) = (𝑢
𝑣 )

Δप 𝑔(𝑣, 𝑢) (2.24)

Although in principle we can use conformal invariance to constrain the form of correlation functions
with higher numbers of operators, the presence of the cross-ratios means that these expressions are far
less constraining, and thus far less useful. We can instead use the operator product expansion (OPE) to
reduce those correlation functions to sums of one of the types of functions given in this section. The OPE,
the constraints on it due to conformal invariance, and the technique of reducing correlation functions are
discussed in §6.

3 Radial Quantisation

3.1 State-Operator Correspondence and Radial Quantisation

As was shown in §2.1, the momentum operator ̂𝑃𝜇 and SCT operator �̂�𝜇 act as sort of raising and
lowering operators for dimension. This strongly suggests that we can make a correspondence between
our operators and states in a vector space. Making this correspondence requires a foliation [2–4] of
spacetime; i.e., a choice of how we subdivide 𝑑-dimensional spacetime into (𝑑 − 1)-dimensional regions4.
This is something we already did all the way back in quantum mechanics: for a 𝑑-dimensional system
in nonrelativistic quantum mechanics (including time in 𝑑), the Hilbert space at a given time 𝑡 is our
foliation. The eigenstates of the Hamiltonian defined the states in Hilbert space, and the Hamiltonian
then served as the time translation operator moving between folations.

Our intuitions from quantum mechanics directly map over to the foliations of conformally invariant
systems. In quantum mechanics, the eigenstates of the Hamiltonian defined the Hilbert spaces, corre-
sponding to specific time slices, and the Hamiltonian then moved between different foliations. Similarly,
in conformally invariant systems, the eigenstates of the dilation operator (i.e., operators with dimension
Δ) define the space we live in, corresponding to specific time slices, and the dilation operator then moves
between them.

In this foliation, we divide ℝ𝑑 using (𝑑 − 1)-dimensional spheres 𝑆𝑑−1 of different radii, all centred at the

4A small note after finishing this report: looking back on it, I really enjoyed using the word “foliation” in this section.
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origin, with the metric given by:

d𝑠2 = d𝑟2 + 𝑟2 dn⃗2 = e2ત (dત2 + dn⃗2) (3.1)

In the second equality, we define a new coordinate ત ≔ ln 𝑟, which takes the place of the time coordinate
in this foliation. The dilation operator then corresponds to changing the radius of the sphere, as shown
in Figure 2L, taken from [3, 4]. Specifically, we define the analogue of the unitary time evolution operator
by:

̂𝑈ત ≔ ei�̂�ત (3.2)

As a result, we can identify primary and descendant operators with states, labelled by dimension Δ and
spin 𝑠 (corresponding to the irreducible representation ℛ of SO(𝑑)); with the action of the unitary time
evolution analogue given correspondingly:

�̂� |Δ, 𝑠⟩ = iΔ |Δ, 𝑠⟩ , 𝑀𝜇𝜈 |Δ, 𝑠⟩ = (Σ𝜇𝜈) |Δ, 𝑠⟩ , ̂𝑈ત = ei�̂�ત |Δ⟩ = e−Δત |Δ⟩ = 𝑟−Δ |Δ⟩ (3.3)

This is the state-operator correspondence. (This is in contrast with states in Fock space in perturbative
field theory, which correspond to specific particles of given spin, charge, flavour, and four-momentum.)
From here on, we denote the Hilbert space at a given radius 𝑟 as 𝒱𝑟. (The reason for this notation will
be clear very shortly.) In terms of the variables defined in (3.1), the radial operators are defined in terms
of the original operators by:

ओ̂rad(ત, n⃗) ≔ eΔત ओ̂init(𝑥 = eત n⃗) (3.4)

Figure 3: Left: A foliation of 𝑑-dimensional spacetime into spheres of dimension (𝑑 − 1), on which
the states live. The dilation operator moves between spheres of different radii, corresponding to moving
forward in time. Taken from [3, 4].

Right: Insertion of a generic Nötherian charge �̂� on the surface of the sphere 𝑆𝑑 − 1 of radius 𝑟.

In addition to the eigenstates of �̂�, we saw in §2.1 that ̂𝑃𝜇 and �̂�𝜇 served as raising and lowering operators
for conformal dimension. These served as the motivation for defining the primaries as the highest-weight
states via (2.6), and of the conformal family (2.9) by repeatedly applying ̂𝑃𝜇. This directly resembled the
construction of states of various spin projection in QM (the classic introductory example being the spin-
half 𝑧-basis |±𝑧⟩). The construction of the conformal family strongly suggests that a similar construction
can serve as the basis for the Hilbert space in our given foliation.
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In a given theory, we may have several primary operators and thus several conformal families; however,
the set of all conformal families taken together does indeed form the basis of the foliation [20–22]. These
families taken together defines the generalised Verma module 𝒱:

𝒱 = ⨁
̂प
C( ̂प) (3.5)

Each individual conformal family is a specific representation of the conformal group; then, 𝒱 as a whole is
the space that the operators (and thus the states) we’re considering in our theory live on. The eigenbasis
of 𝒱 is the set of all operators in all of the conformal families at a given radius 𝑟, defined via (2.9). The
basis vectors for the generalised Verma module are the conformal multiplets, denoted by {|फ𝑖⟩}:

B(𝒱) = {|फ𝑖⟩}; 𝒱 = ⨁
̂प
C( ̂प) = span({|फ𝑖⟩}) (3.6)

In our theory, we may have several different primaries; however, we can use the definitions (3.5) and (3.6)
to express {|फ𝑖⟩} explicitly. For a given primary operator ̂प, we can define Π̂प as the projector onto the
conformal family of that specific ̂प, with the sum of all such projectors summing to 𝟙:

Π̂प ≔ ∑
𝑖, 𝑗

∣𝑃𝜇𝑖
प⟩ ⟨𝑃𝜇𝑖

प∣𝑃𝜇𝑗
प⟩ ⟨𝑃𝜇𝑗

प∣ , 𝟙 = ∑
प

Π̂प = ∑
प

∑
𝑖, 𝑗

∣𝑃𝜇𝑖
प⟩ ⟨𝑃𝜇𝑖

प∣𝑃𝜇𝑗
प⟩ ⟨𝑃𝜇𝑗

प∣ (3.7)

From the basis {|फ𝑖⟩} given in (3.6), our intuitions from QM follow as normal. For instance, an insertion
of the identity is given by the path integral taken over the fields फ𝑖((𝜕𝐵)𝑟) at the surface 𝜕𝐵 of the
sphere at radius 𝑟, and the eigendecomposition of a generic operator ओ̂ given correspondingly:

𝟙 = ∫
फ𝑖((𝜕𝐵)𝑟)

Dफ𝑖 |फ𝑖⟩⟨फ𝑖| , ∣ओ⟩ = ∫
फ𝑖((𝜕𝐵)𝑟)

Dफ𝑖 |फ𝑖⟩ ⟨फ𝑖∣ओ⟩ (3.8)

As in QM, where we express a given state in terms of the spectrum and use that expression to perform
calculations, (3.8) allows us to perform calculations on generic states ∣ओ⟩ by decomposing them into the
spectrum we have on hand for our theory. As an example, a generic operator |ञ⟩ at a point 𝑦 away from
the radius 𝑟 that we’re living on automatically decomposes into a linear combination of |फ𝑖⟩s:

|ञ(𝑦)⟩ = ञ̂ |0⟩ = e(𝑦 − 𝑟)𝜇�̂�𝜇 ञ̂(𝑦) e−(𝑦 − 𝑟)𝜇�̂�𝜇 = e(𝑦 − 𝑟)𝜇�̂�𝜇 |ञ⟩ =
∞

∑
𝑛 = 0

((𝑦 − 𝑟)𝜇 ̂𝑃𝜇)𝑛

𝑛! |ञ⟩ = ∑
𝑖

𝑐𝑖 |फ𝑖⟩ (3.9)

In the last expression, we used (2.9) and (3.5)–(3.6) to identify this sum as the sum over the generalised
Verma module, the basis for which we already defined by |फ𝑖⟩; the 𝑐𝑖s are just the complex coefficients.

Analogously to (3.8), we can insert a Nötherian charge �̂�𝜖 onto the surface (𝜕𝐵)𝑟, depicted in Figure 2R.
Here, �̂�𝜖 generates the infinitesimal transformation 𝑥𝜇 ↦ 𝑥𝜇 + 𝜖𝜇. Combining the individual transforma-
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tions (1.19)–(1.22) and inserting this on the sphere of radius 𝑟 with eigenbasis {|फ𝑖⟩}, we have:

�̂�𝜖(∑
𝑖

𝑐𝑖 |फ𝑖⟩) = ∑
𝑖

𝑐𝑖 ∫
फ𝑖((𝜕𝐵)𝑟)

Dफ𝑖 (𝜖 ⋅ 𝜕 + Δ(𝜕 ⋅ 𝜖)
𝑑 − (𝜕𝜇𝜖𝜈)𝑆𝜇𝜈

2 ) |फ𝑖⟩ (3.10)

The vacuum state |0⟩ is given by taking the path integral over the interior of the sphere at radius ર = 𝑟,
with no operator insertions and with the boundary condition Δ(ર, n⃗) = Δ(𝑟, n⃗), as shown in Figure 3L,
taken from [3, 4]. The coefficients of this in terms of the eigenbasis decomposition at radius 𝑟 are given
by:

⟨फ𝑖|0⟩ = ∫
फ𝑖((𝜕𝐵)ર), ર≤ 𝑟

Dफ𝑖 e−𝑆[फ𝑖] (3.11)

Generic operators ओ̂ applied to the vacuum (for instance, when constructing the asymptotic in-state)
then correspond to inserting ओ̂ into the path integral taken over the interior of the sphere, as shown in
Figure 3R. The coefficients of this in terms of the eigenbasis decomposition at radius 𝑟 are given by:

⟨फ𝑖∣ओ̂∣0⟩ = ∫
फ𝑖((𝜕𝐵)ર), ર≤ 𝑟

Dफ𝑖 ओ̂ e−𝑆[फ𝑖] (3.12)

Figure 4: Left: The vacuum corresponds to taking the path integral of the interior of the sphere at
radius 𝑟, with no operator insertions. Taken from [3, 4].

Right: The state ओ̂ |0⟩ corresponding to the application of the operator ओ̂ to |0⟩ is given by inserting ओ̂
into the interior of the sphere at radius 𝑟 and taking the path integral.

The vacuum is invariant under the symmetries of the theory (obviously), so applying Nötherian charges
�̂� to the vacuum gives zero. This corresponds to inserting �̂� either on the interior of the sphere (as in
(3.10)) or in its interior (as in (3.12)), as depicted in Figure 5. We can see that these both vanish, since
the charge doesn’t change the topology of the surface of the sphere, and we can shrink this surface to
zero inside the sphere.
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Figure 5: The vacuum is invariant under symmetry transformations, and thus applying Nöther charges
�̂� either inside the sphere on on the surface of the sphere gives 0.

3.2 BPZ Conjugation and Radial-Ordered Products

In order to define an inner product, we must also carefully define the duals. Here, we follow [3, 4].
Since we have foliated spacetime differently from quantum mechanics and perturbative QFT, Hermitian
conjugation at any arbitrary point in ℝ × 𝑆𝑑 − 1 is not guaranteed to act in precisely the same way as it
would in Hilbert or Fock space. However, we can define a Hermitian conjugation operation at the radial
origin to match with our previous experience with Hermitian conjugation.

As such, we start with ओ̂†(0) defined at the origin in such a way that ओ̂†(0) automatically corresponds
to the Hermitian conjugation action we’re familiar with from QM and QFT. Our goal is, of course, to
define Hermitian conjugation for arbitrary radii such that Hermitian conjugation works the way we’re
familiar with; the conjugate ओ̂†(0) at the origin will serve as the reference point operator in order to
define conjugation in the way that corresponds to our previous intuitions5. Following [3, 4], we can then
define a “non-radial Hermitian conjugate” (NRHC) at arbitrary radii, labelled ओ̂†NR :

ओ̂†NR(𝑥) ≔ e𝑥⋅�̂� ओ̂†(0) e−𝑥⋅�̂� (3.13)

In terms of the NRHC, we can always find a conformally-invariant two-point function ⟨ओ̂𝑎†NR(𝑥2) ओ̂𝑏(𝑥1)⟩
of ओ̂ with itself at two different points in spacetime 𝑥1 and 𝑥2

6. We can express this (for any operator,
not just primaries), as:

⟨ओ̂𝑎†NR(𝑥2) ओ̂𝑏(𝑥1)⟩ =
𝑐ओ̂ 𝑗𝑎𝑏(|𝑥1 − 𝑥2|)

|𝑥1 − 𝑥2|2Δओ̂
(3.14)

(Here, 𝑎 and 𝑏 are spin indices, with 𝑐ओ̂ ∈ ℝ+ as a positive constant that depends on each operator.)
From this, we denote the inverse tensor of 𝑗𝑎𝑏(𝑥) as 𝑗𝑏𝑎(𝑥) = (𝑗𝑎𝑏(𝑥))∗, along with its normalisation:

𝑗𝑏𝑎(𝑥) = (𝑗𝑎𝑏(𝑥))∗, ∑
𝑐

(𝑗𝑐𝑎(𝑥))∗𝑗𝑐𝑏(𝑥) = 𝛿𝑏
𝑎 (3.15)

5I’m especially grateful to Akshay for this clarification in particular. Any mischaracterisation here is due to my mangling
the explanation (although hopefully not my misunderstanding what’s going on).

6Quoting [3, 4] directly (since I can’t express it any more succinctly), “This must be the case because ⟨0|ओ̂†ओ̂|0⟩ is the
norm of a state, so it had better be zero.”
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Then, in terms of 𝑗𝑎𝑏, we define the Hermitian conjugate of ओ̂ by:

ओ̂𝑎†BPZ(𝑥) = 𝑗𝑎𝑏(𝑥)
𝑥2Δओ̂

ओ̂𝑏†NR( 𝑥
𝑥2 ) (3.16)

This is referred to as Belavin-Polyakov-Zamolodchikov (BPZ) conjugation [23], and the subscript BPZ
will be kept for the rest of this paper. Using the BPZ conjugation, we can finally define the dual state
⟨ओ𝑎∣ ∈ 𝒱⋆

𝑟 to the state ∣ओ𝑎⟩ ∈ 𝒱𝑟 (where 𝒱𝑟 is the generalised Verma module at the radius 𝑟, and 𝒱⋆
𝑟 is

the dual space to 𝒱𝑟):

⟨ओ𝑎∣ = (ओ̂𝑎(0) |0⟩)
†BPZ

= lim
𝑥 → 0

(ओ̂𝑎(𝑥) |0⟩)
†BPZ

= lim
𝑥 → 0

⟨0| ओ̂𝑎†BPZ(𝑥) = lim
𝑦 → ∞

( 𝑥
𝑥2 )

2Δ
𝑗𝑎𝑏( 𝑥

𝑥2 ) ⟨0| ओ̂𝑏†NR( 𝑥
𝑥2 )

(3.17)

(Here, ⟨ओ𝑎∣ has a lowered index, since it transforms according to the dual SO(𝑑) representation of ∣ओ𝑎⟩.)
Defining the states and their duals in this way does, finally, give us a foliation of spacetime that allows us
to carry over our understanding from quantum mechanics and perturbative QFT. For instance, we have
the inner product ⟨ओ𝑎∣ओ𝑎⟩ given by:

⟨ओ𝑎∣ओ𝑎⟩ = lim
𝑥 → ∞

( 𝑥
𝑥2 )

2Δ
𝑗𝑐𝑎( 𝑥

𝑥2 ) ⟨0∣ओ̂𝑎†NR( 𝑥
𝑥2 )ओ̂𝑏(0)∣0⟩

= lim
𝑥 → ∞

( 𝑥
𝑥2 )

2Δ
𝑗𝑐𝑎( 𝑥

𝑥2 )(𝑐ओ̂
𝑗𝑎𝑏(𝑥/𝑥2)
(𝑥/𝑥2)2Δ ) = 𝑐ओ̂ 𝛿𝑏

𝑐

(3.18)

By defining BPZ conjugation and the dual states, we can now extract many more fundamental properties
of CFTs. Taking the BPZ conjugate of the general expression �̂�𝜖 of Nötherian charges given in (3.10),
we have �̂�†BPZ𝜖 given by:

�̂�†BPZ𝜖 = −�̂� ̂ℐ(𝜖𝜈)∗ ̂ℐ−1 (3.19)

Breaking this down into the BPZ conjugates of the individual elements of the algebra given in (1.10),
we note that �̂� is BPZ-Hermitian, since the eigenbases of the foliation Hilbert spaces are the eigenstates
of �̂�. Meanwhile, for �̂�𝜇𝜈, ̂𝑃𝜇. and �̂�𝜇, we note that the expression ̂ℐ(𝜖𝜈)∗ ̂ℐ−1 is defined by how it acts
on a general function 𝑓(𝑥). (Here, ̂ℐ is, as before the sphere inversion operator defined by (1.7).) The
composite action of ̂ℐ on functions is defined by ( ̂ℐ𝑓)(𝑥) = 𝑓( ̂ℐ(𝑥)). This gives �̂�†BPZ𝜇𝜈 , ̂𝑃 †BPZ𝜇 , and �̂�†BPZ𝜇 ,
which we show below. All in all, the BPZ conjugates of the individual elements of the algebra given in
(1.10) are:

�̂�†BPZ = �̂�, �̂�†BPZ𝜇𝜈 = −�̂�𝜇𝜈, ̂𝑃 †BPZ𝜇 = ̂ℐ ̂𝑃𝜇 ̂ℐ−1 = ̂ℐ ̂𝑃𝜇 ̂ℐ = �̂�𝜇, �̂�†BPZ𝜇 = ̂𝑃𝜇 (3.20)

Finally, as in QM, perturbative QFT, and quantum statistical mechanics; we need to define an operator
product ordering method to deal with operators defined at two different points in the foliation. In QM,
QFT, and quantum stat mech; this was the time-ordering product, which helped us enforce causality by
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putting the earlier operators before the later ones. Since we define the foliation in terms of spheres with
larger radii corresponding to later times, the corresponding operation is the radial-ordered product:

R{अ̂(𝑧1) ̂ब(𝑧2)} =
⎧{
⎨{⎩

अ̂(𝑧1) ̂ब(𝑧2), |𝑧1| > |𝑧2|
̂ब(𝑧2) अ̂(𝑧1), |𝑧2| > |𝑧1|

(3.21)

With the radial ordering defined in this way, we can then define the contour integral of a commutator
[अ̂, ̂ब] of two operators अ̂ and ̂ब:

∮ d𝑑𝑧1 [अ̂(𝑧1), ̂ब(𝑧2)] = ∮
|𝑧1| > |𝑧2|

d𝑑𝑧1 अ̂(𝑧1) ̂ब(𝑧2) − ∮
|𝑧1| > |𝑧2|

d𝑑𝑧1 ̂ब(𝑧2) अ̂(𝑧1)

= ∮
C(𝑧2)

d𝑑𝑧1 R{अ̂(𝑧1) ̂ब(𝑧2)}
(3.22)

Here, C(𝑧2) is the contour around 𝑧2 that corresponds to the difference between the |𝑧1| > |𝑧2| and
|𝑧2| > |𝑧1| contours, as depicted in Figure 6 (modified from [1]).

Figure 6: Contour C(𝑧2) of integration for the expression of a commutator. Modified from [1].

3.3 Dimension Bounds from Unitarity Properties

Using the BPZ conjugation and the dual states defined in §3.2, we can calculate further important
properties of 𝑛-point correlators. In particular, we can extract bounds on various properties from the
requirement on unitarity, appropriately known as the unitarity bounds.

For a unitary CFT, we require that the norm of states be non-negative; i.e., we have ⟨𝜓|𝜓⟩ ≥ 0. (Non-
unitary CFTs also exist; they’re apparently pretty common in condensed matter [2].) A given in-state |𝜓⟩
is generated by a bunch of operators acting on the vacuum at 𝑡 < 0 (where this process corresponds to
operator insertion in the interior of the sphere, as discussed in §3.1):

|𝜓⟩ = ओ̂(−𝑡𝑖) ⋯ ओ̂(−𝑡𝑛) |0⟩ (3.23)
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(Here, 𝑡𝑖 > 𝑡𝑛.) The corresponding out-state is given by:

⟨𝜓| = (ओ̂(−𝑡𝑖) ⋯ ओ̂(−𝑡𝑛) |0⟩)
†BPZ

= ⟨0| ओ̂†BPZ(𝑡𝑛) ⋯ ओ̂†BPZ(𝑡𝑖) (3.24)

Thus, the condition ⟨𝜓|𝜓⟩ ≥ 0 is equivalent to requiring that the path integral of a time-inversion-invariant
product of operators be non-negative, referred to as reflection positivity. This is depicted in Figure 7,
taken from [3, 4].

Figure 7: “Reflection positivity” of the path integral. Requiring that the norm of states be non-negative
(i.e., that ⟨𝜓|𝜓⟩ ≥ 0) is equivalent to requiring that the path integral of a time-reversal-invariant product
of operators be non-negative. Taken from [3, 4]. This figure doesn’t add any understanding, really, but it
was too fun not to include.

Using the BPZ conjugations of the conformal algebra generators (3.20), we can extract unitarity bounds
straight away. Examining the norm ∣ ̂𝑃𝜇 |Δ𝑎⟩∣2 of the first descendant ̂𝑃𝜇 |Δ𝑎⟩ of |Δ𝑎⟩, reflection positivity

gives us ∣ ̂𝑃0 |Δ𝑎⟩∣2 ≥ 0. Expanding the norm, we have:

∣ ̂𝑃0 |Δ𝑎⟩∣2 = ( ̂𝑃𝜈 ∣Δ𝑏⟩)†BPZ ̂𝑃𝜇 |Δ𝑎⟩ = ⟨Δ𝑏|�̂�𝜈 ̂𝑃𝜈|Δ𝑎⟩ =
⎧{
⎨{⎩

2Δ𝛿𝜇
𝜈 𝑠 (spin of |Δ⟩) = 0

2Δ𝛿𝜈
𝜇𝛿𝑎

𝑏 − 2𝑆𝜈𝑎
𝜇𝑏 𝑠 > 0

(3.25)

If |Δ𝑎⟩ has no spin, then combining the inner product result 2Δ𝜇
𝜈 with the unitarity bound ⟨Δ|Δ⟩ ≥ 0

directly gives the bound Δ ≥ 0. (For scalar operators, we drop 𝛿𝑎
𝑏 , since 𝑎 and 𝑏 are spin indices.) If we

have |Δ𝑎⟩ living in the irreducible representation ℛ of SO(𝑑) with spin 𝑠, meanwhile, then ̂𝑃𝜇 |Δ𝑎⟩ lives
in the □⊗ ℛ representation, where □ is (the Young tableau corresponding to) the vector representation.
Imposing the unitarity condition ⟨𝜓|𝜓⟩ ≥ 0, we have the condition on the conformal dimension Δ given
by:

Δ ≥ max{𝜆(𝑆𝜈𝑎
𝜇𝑏 )} (3.26)

Here, 𝜆(𝑆𝜈𝑎
𝜇𝑏 ) represents the set of eigenvalues of 𝑆𝜈𝑎

𝜇𝑏 ; i.e., Δ must be greater than or equal to the
maximum eigenvalue of 𝑆𝜈𝑎

𝜇𝑏 . We can expand this out in terms of the generator of rotations in □, which
we denote (𝜛𝛼𝛽)𝜇𝜈 ≔ 𝛿𝛼

𝜇 𝛿𝛽
𝜈 − 𝛿𝛼

𝜈 𝛿𝛽
𝜇:

𝑆𝜈𝑎
𝜇𝑏 = 1

2 ∑
𝛼, 𝛽

(𝜛𝛼𝛽)𝜈
𝜇 (𝑆𝛼𝛽)𝜈

𝜇 = ∑
𝐴 = 𝛼𝛽
𝛼 < 𝛽

(𝜛𝐴)𝜈
𝜇 (𝑆𝐴)𝜈

𝜇 (3.27)
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Here, the index 𝐴 = 𝛼𝛽 with 𝛼 < 𝛽 lumps together the transformation in □ and the contraction between
𝜛 and 𝑆; this serves as an adjoint representation index for SO(𝑑) transformations. If we treat 𝜛𝐴 and
𝑆𝐴 as operators on □ ⊗ ℛ, then the sum becomes:

∑
𝐴

𝜛𝐴 ⊗ 𝑆𝐴 = (𝜛 ⊗ 𝟙 + 𝟙 ⊗ 𝑆)2 − (𝜛 ⊗ 𝟙)2 − (𝟙 ⊗ 𝑆)2

2

= −𝐶2(□ ⊗ ℛ) + 𝐶2(□) ⊗ 𝟙 + 𝟙 ⊗ 𝐶2(ℛ)
2

(3.28)

In the case that ℛ is the spin 𝑠 traceless symmetric representation 𝑉𝑠, we have 𝐶2(ℛ) given by:

𝐶2(𝑉𝑠) = 𝑠(𝑠 + 𝑑 − 2) (3.29)

The maximal eigenvalue of 𝜛𝐴𝑆𝐴 (which corresponds to the lowest possible value of the conformal
dimension) corresponds to the minimal quadratic Casimir invariant of the □⊗ℛ = □⊗𝑉𝑠 representation
of SO(𝑑):

□ ⊗ 𝑉𝑠 =
⎧{
⎨{⎩

𝑉𝑠 − 1 ⨁
𝑖

ℛ𝑖 ⋯ 𝑠 > 0

𝑉 𝑠 = 0
(3.30)

(Here, {ℛ𝑖} are irreducible representations with larger quadratic Casimir values.) By plugging (3.29) into
(3.28), then plugging that result into (3.27), and finally plugging that result into (3.26), we get a bound
on the dimension Δ:

Δ ≥ −𝐶2(𝑉𝑠 − 1) + 𝐶2(□) + 𝐶2(𝑉𝑠)
2 , ∴ Δ ≥

⎧{
⎨{⎩

0 𝑠 (spin of |Δ⟩) = 0
𝑠 + 𝑑 − 2 𝑠 > 0

(3.31)

(We note that the unitarity bound 𝑠 + 𝑑 − 2 gives the same lower bound (i.e., Δ > 0); it’s just separated
because the calculation that was done is exclusive to 𝑠 > 0.) Doing the same calculation again for
⟨Δ∣�̂�2 ̂𝑃 2∣Δ⟩ = ⟨Δ∣�̂�𝜈�̂�𝜈 ̂𝑃 𝜇 ̂𝑃𝜇∣Δ⟩ gives:

Δ = 0 if |Δ⟩ = |𝟙⟩ ; Δ ≥ 𝑑 − 2
2 if |Δ⟩ ≠ 𝟙 (3.32)

Without further specifying the theory (e.g., by imposing supersymmetry or specifying that this is a 2D
CFT), no further unitarity bounds can be extracted by going to higher-level descendants [24]. Thus, the
unitarity bounds we get by virtue of conformal invariance generally are:

Δ = 0 |Δ⟩ = |𝟙⟩ ;

Δ ≥
⎧{
⎨{⎩

𝑑 − 2
2 |Δ⟩ ≠ |𝟙⟩ , 𝑠 = 0;

𝑠 + 𝑑 − 2 |Δ⟩ ≠ |𝟙⟩ , 𝑠 > 0

(3.33)

For operators at this bound, we note that (at least) one of the descendants in the conformal family (2.9)
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will be zero. For |𝟙⟩, all of the descendants are zero. For a scalar, Δ = (𝑑 − 2)/2, and the null state is
( ̂𝑃)2 |Δ⟩ = 0. As an operator equation, this corresponds to ̂𝜕2ओ̂Δ = 0, i.e., the Klein-Gordon equation;
which is a free subsector decoupled from the rest of the CFT. Meanwhile, for a spin-𝑠 operator, the null
state is ̂𝑃𝜇1

|Δ𝜇1𝜇2⋯𝜇𝑠⟩. This corresponds to the equation 𝜕𝜇1
ओ̂𝜇1𝜇2⋯𝜇𝑠 , which is simply the equation for

a conserved current.

4 Basic Properties of Conformal Field Theories in 2D

Two-dimensional CFTs are especially rich in their structure for a variety of reasons; here, we discuss some
of the most basic reasons and their consequences. This section primarily follows [1, 2, 25, 26].

4.1 The Witt Algebra

In 2D, (1.3) reduces to the familiar form of the Cauchy-Riemann equations in ℂ1 ≅ ℝ2:

𝜕0𝜖0 = 𝜕1𝜖1, 𝜕0𝜖1 = −𝜕1𝜖0 (4.1)

Of course, in ℂ1, the Cauchy-Riemann equations came about as a result of the conditions we required
for differentiability. (4.1) gives a powerful corollary: the conformal group in 2D is the set of all complex
analytic functions! This directly tells us that the algebra is infinite dimensional, because we have an
infinite number of generators: these are simply the coefficients for the Laurent-Madhava series expansion
for 𝜖𝜇. The power of CFTs in 2D is a consequence of the infinite dimensionality of the conformal algebra,
and in fact was already hinted at by the way (1.5a) was derived.

As always for holomorphic / antiholomorphic functions functions, we can use the Wirtinger / holomorphic
coordinates (𝑧, ̄𝑧) to separate the 𝑧 and ̄𝑧 pieces and look only at 𝑧, with the results being the same for

̄𝑧. (The 𝑧 and ̄𝑧 pieces are respectively called the chiral / left-handed / holomorphic piece and antichi-
ral / right-handed / antiholomorphic piece.) Explicitly, then, considering the infinitesimal conformal
transformation 𝑓(𝑧) = 𝑧 + 𝜖(𝑧) (with 𝜖(𝑧) ≪ 1), we have:

𝑧′ = 𝑧 + 𝜖(𝑧) = 𝑧 + ∑
𝑛 ∈ ℤ

𝜖𝑛(−𝑧𝑛 + 1) (4.2)

We can define the generator ℓ𝑛 as corresponding to the 𝑛th order of the expansion:

ℓ𝑛 = −𝑧𝑛 + 1 𝜕𝑧 (4.3)

The Laurent-Madhava modes {ℓ𝑛} generate the conformal algebra in 2D, known as the Witt algebra
(which we denote 𝔚𝔦𝔱𝔱):

[ℓ𝑚, ℓ𝑛] = (𝑛 + 1) 𝑧𝑚 + 1 𝑧𝑛 𝜕𝑧 − (𝑚 + 1) 𝑧𝑛 + 1 𝑧𝑚 𝜕𝑧 = (𝑛 − 𝑚) 𝑧𝑚 + 𝑛 + 1 𝜕𝑧 = (𝑚 − 𝑛) ℓ𝑚 + 𝑛

[ℓ𝑚, ̄ℓ𝑛] = 0
(4.4)
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Examining the commutation relation for ℓ𝑚 = ℓ0, we have:

[ℓ0, ℓ𝑛] = −𝑛ℓ𝑛 (4.5)

As a result, ℓ𝑛 is a lowering operator for ℓ0 when 𝑛 > 0, and ℓ𝑛 is a raising operator for ℓ0 when 𝑛 < 0.
Meanwhile, the second expression, [ℓ𝑚, ̄ℓ𝑛] = 0, immediately tells us that we have two copies of the Witt
algebra which are completely disjoint, corresponding to the holomorphic and antiholomorphic pieces. This
is just a direct consequence of these pieces generally being disjoint for holomorphic / antiholomorphic
functions.

The ℓ−1 element is particularly interesting, since this directly corresponds to the 𝑧 derivative:

ℓ−1 = −𝑧−1 + 1 𝜕𝑧 = −𝜕𝑧; ∴ ℓ−1 ओ̂ = 𝜕ओ̂
𝜕𝑧 (4.6)

A direct consequence of this is that each element of the Witt algebra is in fact the (scaled) derivative of the
preceding element, which we can see by examining 𝜕𝑧 [ℓ𝑛 ओ̂] and applying the Witt algebra commutation
relation:

𝜕
𝜕𝑧 [ℓ𝑛 ओ̂] = 𝜕ℓ𝑛

𝜕𝑧 ओ̂ + ℓ𝑛
𝜕ओ̂
𝜕𝑧

𝜕
𝜕𝑧 [ℓ𝑛 ओ̂] = ℓ−1 ℓ𝑛 ओ̂ = −(𝑛 + 1) ℓ𝑛−1 ओ̂ + ℓ𝑛 ℓ1 ओ̂ = −(𝑛 + 1) ℓ𝑛−1 ओ̂ + ℓ𝑛

𝜕ओ̂
𝜕𝑧

⟹ 𝜕ℓ𝑛
𝜕𝑧 = −(𝑛 + 1) ℓ𝑛 − 1

(4.7)

4.2 The Subalgebra 𝔰𝔩(2, ℂ) and Hermiticity of Witt Generators

Although {ℓ𝑛} generates the full Witt algebra, these generators are not defined everywhere. In particular,
there’s an ambiguity in the definition at the origin. As a result, we must extend the definition of ℓ𝑛 from ℝ2

to the conformal compactification of ℝ2, i.e. the Riemann sphere. Unfortunately, even doing this doesn’t
fully help: ℓ𝑛 is only well-defined at the origin for 𝑛 ≥ −1, and if we map 𝑧 ↦ 1/𝑤, we see that ℓ𝑛 is only
defined at the origin for 𝑛 ≤ 1.

As a result, while local conformal transformations are generated by any analytic function, global conformal
transformations are only generated by {ℓ−1, ℓ0, ℓ1}; this forms the subalgebra 𝔰𝔩(2, ℂ) of the Witt algebra.
In particular, we have:

• Translations 𝑧 ↦ 𝑧 + 𝑏 generated ℓ−1 = −𝑧0 = −𝜕𝑧.

• Dilations 𝑧 = 𝑟ei𝜙 ↦ 𝛼ei𝜙 generated by ℓ0 + ̄ℓ0 = −𝑧 𝜕𝑧 − ̄𝑧 𝜕 ̄𝑧 = −𝑟 𝜕𝑟.

• Rotations 𝑧 = 𝑟ei𝜙 ↦ ei(𝜙 + 𝜃), generated by i(ℓ0 − ̄ℓ0) = −i𝑧 𝜕𝑧 + i ̄𝑧 𝜕 ̄𝑧 = −𝜕𝜙.

• SCTs (corresponding to translations for 𝑧 ≔ −1/𝑧 generated by ℓ1 = −𝑧2 𝜕𝑧.
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We immediately note that since dilations and rotations are generated by ℓ0+ ̄ℓ0 and i(ℓ0 − ̄ℓ0), respectively,
and the generators of both are Hermitian operators, we have ℓ0 and ̄ℓ0 both as Hermitian themselves.
(Here, we use again the non-radial Hermitian conjugate as our referential starting point, and again use
the subscript NR.) Applying their Hermiticity properties to the Witt algebra, using the Hermiticity
property of the commutator, also gives an expression for the Hermitian conjugate of the other generators.
Combining all of these, we have:

ℓ0 = ℓ†NR
0 , ̄ℓ0 = ̄ℓ†NR

0 , ℓ†NR𝑛 = ℓ−𝑛, ̄ℓ†NR𝑛 = ̄ℓ−𝑛 (4.8)

Denoting the eigenvalues of ℓ0 and ̄ℓ0 as ℎ and ℎ̄ respectively, we note that since ℓ0 + ̄ℓ0 generates
dilations, the sum of their eigenvalues must correspond to the conformal dimension. Similarly, since
i(ℓ0 − ̄ℓ0) generates rotations, the difference of their eigenvalues must correspond to the spin:

Δ = ℎ + ℎ̄, 𝑠 = ℎ − ℎ̄ (4.9)

In §3.1, we used the dilation operator to move between different foliations of our spacetime. As a result,
we’d very much like to interpret the dilation operator as the Hamiltonian. In the time-honoured tradition
of asserting what we want to be true, for now I’ll simply assert that we can do this; the validity of this
(after radially quantising) will be shown explicitly in §4.6. Finally, we note that we could have directly
seen that {ℓ1, ℓ0, ℓ−1} form a closed subalgebra, by directly applying (4.4):

[ℓ±1, ℓ0] = ±ℓ±1, [ℓ1, ℓ−1] = 2ℓ0 (4.10)

The finite transformations generated by the 𝔰𝔩(2, ℂ) subalgebra are, unsurprisingly, none other than the
familiar Möbius transformations; which are given for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ by:

𝑧 ↦ 𝑎𝑧 + 𝑐
𝑏𝑧 + 𝑑 (4.11)

4.3 The Virasoro Algebra

Since the Witt algebra is infinite dimensional, as a Lie algebra it admits a central extension. In general,
the central extension ̃𝔤 = 𝔤 ⊕ ℂ of 𝔤 by ℂ is defined for ̃𝑥, ̃𝑦 ∈ ̃𝔤; 𝑥, 𝑦 ∈ 𝔤, 𝑐 ∈ ℂ, and a bilinear function
𝑝 ∶ 𝔤 × 𝔤 → ℂ by:

[ ̃𝑥, ̃𝑦] ̃𝔤 = [𝑥, 𝑦]𝔤 + 𝑐𝑝(𝑥, 𝑦), [ ̃𝑥, 𝑐] ̃𝔤 = 0, [𝑐, 𝑐] ̃𝔤 = 0 (4.12)

In general, central extensions are related to projective representations. In particular, they allow us to
extend a classical symmetry algebra to include the quadratic Casimir operators of the quantum Lie
algebra, thus giving us the full symmetry algebra of a given theory. For the Witt algebra, the central
extension is the Virasoro algebra, denoted 𝔙𝔦𝔯. Applying (4.12), we start with the Virasoro algebra given
by the expression [𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚 + 𝑛 + 𝑐𝑝(𝑚, 𝑛). From the antisymmetry of the Lie bracket and
the Jacobi identity, we can get a recursion relation for 𝑝(𝑛, −𝑛) (the first equality below), which we can
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then get an explicit expression for using the normalisation7 𝑝(2, −2) = 1/2:

𝑝(𝑛, −𝑛) = 𝑛 + 1
𝑛 − 2 𝑝(𝑛 − 1, −𝑛 + 1) −−−−−−−−→

𝑝(2, −2) = 1/2
1
2(𝑛 + 1

3 ) = (𝑛 + 1)(𝑛 − 1)𝑛
12 (4.13)

This gives us an explicit expression for the Virasoro algebra, in terms of its central charge 𝑐:

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚 + 𝑛 + 𝑐
12(𝑚3 − 𝑚) 𝛿(𝑚 + 𝑛)0 𝟙, [𝐿𝑚, �̄�𝑛] = 0, [𝐿𝑚, 𝟙] = 0 (4.14)

The final expression is a bit obvious, but a direct consequence of this is that the elements of the Virasoro
algebra all commute with the central charge. As will be discussed later in this section as well as in §4.5,
the central charge encodes key properties of the specific CFT model we’re looking at. Explicitly, the Witt
algebra is the algebra of the conformal symmetry (and holds even for classical conformal symmetry),
whereas the Virasoro algebra is the specific algebra of the CFT we’re looking at.

Since the Virasoro algebra is the central extension of the Witt algebra, it also inherits the properties
the Witt algebra received from being comprised of Laurent-Madhava modes of holomorphic functions.
In particular, we inherit the non-radial Hermiticity properties (4.8) as well as the decomposition into
the disjoint holomorphic and antiholomorphic Virasoro algebras. A direct consequence of the Hermiticity
properties is that the central charges are real numbers (i.e., 𝑐, ̄𝑐 ∈ ℝ); in particular, for unitary CFTs,
we have 𝑐, ̄𝑐 ∈ ℝ+. Additionally, since 𝑝(𝑚, 𝑛) = 0 for 𝑚, 𝑛 = −1, 0, 1; the {𝐿−1, 𝐿0, 𝐿1} elements
of the Virasoro algebra still generate the same global conformal transformations that the corresponding
elements of the Witt algebra do8. Finally, translating the BPZ conjugation defined in §3.2 into terms
amenable to Virasoro generators, we see that (3.14) corresponds to the definition of the inner product
given by:

⟨क, र⟩ ≔ ⟨क(∞) र(0)⟩ ≔ lim
𝑧 → ∞

𝑧2Δक ⟨क(𝑧) र(0)⟩ (4.15)

(Here, Δक is the dimension of क̂.)

Given that none of these discussions relied on the central charge, we may reasonably ask what the point
of it is. In fact, the central charge is an essential link between CFTs and field theories that we might
encounter in QFT or stat mech. In particular, the central charge is a central component of unitarity
properties of the theory, discussed more in §4.5. In that section, the fact that the central charge helps
determine the unitarity properties shows that the central charge represents specific properties of the
theory under investigation: different CFTs will all have conformal invariance (and thus, will have all of
the properties discussed throughout this paper), but will have different central charges. Indeed, as will
be shown in that section, the central charge helps establish whether or not the theory is unitary to begin
with; thus, the central charge serves as a link not only to unitary CFTs but nonunitary ones as well.

In addition to this link, the central charge plays a key role in understanding the renormalisation group
(RG) properties of the CFT. The Wilsonian / functional integration approach to the RG [27–32] sees
7Apparently, this normalisation comes from wanting a specific value for the central charge of the free boson CFT model [1].
I will freely admit I have no familiarity with the free boson CFT model.

8This is just a consequence of the fact that finite-dimensional Lie algebras (here, the 𝔰𝔩(2, ℂ) subalgebra) have (has) no
central extensions.
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the process of renormalisation as integrating out short-distance (high-momentum) degrees of freedom to
obtain the effective theory at a given length scale, with the renormalisation group equations (namely, the
Callan-Symanzik equation) then telling us how the various couplings in the theory change as we change
the length scale. By integrating out the higher momentum scales, we inherently lose information about
the system. This general conception is made concrete by the c-theorem [33]. The original statement of
this theorem says that every 2D QFT has a positive real function 𝐶(ચ, 𝑀), dependent on the coupling
constants ચ and the renormalisation scale 𝑀 , which decreases monotonically as the RG flows to the fixed
point. At the fixed point, 𝐶(ચ, 𝑀) is a constant, and is exactly the central charge of the corresponding
CFT. The C-theorem was proved for 2D QFTs; an analogous version (the a-theorem [34, 35]) has been
largely shown to be valid, although certain aspects of it remain an open question of investigation.

4.4 Primaries in 2D CFTs and the Verma Module

In 2D, the definition (2.7) for primary fields corresponds to the requirement that ̂प transform under any
infinitesimal conformal transformation 𝑧 ↦ 𝑓(𝑧) as:

̂प(𝑧, ̄𝑧) ↦ ̂प′(𝑧, ̄𝑧) = (𝜕𝑓
𝜕𝑧 )

ℎ
(𝜕 ̄𝑓

𝜕 ̄𝑧 )
ℎ̄

̂प(𝑓(𝑧), ̄𝑓( ̄𝑧)) (4.16)

We can immediately recognise 𝜕𝑧 and 𝜕 ̄𝑧 as 𝐿0 and �̄�0; thus, this expression of the original definition
(2.7) automatically translates into a statement in terms of the eigenvalues ℎ and ℎ̄ of 𝐿0 and �̄�0 re-
spectively. As discussed in §4.2, the conformal dimension Δ is given by Δ = ℎ + ℎ̄; we also refer to the
conformal dimension as (ℎ, ℎ̄). If ̂प only satisfies the transformation property (4.16) for global conformal
transformations, then ̂प is a quasi-primary field instead.

Examining the action of the infinitesimal conformal transformation 𝑓(𝑧) = 𝑧 + 𝜖(𝑧) with 𝜖(𝑧) ≪ 1 and
taking the Taylor-Madhava expansions of 𝜖(𝑧) and (4.16), we have the action of an infinitesimal conformal
transformation on a primary operator given by:

̂प ↦ (ℎ 𝜕𝜖
𝜕𝑧 + 𝜖 𝜕

𝜕𝑧 + ℎ̄ 𝜕 ̄𝜖
𝜕 ̄𝑧 + ̄𝜖 𝜕

𝜕 ̄𝑧 ) ̂प (4.17)

Additionally, as mentioned in §4.1, 𝐿𝑛 are lowering operators for 𝐿0 when 𝑛 > 0 and raising operators
for 𝐿0 when 𝑛 < 0 (with the same holding true for �̄�𝑛 and �̄�0). Since we have 𝐿0 + �̄�0 as the dilation
operator, whose eigenvalues are the conformal dimension, we can immediately determine the effect of 𝐿0
and 𝐿𝑛 on |प⟩ for 𝑛 > 0:

𝐿0 |प⟩ = Δप |प⟩ , 𝐿𝑛 |प⟩ = 0 (𝑛 > 0) (4.18)

Examining ‖𝐿−𝑚 |प⟩‖ for a generic primary ̂प with conformal dimension Δप, the fact that the norm must
be positive definite gives ‖𝐿−𝑚 |प⟩‖ ≥ 0. Expanding the norm out, we have:

‖𝐿−𝑚 |प⟩‖2 = ⟨प∣𝐿−𝑚
†NR 𝐿−𝑚∣प⟩ = ⟨प∣𝐿−𝑚

†NR 𝐿−𝑚∣प⟩ = 𝑐
12(𝑚3 − 𝑚) ⟨प|प⟩ = 𝑐

12(𝑚3 − 𝑚) (4.19)

(Here, we use the normalisation ⟨प|प⟩ = 1.) Combining this with ‖𝐿−𝑚 |प⟩‖2 ≥ 0, we see that 𝑐 ∈ ℝ+.
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Since we now have 𝐿𝑛 |प⟩ = 0 for 𝑛 > 0, and we have 𝐿𝑛 |प⟩ producing a positive semidefinite norm state
for 𝑛 < 0, we can immediately determine that the set of all {(𝐿𝑛)d} generates the generalised Verma

module identified in (3.5) when applied to |प⟩. The conformal multiplet is generated by applying {(𝐿𝑛)d}
to the highest-weight state |प⟩; thus, the family corresponds to the highest-weight representation of the
Virasoro algebra. Here in the 2D case, the representation generated this way is the Verma module, which
we can define more explicitly than (3.5) using the Virasoro operators. Explicitly, we define the Verma
module 𝒱(ℎ,𝑐) corresponding to the primary प with conformal dimension (ℎ, ℎ̄) as the highest-weight
representation of 𝔙𝔦𝔯 with central charge 𝑐, whose basis is given by:

𝒱(ℎ,𝑐) ≔ span{
d

∏
𝑖 = 1

𝐿−𝑛𝑖
|प⟩}

0 ≤ 𝑛1 ≤ ⋯ ≤ 𝑚d

(4.20)

Figure 8: Verma module up to level 𝑁 = 5. Taken from [26].

The definition of the level of the state in (2.9) extends straightforwardly: for the state ∏d

𝑖 = 1 𝐿−𝑛𝑖
|प⟩, the

level is given by 𝑁 = ∑d

𝑖 = 1 𝑛𝑖, and level 𝑁 > 1 states are descendant states. To make these expressions
concrete, the basis of the Verma module up to level 5 is given from [26] in Figure 8.

At first glance, we may think that this chart is missing some entries; for instance, the level 3 states seem
to be missing 𝐿−2𝐿−1. However, from the Virasoro commutation relation (4.14), this state is equivalent
to 𝐿−2𝐿−1 = 𝐿−1𝐿−2 − 𝐿−3, and thus this state is a linear combination of other states in the basis. Thus,
we can restrict the ordering of Virasoro generators, as in (4.20), to be “smallest 𝑛 first”, as in Figure 8.
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We note that this choice is completely arbitrary; we can just as easily order them to be “largest 𝑛 first”,
or really any other set that gives a basis following the Virasoro commutation relation.

4.5 Null States and the Kač Determinant

As discussed in §3.3, states that are at the unitarity bounds for dimension given in (3.33) have at least
one vanishing descendant. The presence of the scalar null state ̂𝑃 2 |प⟩ indicated a free Klein-Gordon
subsector that decoupled from the rest of the CFT. More generally, null states indicate the presence of
decoupled subsectors. These correspond to subrepresentations of the Virasoro algebra within the Verma
module, meaning that the original Verma module is a reducible representation. As an example, at level
2, a general normalised linear combination of the states is given by:

(𝐿−2 + z𝐿−1
2) |प⟩ = 0 (4.21)

If the value of z corresponds to a state that exists in the module, then we have a null state and the Verma
module 𝒱प is a reducible representation of the Virasoro algebra. To find the null states, we define the
matrix 𝑀𝑁(Δप, 𝑐) at arbitrary level 𝑁 (which I’m calling the Kač matrix, although I don’t know if this
is standard usage) by:

𝑀𝑁(Δप, 𝑐) ≔ ⟨प∣∏
𝑖

𝐿𝑘𝑖
∏

𝑗
𝐿𝑚𝑗

∣प⟩ , 𝑘𝑖, 𝑚𝑗 ≥ 0 (4.22)

The determinant of this is given for 𝛼𝑁 ∈ ℝ+, 𝑚 ∈ ℂ, and for the number of partitions p(𝑁 − 𝑝𝑞) of
𝑁 − 𝑝𝑞 by:

det𝑀𝑁(Δप, 𝑐) ≔ 𝛼𝑁 ∏
𝑝, 𝑞 ≤ 𝑁
𝑝, 𝑞 > 0

(Δप − Δप, 𝑝, 𝑞(𝑐))p(𝑁 − 𝑝𝑞)

Δप, 𝑝, 𝑞(𝑚) ≔ ((𝑚 + 1) 𝑝 − 𝑚𝑞)2 − 1
4𝑚(𝑚 + 1) , 𝑚 = −1

2 ± 1
2

√25 − 𝑐
1 − 𝑐

(4.23)

The Kač determinant tells us the values of Δप and 𝑐 that give rise to decoupled subsectors, but also tells
us values of Δप and 𝑐 that are forbidden by unitarity. Specifically, when det𝑀𝑁 < 0, we have negative
norm states, which is forbidden for unitary CFTs. This gives us a series of restrictions on the values of 𝑐
and Δप:

• For 𝑐 > 1 and Δप ≥ 0, det𝑀𝑁 is always positive, and thus every such CFT is unitary.

• For 𝑐 = 1, det𝑀𝑁 = 0 for Δप = 𝑛2/4 (with 𝑛 ∈ ℤ).

• For 𝑐 < 1 and Δप ≥ 0, det𝑀𝑁 is only nonunitary for values of 𝑐 given for 𝑚 ∈ ℕ≥ 3 and the
corresponding (𝑚

2 ) values of Δप, 𝑝, 𝑞 by:

𝑐 = 1 − 6
𝑚(𝑚 + 1) , Δप, 𝑝, 𝑞(𝑚) = ((𝑚 + 1) 𝑝 − 𝑚𝑞)2 − 1

4𝑚(𝑚 + 1) , 1 ≤ 𝑝 ≤ 𝑚 − 1, 1 ≤ 𝑞 ≤ 𝑚 (4.24)

These correspond to intersections of specific curves in the (𝑐, Δप) plane, depicted in Figure 9 (taken
from [1]).
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Figure 9: Unitary CFTs for 𝑐 < 1 correspond to the intersections of curves defined by (4.24). The first
few such curves are depicted. Here, Δप is labelled as ℎ and Δप, 𝑝, 𝑞 is labelled as ℎ𝑝, 𝑞. Taken from [1].

Before continuing, an interesting additional point is worth mentioning about null states. As mentioned in
§3.3 and in the beginning of this section, null states correspond to operators whose conformal dimensions
are at the unitarity bounds given in (3.33). These indicate that the Verma module is a reducible repre-
sentation of the Virasoro algebra, and thus these states specifically correspond to decoupled subsectors of
the Verma module, with at least one vanishing descendant. These subsectors are minimal models, where
the spectrum is built out of finitely many irreps of the Virasoro algebra. A valuable property of minimal
models is that, since the Virasoro algebra representation is reducible, we can dramatically simplify linear
algebraic manipulations. In particular, the resolutions of the identity (3.7) and (3.8) can be simplified
into a sum over a single conformal family9. For a primary operator ̂प in a minimal model with conformal
family [ ̂प], those resolutions of the identity simplify to:

𝟙 = ∑
[ ̂प]

∣[ ̂प]⟩⟨[ ̂प]∣ =
∞

∑
𝑖 = 0

∣𝐿−𝑖 ̂प⟩⟨𝐿−𝑖 ̂प∣ (4.25)

The central charges and conformal dimensions for unitary minimal models are given from the Kač deter-
minant by:

𝑐 = 1 − 6(𝑝 − 𝑞)2

𝑝𝑞 , Δप, 𝑟, 𝑠(𝑝, 𝑞) = (𝑝𝑟 − 𝑞𝑠)2 − (𝑝 − 𝑞)2

4𝑝𝑞 (4.26)

Here, we have 𝑝, 𝑞 ∈ ℕ+2 with 𝑝 and 𝑞 relatively coprime, 𝑟 ∈ [1, 𝑞 − 1] ⊂ ℕ, and 𝑠 ∈ [1, 𝑝 − 1] ⊂ ℕ. If
|𝑝 − 𝑞| ≠ 1, we’re guaranteed to have a nonunitary CFT (i.e., we’re guaranteed to have highest-weight

9I’m especially grateful to Adam for this clarification in particular.
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states of negative norm), with a unitary subrepresentation given by 𝑝 = 𝑚+2 and 𝑞 = 𝑚+3 with 𝑚 ≥ 1.
The unitary subrepresentations are unitary minimal models, which have additional properties discussed
in §7.2–§7.3. If the entire theory is comprised of unitary minimal models, 𝑐 and Δप reduce to (4.24). Since
𝑐 in that situation is a rational positive number less than 1, those theories are called rational CFTs.

As an example of calculating the restrictions on 𝑐 and Δप that arise from the presence of null states,
we calculate these values for the level 2 null state described in (4.21). In addition to being a simple
calculation illustrating the Kač determinant technique, the results will be used in §7.2. Starting with this
expression, and applying 𝐿1 to both sides, we have:

([𝐿1, 𝐿−2] + z[𝐿1, 𝐿−1
2]) |प⟩ = (3𝐿−1 + z(2𝐿0𝐿−1 + 2𝐿−1𝐿0)) |प⟩ = 0

([𝐿1, 𝐿−2] + z[𝐿1, 𝐿−1
2]) |प⟩ = (3 + 2z(2Δप + 1))𝐿−1 |प⟩ = 0

(4.27)

Since generally we have 𝐿−1 |प⟩ = 0 only for Δप = 0, we have z = −3/2(2Δप + 1), giving the level 2 null
state as:

(𝐿−2 − 3
2(2Δप + 1)𝐿−1

2) |प⟩ = 0 (4.28)

Then, applying 𝐿2 to both sides, we can determine the central charge of the theory where this null state
emerges:

([𝐿2, 𝐿−2] + 3
2(2Δप + 1)[𝐿2, 𝐿−1

2]) |प⟩ = 0

(4𝐿0 + 𝑐
2) |प⟩ − 3

2(2Δप + 1)(𝐿−1[𝐿2, 𝐿−1] + [𝐿2, 𝐿−1]𝐿−1) = 0

(4𝐿0 + 𝑐
2 − 6 ⋅ 3

2(2Δप + 1)) |प⟩ = (4𝐿0 + 𝑐
2 − 9

(2Δप + 1)) |प⟩ = 0

(4.29)

This gives the central charge as 𝑐 = (2Δप(5 − 8Δप))/(2Δप + 1). Thus, we have the level 2 null state
occurring specifically at this central charge, with the null state given by (4.28).

4.6 Radial Quantisation in 2D

As in §3, to get further properties, we examine the radial quantisation of the theory. From Euclidean
space (𝑥0, 𝑥1), we compactify the space dimension on a circle of radius 𝑅 = 1. Thus, from functions of 𝑧,
we transform to functions of 𝑤, with the transformation defined by:

𝑧 = e𝑤 = e𝑥0 + ei𝑥1 , 𝑤 ≔ 𝑥0 + i𝑥1, 𝑤 = 𝑤 + 2𝜋i (4.30)

For Lorentzian space, we Wick rotate 𝑥0 ↦ i𝑥0 as always. This mapping is depicted in Figure 10, taken
from [1]. Using this mapping, non-radial Hermitian conjugation maps 𝑧 ↦ 1/ ̄𝑧. This then defines our 2D
BPZ Hermitian conjugation:

ओ̂†BPZ, 2D(𝑧, ̄𝑧) = ̄𝑧−2ℎ 𝑧−2ℎ̄ ओ̂(1
𝑧 , 1

̄𝑧 ) (4.31)
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Meanwhile, the Laurent expansion of a field प(𝑧, ̄𝑧) with conformal dimensions (ℎ, ℎ̄) around 𝑧 = 0 and
̄𝑧 = 0 is given by:

ओ̂(𝑧, ̄𝑧) = ∑
𝑛, �̄� ∈ ℤ

𝑧−𝑛 − ℎ ̄𝑧−�̄� − ℎ̄ ̂प𝑛, �̄� (4.32)

Applying the BPZ conjugate and Laurent expanding then gives us:

ओ̂†BPZ, 2D(𝑧, ̄𝑧) = ̄𝑧−2ℎ 𝑧−2ℎ ∑
𝑛, �̄� ∈ ℤ

𝑧𝑛 + ℎ ̄𝑧�̄� + ℎ̄ ̂प𝑛, �̄� = ∑
𝑛, �̄� ∈ ℤ

𝑧𝑛 − ℎ ̄𝑧�̄� − ℎ̄ ओ̂𝑛, �̄� (4.33)

Comparing (4.32) and (4.33) gives us (ओ̂𝑛, �̄�)
†BPZ, 2D

= ओ̂−𝑛, −�̄�, corresponding to our expectations given
the action of Hermitian conjugation on the Witt algebra generators (4.8).

Figure 10: Mapping of the cylinder to the complex plane given by 𝑧 = e𝑥0 + ei𝑥1 . Taken from [1].

In §4.2, we asserted that the dilation operator corresponded to the Hamiltonian, not just as an analogy but
rather specifically in the sense that the Hamiltonian is mapped to the dilation operator. We immediately
see this as a consequence of the coordinate transformation: time translations 𝑥0 ↦ 𝑥0 + 𝑎 correspond
to dilations 𝑧 ↦ e𝑎𝑧. In the same way as time translations, we have space translations 𝑥1 ↦ 𝑥1 + 𝑏
corresponding to rotations 𝑧 ↦ ei𝑏𝑧. This verifies the equivalency made in §4.2 of the Hamiltoninan
and momentum operator explicitly corresponding to the conformal dilation and rotation generators, and
allows us to write explicitly:

�̂� = 𝐿0 + �̄�0, ̂𝑃𝜇 = i(𝐿0 − �̄�0) (4.34)

In addition, we note that this transformation maps the infinite past 𝑥0 = −∞ to the origin: 𝑧 = e−∞ = 0.
As discussed in §3.1, we generally foliate spacetime radially with the reference point at the origin. We
can combine this with the raising and lowering properties of the generators, which gives us ओ̂𝑛, �̄� |0⟩ = 0
for 𝑛 > −ℎ and �̄� > −ℎ̄, to get the asymptotic in-state as the reference point for our foliation:

∣ओ⟩ = lim
𝑧, ̄𝑧 → 0

ओ̂(𝑧, ̄𝑧) |0⟩ = ओ̂−ℎ, −ℎ̄ |0⟩ (4.35)

Similarly, we can define the asymptotic out-state by taking the BPZ conjugate of the asymptotic in-state,
again using the raising and lowering properties of the generators to get ⟨0| ओ̂𝑛, �̄� = 0 for 𝑛 > ℎ and
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�̄� > ℎ̄:
⟨ओ∣ = lim

𝑧, ̄𝑧 → 0
⟨0| ओ̂†BPZ, 2D(𝑧, ̄𝑧) = lim

̄𝜁, 𝜁 → ∞
⟨0| ओ̂ = ⟨0| ओ̂ℎ, ℎ̄ (4.36)

5 The Stress-Energy Tensor and Ward Identities

5.1 The Stress-Energy Tensor

The original statement of conformal invariance, (1.1), told us that the metric was invariant up to a
constant positive scale factor Λ ∈ ℝ+. This gave rise to four symmetries, discussed along with their
corresponding currents in §1. In addition to these, conformal invariance as a whole implies the conservation
of the stress-energy tensor 𝑇 𝜇𝜈. This has far-reaching consequences; we briefly discuss some of them here.

Nöther’s theorem in general gives us the variation of the action under an infinitesimal transformation, and
thus the conserved quantities. Following [5], we start with the action 𝑆 in curved spacetime, depending
on the fields {ફ𝑖} and the vielbein 𝑒𝑎

𝜇 as:

𝑆[ફ𝑖, 𝑒𝑎
𝜇] = ∫ d𝑑𝑥 det 𝑒𝑎

𝜈 L(ફ𝑖, 𝐷𝜇ફ𝑖, 𝑒𝑎
𝜇) (5.1)

Here, the vielbein / vierbein / tetrad is a set of 𝑛 independent vector fields {𝑒𝑎
𝜇}𝑎 = 1, ⋯ , 𝑛 defined in terms

of the basis 1-forms d𝑥𝜇 of the manifold the system lives on. This provides a basis for the manifold which
can be easier to deal with. We can define the vielbein and its dual (the dual vielbein / co-vielbein) in
terms of the derivatives and 1-forms, as well as the transformations of the vielbeins and fields {ફ𝑖} under
reparametrisations 𝑥 ↦ 𝑦:

𝑒𝑎 = 𝑒𝜇
𝑎 𝜕𝜇, 𝑒𝑎 = 𝑒𝑎

𝜇 d𝑥𝜇 , 𝑒𝑎 𝑒𝑏 = 𝛿𝑎
𝑏 ; 𝑒𝑎

𝜇 ↦ 𝜕𝑥𝜇

𝜕𝑦𝜈 𝑒𝑎
𝜈, ફ(𝑥) ↦ ફ́(𝑦) = ફ(𝑥) (5.2)

We have the variation of the action under an infinitesimal transformation (in coordinate language) given
by:

𝛿𝑆 = − ∫ d𝑑𝑥 𝑗𝜇 𝜕𝜇𝜖 (5.3)

We then consider the infinitesimal transformation 𝑥𝜇 ↦ 𝑥𝜇 + 𝜖𝜇 given in §1, and consider the varia-
tion induced in both the action and the metric due to this transformation. In terms of the coordinate
transformation 𝑥 ↦ 𝑥 + 𝜖 or, equivalently, the vielbein variation 𝑒𝑎

𝜇 ↦ 𝛿𝑒𝑎
𝜇, we have:

𝛿𝑆 = − ∫ d𝑑𝑥 (𝑇 𝜇𝜈 + 2 𝛿𝑆
𝛿𝑔𝜇𝜈 )(𝜕𝜇𝜖𝜈 + 𝜕𝜈𝜖𝜇); 𝛿𝑆 = 1

2 ∫ d𝑑𝑥 det 𝑒𝑎
𝜈 𝑇 𝜇

𝑎 𝛿𝑒𝑎
𝜇 (5.4)

For both of these expressions, we define the stress-energy tensor as:

𝑇 𝜇𝜈 = − 2√𝑔
𝛿𝑆

𝛿𝑔𝜇𝜈 (5.5)

Applying the infinitesimal transformation 𝑥𝜇 ↦ 𝑥𝜇 + 𝜖𝜇, we have the corresponding conserved current
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for this transformation given by 𝑗𝜇 = 𝑇𝜇𝜈 𝜖𝜈. Then, from the conservation of current, 𝜕𝜇𝑗𝜇 = 0, we have:

𝜕𝜇𝑗𝜇 = 𝜕𝜇[𝑇𝜇𝜈 𝜖𝜈] = (𝜕𝜇 𝑇𝜇𝜈) 𝜖𝜈 + 𝑇𝜇𝜈 (𝜕𝜇𝜖𝜈)

= 0 + 𝑇𝜇𝜈 (𝜕𝜇𝜖𝜈 + 𝜕𝜈𝜖𝜇)
2 = 𝑇𝜇𝜈 𝑔𝜇𝜈(𝜕 ⋅ 𝜖)

𝑑 = 𝑇 𝜇
𝜇 (𝜕 ⋅ 𝜖)

𝑑 = 0
(5.6)

(In the second line, we used (1.1).) As a result, we see that in CFTs, the stress-energy tensor is traceless .
Translating this into 2D, this property combines with the conservation of current to get that the only
nonvanishing components of the stress-energy tensor are the purely holomorphic piece and the purely
antiholomorphic piece:

𝑇 (𝑧) ≔ 𝑇𝑧𝑧(𝑧), ̄𝑇 ( ̄𝑧) ≔ 𝑇 ̄𝑧 ̄𝑧( ̄𝑧) (5.7)

(This is, as always, derived in the unabridged version.) Since the set of conformal transformations in 2D is
itself the set of all holomorphic functions, which have this decomposition property, it’s unsurprising that
the stress-energy tensor has the same property. Writing the holomorphic and antiholomorphic sectors in
this fashion, however, gives us a further useful expression: we can express 𝑇 (𝑧) as the Laurent-Madhava
series:

𝑇 (𝑧) = ∑
𝑛 ∈ ℤ

𝐿𝑛
(𝑧 − ઝ)𝑛 + 2 (5.8)

(As always, ̄𝑇 ( ̄𝑧) has the same expression, with the replacements 𝐿𝑛 → �̄�𝑛, 𝑧 → ̄𝑧, and ઝ → ઝ̄.)
Importantly, the stress-energy tensor has a mode for every Virasoro generator. As a result, we can invert
this expression to get an expression for the Virasoro generators in terms of the holomorphic stress-energy
tensor:

𝐿𝑛 = 1
2𝜋i ∮ d𝑧 𝑧𝑛 + 1 𝑇 (𝑧) (5.9)

Notably, this expansion of 𝑇 (𝑧) in terms of Virasoro generators, and the expansion of the {𝐿𝑛} in terms
of 𝑇 (𝑧) allows us to automatically read off the product of 𝑇 (𝑧) and a generic field ओ̂(ઝ), and allows us
to give 𝐿𝑛 ओ̂(ઝ) as a contour integral of 𝑇 (𝑧) ओ̂(ઝ):

R{𝑇 (𝑧) ओ̂(ઝ)} = ∑
𝑛 ∈ ℤ

𝐿𝑛 ओ̂(ઝ)
(𝑧 − ઝ)𝑛 + 2 , 𝐿𝑛 ओ̂(ઝ) = 1

2𝜋i ∮ d𝑧 (𝑧 − ઝ)𝑛 + 1 𝑇 (𝑧) ओ̂(ઝ) (5.10)

If ओ̂ is a primary field ̂प, this gives the product R{𝑇 (𝑧) ̂प(ઝ)} as:

R{𝑇 (𝑧) ̂प(ઝ)} = Δप ̂प
(𝑧 − ઝ)2 + 1

𝑧 − ઝ
𝜕 ̂प
𝜕ઝ + 𝑓reg(𝑧) (5.11)

Here, 𝑓reg is the regular (non-singular) part of this expansion. (5.10) and (5.11) are two examples of
operator product expansions (OPEs). The formal structure of OPEs is given in §6.1; due to (5.9), we are
able to extract OPEs involving the stress-energy tensor without it.
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Finally, we note that under conformal transformations 𝑧 ↦ 𝑓(𝑧), the stress-energy tensor transforms as:

𝑇 (𝑧) ↦ (𝜕𝑓
𝜕𝑧 )

2
𝑇 (𝑓(𝑧)) + 𝑐

12𝑆[𝑓(𝑧), 𝑧] = (𝜕𝑓
𝜕𝑧 )

2
𝑇 (𝑓(𝑧)) + 𝑐

12
1

( 𝜕𝑓
𝜕𝑧 )2 (𝜕𝑓

𝜕𝑧
𝜕3𝑓
𝜕𝑧3 − 3

2(𝜕2𝑓
𝜕𝑧2 )

2
) (5.12)

Here, 𝑆[𝑓(𝑧), 𝑧] is the Schwartzian derivative, defined by:

𝑆[𝑓(𝑧), 𝑧] = 1
( 𝜕𝑓

𝜕𝑧 )2 (𝜕𝑓
𝜕𝑧

𝜕3𝑓
𝜕𝑧3 − 3

2(𝜕2𝑓
𝜕𝑧2 )

2
) (5.13)

5.2 Conserved Charges

As in perturbative QFT, the classical conserved current expression 𝜕𝜇𝑗𝜇 = 0 is expressed quantum
mechanically via a Ward identity. Since the conserved currents can be lumped together into the stress-
energy tensor, we can express the Ward identities in terms of the stress-energy tensor as well. Here, I’ve
attempted to combine the approaches in [1–5]. I relied mostly on the latter at first, but the end is entirely
from [5] specifically.

In general, we define a conserved charge in 𝑑 dimensions as the integral of a conserved current 𝑗𝜇 over a
Cauchy surface Σ:

𝑄[Σ] = ∫ d𝑆𝜇 𝑗𝜇 (5.14)

Here, a Cauchy surface is a surface intersected by any causal curve at most once; heuristically, it cor-
responds to the notion of an “equal-time surface” [3, 4, 36] for our purposes. We note that from the
translational Ward identity (5.24), 𝑄[Σ] defined in (5.14) is invariant under diffeomorphisms of Σ, as
long as it does not cross any operator insertions. This is depicted in Figure 11, modified from [3, 4].

Figure 11: Conserved charges 𝑄[Σ] are invariant under diffeomorphisms of the Cauchy surface Σ, as
long as they don’t cross any operator insertions. Modified from [3, 4].

Applying the coordinate transformation given in (4.30), using 𝑗𝜇 = 𝑇 𝜇𝜈 𝜖𝜈 (as per the coordinate ex-
pression in (5.4)), and using the fact that in 2D, the stress-energy tensor decomposes into the purely
holomorphic and purely antiholomorphic sectors; the expression (5.14) corresponds for 2D CFTs to the
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expression:
𝑄 = 1

2𝜋i ∮
C

(d𝑧 𝑇 (𝑧) 𝜖(𝑧) + d ̄𝑧 ̄𝑇 ( ̄𝑧) ̄𝜖( ̄𝑧)) (5.15)

As always, the conserved charge 𝑄 generates an infinitesimal transformation 𝛿ओ of an operator ओ̂ by
examining the commutator. In 2D, this appears as:

𝛿ओ = [𝑄, ओ̂]

(𝛿ओ)
2D

= 1
2𝜋i

⎛⎜
⎝

∮
C

d𝑧 [𝑇 (𝑧) 𝜖(𝑧), ओ̂(𝑧, ̄𝑧)] + ∮
C

d ̄𝑧 [ ̄𝑇 ( ̄𝑧) ̄𝜖( ̄𝑧), ओ̂(𝑧, ̄𝑧)]⎞⎟
⎠

(5.16)

Applying (3.22), this gives (𝛿ओ)
2D

as:

(𝛿ओ)
2D

= 1
2𝜋i

⎛⎜
⎝

∮
C

d𝑧 𝜖(𝑧)R{𝑇 (𝑧) ओ̂(ઝ, ઝ̄)} + ∮
C

d ̄𝑧 ̄𝜖( ̄𝑧)R{ ̄𝑇 ( ̄𝑧) ओ̂(ઝ, ઝ̄)}⎞⎟
⎠

(5.17)

For a primary operator ̂प, we already had R{𝑇 (𝑧) ̂प(ઝ)} given by (5.11); we see that this can be extracted
by applying (4.17) to (5.17).

5.3 Conformal Ward Identities for Translation and Rotation Invariance

In terms of the action (5.1), we have the partition function for the 𝑛-point function of generic operators
{ओ̂𝑗} given by:

𝑍 ⟨ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛)⟩
𝑒

= ∫Dફ𝑖 ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛) e−𝑆[ફ𝑖, 𝑒𝑎
𝜇] (5.18)

For the rest of this derivation, we write ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛) ≔ 𝑋 to make the rest of the expressions simpler
to write. The inifinitesimal reparametrisation 𝑥𝜇 ↦ 𝑥𝜇 + 𝜉𝜇(𝑥𝜈) gives rise to the variations:

𝛿𝑒𝑎
𝜇 = −(𝜕𝜈𝑒𝑎

𝜇) 𝜉𝜈 − (𝜕𝜇𝜉𝜈)𝑒𝑎
𝜈, 𝛿ફ = −𝜉𝜇 𝜕𝜇ફ (5.19)

Meanwhile, the action and measure are invariant under the reparametrisation. We can apply these
reparametrisation properties to 𝑍 ⟨ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛)⟩

𝑒
≕ 𝑍 ⟨𝑋⟩𝑒 to get an expression for 𝑍 ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒,

and from this an expression for ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒:

𝑍 ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒 = ∫ [Dફ𝑖 + D(𝛿ફ𝑖)]𝑒 + 𝛿𝑒(𝑋 + 𝛿𝑋) e−𝑆[ફ𝑖 + 𝛿ફ𝑖, 𝑒 + 𝛿𝑒]

= ∫ [Dફ𝑖]𝑒(𝑋 + 𝛿𝑋) e−𝑆[ફ𝑖, 𝑒] = 𝑍𝑒 ⟨𝑋⟩𝑒 + 𝑍𝑒 ⟨𝛿𝑋⟩𝑒

(5.20)

Taking 𝑋 = 𝟙, we have 𝑍𝑒 + 𝛿𝑒 = 𝑍𝑒: the vacuum partition function is invariant under reparametrisations.
This then gives ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒 = ⟨𝑋⟩𝑒 + ⟨𝛿𝑋⟩𝑒. Meanwhile, we can apply a change of variables for the
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integral from ફ𝑖 + 𝛿ફ𝑖 to ફ𝑖 and apply (5.4) to get an equivalent expression for 𝑍 ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒:

𝑍 ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒 = ∫ [Dફ𝑖]𝑒 + 𝛿𝑒 𝑋 e−𝑆[ફ𝑖, 𝑒 + 𝛿𝑒]

= ∫ [Dફ𝑖]𝑒 + 𝛿𝑒 [𝑋 e−𝑆[ફ𝑖, 𝑒](1 + ∫ d𝑑𝑥 det 𝑒𝑎
𝜈 𝛿𝑒𝑎

𝜇 ⟨𝑇 𝜇
𝑎 𝑋⟩)]

= 𝑍𝑒 ⟨𝑋⟩𝑒 + 𝑍𝑒 ∫ d𝑑𝑥 det 𝑒𝑎
𝜈 𝛿𝑒𝑎

𝜇 ⟨𝑇 𝜇
𝑎 𝑋⟩

(5.21)

Combining this with the expression ⟨𝑋 + 𝛿𝑋⟩𝑒 + 𝛿𝑒 = ⟨𝑋⟩𝑒 + ⟨𝛿𝑋⟩𝑒 derived from (5.20), we have:

⟨𝛿𝑋⟩𝑒 = ∫ d𝑑𝑥 det 𝑒𝑎
𝜈 𝛿𝑒𝑎

𝜇 ⟨𝑇 𝜇
𝑎 𝑋⟩𝑒 (5.22)

Applying the variation (𝜕𝜈𝑒𝑎
𝜈) 𝜉𝜈 − (𝜕𝜇𝜉𝜈)𝑒𝑎

𝜈 from (5.19) and applying the flat space condition from (1.1),
we have each side of this as:

⟨𝛿𝑋⟩𝑒 = − ∑
𝑖

𝜉𝜈(𝑥𝜌)𝜕 ⟨𝑋⟩
𝜕𝑥𝜈

∫ d𝑑𝑥 det 𝑒𝑎
𝜈 𝛿𝑒𝑎

𝜇 ⟨𝑇 𝜇
𝑎 𝑋⟩𝑒 = − ∫ d𝑑𝑥 𝜕𝜇𝜉𝜈 ⟨𝑇 𝜇

𝜈 𝑋⟩ = ∫ d𝑑𝑥 𝜉𝜈𝜕𝜇 ⟨𝑇 𝜇
𝜈 𝑋⟩

(5.23)

Since this is an arbitrary reparametrisation, this gives us the conformal Ward identity for translation
invariance:

𝜕 ⟨𝑇 𝜇
𝜈 ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛)⟩

𝜕𝑥𝜇 = −
𝑛

∑
𝑖 = 1

𝛿(𝑥 − 𝑥𝑖)
𝜕 ⟨ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛)⟩

𝜕𝑥𝜈
𝑖

(5.24)

(Here, I simply replaced 𝑋 ≔ ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛) at the end.) The derivation for rotational invariance is
exactly the same as for translational invariance, except here we instead apply the infinitesimal rotation
𝑥𝜇 ↦ 𝜔𝜇

𝜈 𝑥𝜈 = 𝑔𝛼𝜈 𝜔𝜇
𝜈 𝑥𝜈. This infinitesimal rotation gives rise to the vielbein and field infinitesimal

rotations, and the respective variations:

𝑒𝑎
𝜇 ↦ 𝑒𝑎

𝜇 + 𝜔𝑎𝑏(𝑥𝜈)𝑒𝑏𝜇, ફ𝑖 ↦ ફ𝑖 − i
2𝜔𝑎𝑏(𝑥𝜈)𝑆𝑎𝑏𝑖 ફ𝑖;

𝛿𝑒𝑎
𝜈 = −𝜀𝑎

𝑐 𝜔𝑐𝑏 𝑒𝑏𝜇 − 𝜀𝑐
𝑏 𝜔𝑎𝑐 𝑒𝑏𝜇 − 𝜀𝑎

𝑐 𝑒𝑐
𝜈(𝜕𝜈 𝑒𝑏𝜇), 𝛿ફ𝑖 = 𝜔𝑎𝑏𝑆𝑎𝑏𝑖 ફ𝑖

(5.25)

Applying the same steps as (5.18)–(5.24), we get the conformal Ward identity for rotation invariance:

𝜀𝜇𝜈 ⟨𝑇 𝜇𝜈(𝑥)(ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛))⟩ = −i
𝑛

∑
𝑖 = 1

𝛿(𝑥 − 𝑥𝑖) 𝑆𝜇𝜈𝑖 ⟨ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛)⟩

= ⟨(𝑇𝜇𝜈(𝑥) − 𝑇𝜈𝜇(𝑥))(ओ̂1(𝑥1) ⋯ ओ̂𝑛(𝑥𝑛))⟩
(5.26)
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5.4 Conformal Ward Identity for Scale Invariance

For the Ward identity for scale invariance, we switch tactics and examine the case of 2D explicitly. Quoting
[5] directly10:

It is here that we must distinguish the case of two dimensions from the others. In three or
more dimensions an action cannot be invariant under a local scale transformation: The use
of tetrads and covariant derivatives allows us to define actions invariant under local rotations
of the frames, but not under local scalings. In contrast, the two-dimensional conformal group
includes local scale transformations and we may proceed as before, and end up with the
[conformal] Ward identity [for scale invariance for primary operators].

As such, we follow the derivation in [1, 2], and provide the expression in [5] at the end for reference.
Considering the contour integral of 𝜖(𝑧) 𝑇 (𝑧) inserted into the 𝑛-point function ⟨ ̂प1(𝑥1) ⋯ ̂प𝑛(𝑥𝑛)⟩ of
primaries, and applying (5.11), we have:

⟨∮
C

d𝑧
2𝜋i 𝜖(𝑧) 𝑇 (𝑧) ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩

=
𝑛

∑
𝑖 = 1

⟨ ̂प1(ઝ1, ઝ̄1) ⋯ ⎛⎜⎜
⎝

∮
C(ઝ1)

d𝑧
2𝜋i𝜖(𝑧) 𝑇 (𝑧) ̂प𝑖(ઝ𝑖, ઝ̄𝑖)

⎞⎟⎟
⎠

⋯ ओ̂𝑛(ઝ𝑛, ઝ̄𝑛)⟩

=
𝑛

∑
𝑖 = 1

∮
C(ઝ1)

d𝑧
2𝜋i𝜖(𝑧) ⟨ ̂प1(ઝ1, ઝ̄1) ⋯ ( Δप ̂प

(𝑧 − ઝ)2 + 1
𝑧 − ઝ

𝜕 ̂प
𝜕ઝ + 𝑓reg(𝑧)) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ = 0

(5.27)

Here, we used the deformation of the contour integrals in Figure 12, modified from [1]. This holds for
all 𝜖(𝑧); thus, we can pick 𝜖(𝑧) = −𝑧𝑛+1 to set this expansion equal to an expansion in the Virasoro
generators, or equivalently an expansion in 𝑇 (𝑧) itself (given (5.5)). This gives the integrand as zero,
making this expression valid identically. This gives the conformal Ward identity for scale invariance for
primary operators:

⟨𝑇 (𝑧) ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ =
𝑛

∑
𝑖 = 1

( Δप ̂प
(𝑧 − ઝ)2 + 1

𝑧 − ઝ
𝜕 ̂प
𝜕ઝ) ⟨ ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ (5.28)

Just for completeness, we briefly discuss the derivation using vielbeins, as provided in [5]. Again, we
can only restrict ourselves to primary operators, since these correspond to states |प⟩ of well-defined
scalings Δप (as discussed in §3.1)11. For these, the infinitesimal transformations 𝑒𝑎

𝜇 ↦ 𝑒𝑎
𝜇 + 𝜖(𝑥) 𝑒𝑎

𝜇 and
प𝑖 ↦ प𝑖 − 𝜖(𝑥)Δ𝑖प𝑖 yield (using the same process as (5.18)–(5.24)) the conformal Ward identity for scale
invariance as:

⟨𝑇 𝜇
𝜇 (𝑧) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ =

𝑛
∑
𝑖 = 1

𝛿(𝑧 − ઝ𝑖) Δ𝑖 ⟨ ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ (5.29)

10Again, I don’t think I can put it any more succinctly than the original source already does.
11gain quoting directly from [5], since they express it quite succinctly already, “Since we are performing an arbitrary local

scaling, only primary fields (as opposed to quasi-primary) will transform as above.”

– 37 –



Figure 12: Deformation of the contour used in (5.27) to retrieve the conformal Ward identity for scale
invariance. Modified from [1].

Finally, we apply the specific conformal transformations 𝜖(𝑧) = 1, 𝜖(𝑧) = 𝑧, and 𝜖(𝑧) = 𝑧2 to get the
global conformal Ward identities [26] for 2D, which gives us the conformal Ward identities in terms of the
Virasoro generators. In terms of these conformal transformations, the global conformal Ward identities
are given by:

𝑛
∑
𝑖 = 1

⟨𝐿−1(𝑧𝑖) ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ = 0 (5.30)

𝑛
∑
𝑖 = 1

⟨(𝐿0(𝑧𝑖) + 𝑧𝑖𝐿−1(𝑧𝑖)) ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ = 0 (5.31)

𝑛
∑
𝑖 = 1

⟨(𝐿1(𝑧𝑖) + 2𝑧𝑖𝐿0(𝑧𝑖) + 𝑧2
𝑖 𝐿−1(𝑧𝑖)) ̂प1(ઝ1, ઝ̄1) ⋯ ̂प𝑛(ઝ𝑛, ઝ̄𝑛)⟩ = 0 (5.32)

6 Operator Product Expansion and Conformal Blocks

6.1 Operator Product Expansion in Perturbative QFT

As discussed in §2.3, correlation functions of operators beyond the three-point functions are far less
constrained by conformal invariance, due to the presence of the cross-ratios (2.22); thus, very little can
be said about them by applying conformal invariance directly. However, we can use the operator product
expansion (OPE) to reduce 𝑛-point functions to sums of (𝑛 − 1)-point functions. The OPE idea originally
comes from perturbative QFT; thus, we start by introducing the OPE in perturbative QFT, before moving
onto the OPE in CFTs. Here, we follow [37].

The OPE provides a way to deal with singular expressions when examining the products of operators.
The core observation [38, 39] of the OPE is that if a product of operators म̂(𝑦𝜇) छ̂(𝑥𝜇) is analytic in
(𝑦𝜇 − 𝑥𝜇), then its Fourier transform म̂(𝑘𝜇) छ̂(0) = F{म̂(𝑦𝜇) छ̂(𝑥𝜇)} will decrease exponentially as we
take the Fourier conjugate variable 𝑘𝜇 → ∞; conversely, the singularities in म̂(𝑦𝜇) छ̂(𝑥𝜇) as 𝑦𝜇 approaches
𝑥𝜇 correspond to the leading terms in the 𝑘𝜇 → ∞ limit of म̂(𝑘𝜇) छ̂(0).

The claim of the OPE is that as 𝑦𝜇 → 𝑥𝜇, the singular part of म̂(𝑦𝜇) छ̂(𝑥𝜇) is given by a sum over other,
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purely local, operators थ̂ located at 𝑥𝜇:

lim
𝑦𝜇 → 𝑥𝜇 म̂(𝑦𝜇) छ̂(𝑥𝜇) = ∑

थ
𝑓मछथ(𝑦𝜇 − 𝑥𝜇) थ̂ (6.1)

Here, {𝑓मछथ} are singular c-number functions which together encode all of the singularity properties of
म̂(𝑦𝜇) छ̂(𝑥𝜇) in the 𝑦𝜇 → 𝑥𝜇 limit. We can see the logic of this claim by examining the Fourier transform
of म̂(𝑦𝜇) छ̂(𝑥𝜇). The Fourier transform of (6.1), including the necessary time ordering, is given by:

lim
𝑘 → 0

∫ d𝑑𝑦 T{e−i𝑘𝜇𝑦𝜇 म̂(𝑦𝜇) छ̂(𝑥𝜇)} = ∑
थ

𝑔मछथ थ̂(𝑘𝜇 = 0) (6.2)

Here, {𝑔मछथ(0)} are functions of 𝑘𝜇 corresponding to the Fourier transforms of the coefficients 𝑓मछथ. A
generic operator ओ̂ will be constructed out of the fields {Φ𝑎} that make up the theory, as well as their
𝑛th order derivatives {𝜕𝑖 ⋯ 𝜕𝑗Φ𝑎}. As ओ̂ gets more and more complex (i.e., is constructed out of more
and more products of fields and field derivatives), the strength of the singularity in 𝑓मछथ decreases. As a
result, as ओ̂ gets more complex, 𝑔मछथ decreases increasingly rapidly in the 𝑘 → ∞ limit.

We examine the presence of the local operators म̂(𝑦1), छ̂(𝑦2), ̂न1(𝑥1), and ̂न2(𝑥2) in an overall vacuum
connected Green function, where the expansions of these operators in terms of {Φ𝑎} and {𝜕𝑖 ⋯ 𝜕𝑗Φ𝑎} are
written respectively as મ(𝑦1), છ(𝑦2), ન1(𝑥1), and ન2(𝑥2). Examining this Green function where 𝑦1 and 𝑦2
approach the point x, where and {𝑥𝑖} (including 𝑥1 and 𝑥2) are a bunch of fixed points that are much
further away from 𝑦1, 𝑦2, and x than 𝑦1, 𝑦2, and x are from each other; we have:

⟨𝒯{⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0 = ∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)[⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯ ei𝑆[Φ𝑎]]

= ∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)[⋯મ(𝑦1)છ(𝑦2) ⋯ ન1(𝑥1) ન2(𝑥2) ⋯ ei𝑆[Φ𝑎]]
(6.3)

From this expression, we now construct a ball 𝐵(ર) of radius ર around 𝑦1 and 𝑦2, such that |ર| ≫ |𝑦1 − 𝑦2|
but |ર| ≪ ∣𝑥𝑖 − 𝑥𝑗∣ for all of the 𝑥𝑖s (including 𝑥1 and 𝑥2, but excluding x); this is depicted in Figure 13.
Since the action ∫ d𝑑𝑧 L(𝑧) is entirely local, we can separate the action to the region within the ball and
the region excluding it:

𝑆 = ∫ d𝑑𝑧 L(𝑧) = ∫
𝑧 ∈ 𝐵(ર)

d𝑑𝑧 L(𝑧) + ∫
𝑧 ∉ 𝐵(ર)

d𝑑𝑧 L(𝑧) (6.4)
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This lets us factorise ⟨𝒯{⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0 accordingly:

⟨𝒯{⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0

=⎛⎜⎜
⎝

∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯મ(𝑦1)છ(𝑦2) ⋯ exp
⎧{
⎨{⎩
i ∫
𝑧 ∈ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

⎞⎟⎟
⎠

⋅

⎛⎜⎜
⎝

∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯ ન1(𝑥1) ન2(𝑥2) ⋯ exp
⎧{
⎨{⎩
i ∫
𝑧 ∉ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

⎞⎟⎟
⎠

(6.5)

The overall path integral (inside and outside the ball put together) is taken over the space of 𝐶∞ functions
on the manifold the fields live on [40]; thus, the path integral over DΦ𝑎 inside 𝐵(ર) is constrained by
the boundary condition that the fields inside 𝐵(ર) must merge smoothly (to all derivative orders) with
the fields outside 𝐵(ર). Aside from this condition, however, the path integral inside 𝐵(ર) is completely
distinct from the path integral outside 𝐵(ર).

Figure 13: Constructing a ball 𝐵(ર) of radius ર around the points 𝑦1, 𝑦2, and x; such that it includes
these three points and excludes every other point that other operators are valued at.

As a result, we can express the path integral inside 𝐵(ર) in terms of the values of the fields and the field
derivatives on the surface, which, due to the boundary conditions, we can then express in terms of the
fields and the field derivatives outside 𝐵(ર) with their values extrapolated to x. If we define થ(x) as the
product of fields and field derivatives outside of 𝐵(ર) extrapolated to x, then we can express the path
integral inside 𝐵(ર) in a Taylor-Madhava series expansion in થ at x:

∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯મ(𝑦1)છ(𝑦2) ⋯ exp
⎧{
⎨{⎩
i ∫
𝑧 ∈ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

= ∑
થ

𝐶મછથ({𝑦થ} − x)થ(x) (6.6)

Here, 𝐶મછથ are the coefficients of the Taylor-Madhava expansion in થ at x. These coefficients can only
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be functions of the coordinate differences within the ball (i.e., 𝐶મછથ is a function of 𝑦1 − 𝑥, 𝑦2 − 𝑥, etc.).
Since the points {𝑥𝑖} are far outside 𝐵(ર), excluding 𝐵(ર) from the action (i.e., expressing the action as
𝑆 = ∫𝑧 ∉ 𝐵(ર) d

𝑑𝑧 L(𝑧)) has no effect on the correlation function in the limit as ર → 0. Taking this limit,
we have (6.5) given by:

lim
ર→ 0

⟨𝒯{⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0

= ⎛⎜⎜
⎝

∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯ ન1(𝑥1) ન2(𝑥2) ⋯ exp
⎧{
⎨{⎩
i ∫
𝑧 ∉ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

⎞⎟⎟
⎠

(∑
થ

𝐶મછથ({𝑦થ} − x)થ(x))

= ∑
થ

𝐶મછથ({𝑦થ} − x) ∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯ ન1(𝑥1) ન2(𝑥2) ⋯થ(x) exp
⎧{
⎨{⎩
i ∫
𝑧 ∉ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

(6.7)

As mentioned when writing (6.3), the expressions {નℓ(𝑥ℓ)} referred to the specific products of fields and
field derivatives that corresponded to the operators ̂न at 𝑥ℓ. Similarly, the expression થ(x) corresponds
to the specific product of fields and field derivatives expressing the local operator थ̂ at x, so replacing
{નℓ(𝑥ℓ),થ(x)} with { ̂नℓ(𝑥ℓ), थ̂(x)} in (6.7) finally gives us the OPE (expressed in terms of the vacuum
connected correlation function):

⟨𝒯{⋯ म̂(𝑦1) छ̂(𝑦2) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0

= ∑
થ

𝐶મછથ({𝑦થ} − x) ∫ ∏
𝑎, 𝑧

DΦ𝑎(𝑧)⎡⎢
⎣

⋯ ન1(𝑥1) ન2(𝑥2) ⋯થ(x) exp
⎧{
⎨{⎩
i ∫
𝑧 ∉ 𝐵(ર)

𝑆[Φ𝑎]
⎫}
⎬}⎭

⎤
⎥
⎦

= ∑
थ

𝐶मछथ({𝑦थ} − x) ⟨𝒯{⋯ थ̂(x) ⋯ ̂न1(𝑥1) ̂न2(𝑥2) ⋯}⟩0

(6.8)

Taking { ̂नℓ(𝑥ℓ)} = 𝟙 and adding the spin indices 𝑎, 𝑏, and 𝑐 for various (maybe different) representations
of SO(𝑑) finally gives us the direct version of the OPE:

T{म̂𝑎(𝑦1) छ̂𝑏(𝑦2)} = ∑
थ

𝐶𝑎𝑏𝑐मछथ({𝑦थ} − x) थ̂𝑐(x) (6.9)

6.2 Conformal OPE

The expression of the OPE just derived in §6.1 relied solely on the locality of the operators and the fact
that the fields are 𝐶∞ functions. Notably, this didn’t rely on the specific symmetry group the fields lived
in; as such, (6.9) is exactly as valid for CFTs, with no modifications at all. Instead, we can use the OPE
to significantly constrain 𝑛-point correlation functions for 𝑛 ≥ 4.

Before continuing, we note that the Ward identities in §5 were all, themselves, specific examples of OPEs.

In §2, we saw that the four-point function was far less constrained by conformal invariance than the two-
and three-point functions, due to the emergence of the cross ratios 𝑢 and 𝑣. This problem persists for
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all 𝑛 ≥ 4, meaning that conformal invariance could tell us very little directly about these correlation
functions. However, the OPE (6.9) allows us to express the 𝑛-point function as a sum over (𝑛 − 1)-point
functions, thereby allowing us to whittle expressions down until we get to one of the expressions in §2.

The first example of using the OPE to express the 𝑛-point function as a sum over (𝑛 − 1)-point functions
starts using (6.9) itself; in §2.1, we had conformal invariance constraining the form of the two-point
function for two general operators to be of the form (2.4). As a result, we have (6.9) given by:

⟨R{ओ̂𝑖𝑎(𝑦𝑖) ओ̂𝑗𝑏(𝑦𝑗)}⟩ = ∑
ℓ

𝐶𝑎𝑏𝑐
𝑖𝑗ℓ ({𝑦ℓ} − x) ⟨ओ̂ℓ𝑐(x)⟩ = k

∣𝑦𝑖 − 𝑦𝑗∣
Δ𝑖 +Δ𝑗

(6.10)

From §3.1, we were able to identify operators with states in the generalised Verma module, with the
spectral decomposition given by (3.8) (or, equivalently, by (3.9)). As such, we need to evaluate the
expectation values in (6.10) in the eigenbasis of the generalised Verma module. Applying (3.8)–(3.9) to
(6.10), we see the final expression in (6.10) can only be valid in general if 𝐶𝑎𝑏𝑐

𝑖𝑗ℓ has the form given by:

𝐶𝑎𝑏𝑐
𝑖𝑗ℓ = k

∣𝑦𝑖 − 𝑦𝑗∣
Δ𝑖 +Δ𝑗 −Δ𝑚

∑
ℓ, 𝑚, 𝑛

∏
{𝑚, 𝑛}

𝑐ℓ𝑚𝑛x
𝜇𝑚𝜕𝜇𝑛

= k|𝑦1 − 𝑦2|Δ𝑚 − Δ𝑖 −Δ𝑗(1 + 𝑐1x
𝜇𝜕𝜇 + 𝑐2 x

𝜇x𝜈𝜕𝜇𝜕𝜈 + 𝑐3 x
2𝜕2 + ⋯)

(6.11)

We derive this expression for the specific case of spinless primaries below. In general, the coefficients
{𝑐ℓ𝑚𝑛} depend on the specific form of ओ̂𝑖𝑎(𝑦𝑖) and ओ̂𝑗𝑏(𝑦𝑗); and depend specifically on Δ𝑖 and Δ𝑗. These
coefficients can be determined by multiplying both sides of (6.9) with a third operator ओ̂𝑚𝑑 and taking
the expectation value of the entire expression:

⟨ओ̂𝑖𝑎(𝑦𝑖) ओ̂𝑗𝑏(𝑦𝑗) ओ̂𝑚𝑑(𝑦𝑚)⟩ = ∑
ℓ

𝐶𝑎𝑏𝑐
𝑖𝑗ℓ ({𝑦ℓ} − x) ⟨ओ̂ℓ𝑐(x) ओ̂𝑚𝑑(𝑦𝑚)⟩ (6.12)

In general, this process generalises: we can employ the same procedure to reduce the 𝑛-point function
to an (𝑛 − 1)-point function, and perform this iteratively until we get a correlator in one of the forms
provided in §2. The general expression of (6.12) is given by:

⟨ओ̂𝑖𝑎(𝑦𝑖) ओ̂𝑗𝑏(𝑦𝑗) ओ̂𝑚𝑑(𝑦𝑚) ⋯ ओ̂𝑛𝑠(𝑦𝑛)⟩ = ∑
ℓ

𝐶𝑎𝑏𝑐
𝑖𝑗ℓ ({𝑦ℓ} − x) ⟨ओ̂ℓ𝑐(x) ओ̂𝑚𝑑(𝑦𝑚) ⋯ ओ̂𝑛𝑠(𝑦𝑛)⟩ (6.13)

Instead of stopping at one of the expressions in §2, if we continue this derivation all the way down to the
one-point functions (i.e., the expectation values ⟨ओ̂𝑝𝑓⟩ of individual operators ओ̂𝑝𝑓 , we note that these
are determined by dimensional analysis as:

⟨ओ̂𝑝𝑓⟩ =

⎧{{{
⎨{{{⎩

1 ओ̂𝑝𝑓 = 𝟙, CFT on flat space manifold

0 ओ̂𝑝𝑓 ≠ 𝟙, CFT on flat space manifold

𝛽−Δओ ओ̂𝑝𝑓 ≠ 𝟙, CFT on nontrivial manifold (equivalent to finite-temp. CFT)

(6.14)

– 42 –



An important consequence of this is that every 𝑛-point correlation function is determined by the conformal
dimensions {Δ𝑛}, the spins {𝑠𝑛}, and the OPE coefficients {𝐶𝑎𝑏𝑐

𝑖𝑗ℓ }. This set of information taken together
is the conformal data. In addition to the reduction procedure for the 𝑛-point function, we can extract a
Ward identity for the OPE as well; here, we follow [26]. Starting with the general expression (6.9) and
restricting ourselves to primary operators, we can insert a factor of (𝑧 − 𝑦𝑗)

𝑛 + 1 𝑇 (𝑧) on each side, and
integrate each expression for 𝑛 ≥ −1 over d𝑧 over a contour C encircling both 𝑦𝑖 and 𝑦𝑗:

∮
C

d𝑧 (𝑧 − 𝑦2)𝑛 + 1
R{𝑇 (𝑧) ̂प𝑖𝑎(𝑦𝑖) ̂प𝑗𝑏(𝑦𝑗)} = ∑

𝑘
𝐶𝑎𝑏𝑐

𝑖𝑗𝑘 ({𝑦𝑘} − x) ̂प𝑐𝑘(x) (6.15)

Applying the OPE (5.11) between the stress-energy tensor and primary operators, this gives the operator
product expansion Ward identity:

(𝐿𝑛(𝑦𝑗) +
𝑛

∑
𝑚 = −1

(𝑚 + 1
𝑛 + 1)∣𝑦𝑖 − 𝑦𝑗∣

𝑛 − 𝑚 𝐿𝑚(𝑦𝑖)) ̂प𝑖𝑎(𝑦𝑖) ̂प𝑗𝑏(𝑦𝑗) = ∑
𝑘

𝐶𝑎𝑏𝑐
𝑖𝑗𝑘 𝐿𝑛 ̂प𝑘𝑐 (6.16)

To give an explicit example of the 𝑛-point reduction procedure, we consider spinless primary operators
in (6.12) (replacing the labelling of ओ̂𝑖𝑎, ओ̂𝑗𝑏, and ओ̂𝑚𝑑 with the primary operators ̂प𝑖, ̂प𝑗, and ̂प𝑚 and
drop the spin labels on 𝐶𝑎𝑏𝑐

𝑖𝑗ℓ ). Then, the left-hand side is given by (2.17)–(2.18). For the right-hand side,
we can orthonormalise the generalised Verma module by normalising (2.13):

⟨ ̂पℓ(x) ̂प𝑚(𝑦𝑚)⟩ =
𝛿ℓ𝑚 𝛿𝑠ℓ𝑠𝑚

|x − 𝑦ℓ|
2Δℓ

(𝜕(𝜈1
̂ℐ(𝜇1 ⋯ 𝜕 𝜈𝑠) ̂ℐ𝜇𝑠) −

𝑠
∏

𝑛,𝑚 = 1
𝛿𝜇𝑛⋯𝜇𝑚

) (6.17)

Using this, the sum over ℓ condenses to a single term, giving the OPE as:

𝑓𝑖𝑗ℓ

∣𝑦𝑖 − 𝑦𝑗∣
Δ𝑖 + Δ𝑗 − Δℓ ∣𝑦𝑗 − 𝑦ℓ∣

Δ𝑗 + Δℓ − Δ𝑖 |𝑦𝑖 − 𝑦𝑘|Δ𝑖 + Δℓ − Δ𝑗
= 𝐶𝑖𝑗ℓ

∣𝑦𝑗 − 𝑦ℓ∣
−2Δℓ

(6.18)

Thus, the OPE coefficient 𝐶𝑖𝑗ℓ is given by 𝑓𝑖𝑗ℓ times a differential operator �̂�𝑖𝑗𝑘 dependent solely on
Δ𝑖, Δ𝑗, Δ𝑘. Then, by expanding both sides of (6.18) around ∣𝑦𝑖 − 𝑦𝑗∣/∣𝑦𝑗 − 𝑦ℓ∣ = 0 and equating them
term-by-term, we can determine the {𝑐ℓ𝑚𝑛}s in (6.11). For the specific case of Δ𝑗 = Δ𝑖, this gives 𝐶𝑖𝑗ℓ
as:

𝐶𝑖𝑖ℓ = 𝑓𝑖𝑖ℓ |𝑦𝑖 − 𝑦ℓ|Δℓ − 2Δ𝑖

⋅ (1 + 1
2x

𝜇𝜕𝜇 + Δℓ
8(Δℓ + 1)x

𝜇x𝜈𝜕𝜇𝜕𝜈 − Δℓ
8(2Δℓ − 𝑑 − 2)(Δℓ + 1)x

2𝜕2 + ⋯)
(6.19)

Overall, this gives us the OPE of two identical scalar primaries as:

̂प(𝑦1) ̂प(𝑦2) = ∑
ब

𝑓पपओ 𝐶𝜇1⋯𝜇s
(𝑥1 − 𝑥2) ओ̂𝜇1⋯𝜇𝑠(𝑥2) (6.20)

Before continuing, we note that when examining the OPE of two scalar operators (in general, not just
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scalar primaries), we require the operators in the expansion to be traceless, symmetric, and be of even
spin.

6.3 Conformal Blocks

Again considering the case of spinless primaries, we had the four-point function given by (2.23). Consid-
ering identical scalar primaries, we can apply (2.23) to get the simplified expression:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ∏
𝑖 < 𝑗

𝑔(𝑢, 𝑣)
∣𝑥𝑖 − 𝑥𝑗∣

2Δब
(6.21)

On the other hand, we can pair up the primaries and expanding them in OPEs:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ∑
ओ,ज

𝑓पपओ 𝑓पपज 𝐶𝑎
ओ(𝑥𝑖 − 𝑥𝑗) 𝐶𝑏ज(𝑥𝑘 − 𝑥𝑚) ⟨ओ̂𝑎(𝑥𝑘) ज̂𝑏(𝑥𝑚)⟩ (6.22)

Applying the orthonormal basis (6.17) for the generalised Verma module, this gives the four-point corre-
lator as:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ∑
ओ,ज

𝑓2
पपओ 𝐶𝑎

ओ 𝐶𝑏ज

∣𝑥𝑗 − 𝑥𝑚∣2Δब
(𝜕(𝜈1

̂ℐ(𝜇1 ⋯ 𝜕 𝜈𝑠) ̂ℐ𝜇𝑠) −
𝑠

∏
𝑛,𝑚 = 1

𝛿𝜇𝑛⋯𝜇𝑚
) (6.23)

We can define the conformal blocks / conformal partial waves, which are functions of the cross-ratios
alone, and allow for a decomposition in terms of the cross-ratios alone:

𝐶Δओ, 𝑠ओ =
∣𝑥𝑖 − 𝑥𝑗∣

Δ ∣𝑥𝑗 − 𝑥𝑚∣Δब 𝐶𝑎
ओ 𝐶𝑏ज

∣𝑥𝑗 − 𝑥𝑚∣2Δ (𝜕(𝜈1
̂ℐ(𝜇1 ⋯ 𝜕 𝜈𝑠) ̂ℐ𝜇𝑠) −

𝑠
∏

𝑛,𝑚 = 1
𝛿𝜇𝑛⋯𝜇𝑚

) (6.24)

In terms of the conformal blocks, we have 𝑔(𝑢, 𝑣) given by the conformal block decomposition:

𝑔(𝑢, 𝑣) = ∑
ओ

𝑓2
पपओ 𝐶Δओ, 𝑠ओ(𝑢, 𝑣) (6.25)

This gives the conformal block decomposition of the four-point correlator (6.23) as:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ∑
ओ

𝑓2
पपओ 𝐶Δओ, 𝑠ओ(𝑢, 𝑣)

∣𝑥𝑖 − 𝑥𝑗∣
Δब |𝑥𝑘 − 𝑥𝑚|Δब

(6.26)

The conformal block decomposition provides a crucial link between the correlation function as a whole
and conformal multiplets (3.6): each individual conformal block represents the contribution of a given
conformal multiplet to the four-point function as a whole. The conformal blocks provide a decomposition
of 𝑛-point functions in terms of the natural basis of the generalised Verma module. In the same way
that the geometric symmetry of a problem in E&M or QM provides a natural orthonormal basis for L2,
which we then use to decompose the problem, the conformal blocks are the natural basis for the specific
problem at hand, which we can then use to decompose the 𝑛-point functions.
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Examining the four-point function in radial quantisation, where our coordinate system is chosen so that
|𝑥𝑘 − 𝑥𝑚| ≥ ∣𝑥𝑖 − 𝑥𝑗∣, we have the contracted four-point function in (6.26) given by:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)}R{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩ (6.27)

Expanding this in the decomposition of the basis given in (3.7) (and relabelling the primaries used in the
expansion to ब to avoid confusion with the ̂पs) we have this given by:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} 𝟙R{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

= ∑
ब

⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} Π̂बR{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

= ∑
ब

⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)}∣𝑃𝜇𝑖
ब⟩ ⟨𝑃𝜇𝑗

ब∣R{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

(6.28)

Expressing the OPE given in (6.10) in terms of the expression for scalar primaries given in (2.12), we
have:

⟨R{ ̂प(𝑦𝑖) ̂प(𝑦𝑗)}⟩ = ∑
ℓ

𝐶𝑖𝑗ℓ({𝑦ℓ} − x) ⟨ ̂प(x)⟩ = k

∣𝑦𝑖 − 𝑦𝑗∣
2Δब

(6.29)

Applying this to (6.28), we have:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = ∑
ब

𝑘𝑖𝑗 𝑘ℓ𝑚

∣𝑥𝑖 − 𝑥𝑗∣
2Δप |𝑥𝑘 − 𝑥𝑚|2Δप

(6.30)

Applying this to (6.23), we see that the terms in the sum over ब correspond to the products of conformal
blocks, squared OPE coefficients, and conformal dimensional scalings of the distance magnitudes:

⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = 𝑓2पपब 𝐶ब(𝑢, 𝑣)
∣𝑥𝑖 − 𝑥𝑗∣

2Δप |𝑥𝑘 − 𝑥𝑚|2Δप
(6.31)

From this derivation and final expression, we see the underlying reason why 𝑔(𝑢, 𝑣) in (6.21) depended
only on the cross-ratios. From (3.6)–(3.7), we have that the conformal multiplet projectors Π̂ब provide
an expression for the basis {|फ𝑖⟩}. Thus, these projectors are conformally invariant themselves (i.e., they
commute with all of the conformal generators); as a result, they satisfy the conformal Ward identities in
§5, and in particular satisfy the conformal Ward identities for four-point functions.

6.4 Conformal Blocks from Conformal Casimir Operators

By examining the conformal quadratic Casimir operators, we can calculate the conformal blocks directly.
Here, we follow [3, 4, 41]. From §1.5, we had that the conformal algebra as isomorphic to 𝔰𝔬(𝑑 + 1, 1) in
Euclidean spacetime, with the generators ̂𝐽𝑚𝑛 defined by (1.11) and the algebra defined by (1.12). From
this, we can construct the conformal quadratic Casimir operator given by:

̂𝐽2 ≔ −
̂𝐽𝑚𝑛 ̂𝐽𝑚𝑛

2 , ̂𝐽2 ∣ओ⟩ = (Δओ(Δओ − 𝑑) + 𝑠(𝑠 + 𝑑 − 2)) ∣ओ⟩ ≕ 𝜆ओ ∣ओ⟩ (6.32)

– 45 –



We note that ∣ओ⟩ is a generic state in the generalised Verma module, rather than a primary or a basis
vector: ̂𝐽2 acts with the same eigenvalue for every state (with the eigenvalue 𝜆ओ dependent on the state’s
conformal dimension Δओ and spin 𝑠). If we define the action of ̂𝐽𝑚𝑛 on ̂प𝑖 (as a differential operator) as
𝒥𝑚𝑛𝑖, we note that the action on ∣प𝑖प𝑗⟩ = ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩ is given by 𝒥𝑚𝑛𝑖 + 𝒥𝑚𝑛𝑗:

(𝒥𝑚𝑛𝑖 + 𝒥𝑚𝑛𝑗) ∣प𝑖प𝑗⟩ = ([ ̂𝐽𝑚𝑛, ̂प(𝑥𝑖)] ̂प(𝑥𝑗) + ̂प(𝑥𝑖)[ ̂𝐽𝑚𝑛, ̂प(𝑥𝑖)]) |0⟩ = ̂𝐽𝑚𝑛 ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩ (6.33)

We note that the differential action of ̂𝐽𝑚𝑛 is given by ̂𝐽𝑚𝑛 = 𝑥𝑚 ̂𝜕𝑛 − 𝑥𝑛 ̂𝜕𝑚, due to the definition in
(1.11). In terms of 𝒥𝑚𝑛𝑗, we have the action of ̂𝐽2 on ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩ given by:

̂𝐽2[ ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩] = −(𝒥𝑚𝑛
𝑖 + 𝒥𝑚𝑛

𝑗 )(𝒥𝑚𝑛𝑖 + 𝒥𝑚𝑛𝑗)
2 [ ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩] ≕ 𝒥2

𝑖𝑗[ ̂प(𝑥𝑖) ̂प(𝑥𝑗) |0⟩] (6.34)

Applying this to each individual term in the expansion in (6.28), and noting that since ̂𝐽2 gives the same
eigenvalue for every state, it intrinsically gives the same eigenvalue when acting on the left or the right,
we have:

𝒥2
𝑖𝑗 ⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ = 𝒥2

𝑖𝑗 ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} Π̂बR{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

= ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} Π̂ब ̂𝐶[R{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}]∣0⟩

= ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} Π̂ब ̂𝐶 R{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

= 𝜆ब ⟨0∣R{ ̂प(𝑥𝑘) ̂प(𝑥𝑚)} Π̂बR{ ̂प(𝑥𝑖) ̂प(𝑥𝑗)}∣0⟩

(6.35)

(As before, 𝜆ब = (Δब(Δब − 𝑑) + 𝑠ब(𝑠ब + 𝑑 − 2)).) Applying this to (6.26) and (6.31), we have 𝐶ब(𝑢, 𝑣)
given by the eigenvalue equation:

−2((1 − 𝑣)2 − 𝑢(1 + 𝑣)) 𝜕
𝜕𝑣[𝑣𝜕𝐶ब

𝜕𝑣 ] − 2 (1 − 𝑢 + 𝑣) 𝑢 𝜕
𝜕𝑢[𝑢𝜕𝐶ब

𝜕𝑢 ] + 4 (1 + 𝑢 − 𝑣) 𝑢𝑣 𝜕2𝐶ब
𝜕𝑢𝜕𝑣

+ 2𝑢𝑑 𝜕𝐶ब
𝜕𝑢 − (Δ𝑖 − Δ𝑗 + Δ𝑘 − Δ𝑚)((1 + 𝑢 − 𝑣)(𝑢 𝜕

𝜕𝑢 + 𝑣 𝜕
𝜕𝑣) − (1 − 𝑢 − 𝑣) 𝜕

𝜕𝑣)𝐶ब

− (Δ𝑖 − Δ𝑗)(Δ𝑘 − Δ𝑚)(1 + 𝑢 − 𝑣) 𝐶ब
2 = −(Δब(Δब − 𝑑) + 𝑠ब(𝑠ब + 𝑑 − 2)) 𝐶ब

(6.36)

This gives a complicated but resolvable differential equation for 𝐶ब, which can be solved with the appro-
priate boundary condition. This is given by applying 𝑎 = 0 to (6.19), giving the boundary condition:

𝐶ब, Δब, 𝑠 = 0 =
√

𝑢Δ (𝟙 + 1
2x

𝜇𝜕𝜇 + Δℓ
8(Δℓ + 1)x

𝜇x𝜈𝜕𝜇𝜕𝜈 − Δℓ
8(2Δℓ − 𝑑 − 2)(Δℓ + 1)x

2𝜕2 + ⋯) (6.37)

Using the boundary condition (6.37), the differential equation (6.36) is solved in terms of hypergeometric
functions [41]12. Although these can be solved analytically in even dimensions, these have not yet been
solved in closed form for odd dimensions [3, 4]. Nevertheless, in odd dimension, this equation can be
exploited to perform a truncated series expansion, or alternately via recursion relations.

12I’m not reproducing the result here, only because of the length of the expressions. Even the variable transformation
introduced in [41] to condense this expression would be overly lengthy.
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6.5 Radial Quantisation of Conformal Blocks

As always, we can learn more about what’s happening by radial quantisation. We put the theory in the
coordinate system given in Figure 13L, with the corresponding radial quantisation given by Figure 13R;
both figures are taken from [3, 4], with the coordinates given in [3, 4, 42, 43]. On this coordinate system,
we see that the conformal block expansion is valid for |𝜌| < 1. In the radial quantisation, this corresponds
to putting the operators on opposing points ±n⃗ and ±m⃗ on 𝑆𝑑 − 1, with cos 𝜃 = n⃗ ⋅ m⃗, and with the time
coordinate given as always by ત = − ln 𝑟.

Figure 14: Left: Conformal transformation of coordinates used in the radial quantisation of the four-
point function ⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩.

Right: Radial quantisation of the system given by this conformal coordinate transformation. Both images
modified from [3, 4].

In terms of these coordinates and the coordinate transformation given in (3.4), we define the state |𝜓⟩
by:

|𝜓(n⃗)⟩ ≔ 2Δप

𝑓पपब
̂पcyl(0, n⃗) ̂पcyl(0, −n⃗) |0⟩ (6.38)

In terms of |𝜓(n⃗)⟩, the conformal block is then given by:

𝐶ब(𝑢, 𝑣) = ∑
ब

⟨𝜓(n⃗)|Π̂ब e−ત�̂�|𝜓(−n⃗)⟩ (6.39)

The sum ∑ब Π̂ब came from the decomposition of the basis into a sum (3.7) over projectors onto individual
conformal families indexed by the primary operators they were derived from, where in §6.2 we labelled
the primaries in this sum as ब to avoid confusion with the primaries in the four-point function. For
a given primary ब in this sum, the 𝑛th level descendant 𝑃 𝜇1 ⋯ 𝑃 𝜇𝑛 |ब⟩ will have energy Δब + 𝑛 and
spin s ∈ {𝑠 + 𝑛, 𝑠 + 𝑛 − 2, ⋯ ,max (𝑠 − 𝑛, 𝑠 − 𝑛 mod 2)}. For a descendant state |𝑛, s⟩𝜇1⋯𝜇s , rotational
invariance gives this state contributing to the component to |𝜓(n⃗)⟩ as:

⟨𝜓(n⃗)|𝑛, s⟩𝜇1⋯𝜇s = 𝑐(⨂
ℓ
n⃗𝜇ℓ −

s

∏
𝑛,𝑚 = 1

𝛿𝜇𝑛⋯𝜇𝑚
) (6.40)

(Here, 𝑐 ∈ ℂ.) This corresponds to a rank-s traceless symmetric tensor. Contracting this with its Hermitian
conjugate, we have ⟨𝜓(n⃗)|𝑛, s⟩𝜇1⋯𝜇s

𝜇1⋯𝜇𝑠
⟨𝑛, s|𝜓(m⃗)⟩ corresponding to the contraction of two traceless
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symmetric tensors; these contractions are given by Gegenbauer polynomials ℭ(𝑑 − 2)/2
s (n⃗ ⋅ m⃗) [3, 4]. This

gives the individual contribution of the descendant state |𝑛, s⟩𝜇1⋯𝜇s for 𝐵𝑛, s ∈ ℂ as:

⟨𝜓(n⃗)|Π̂ब e−ત�̂�|𝜓(−n⃗)⟩ = 𝐵𝑛, s𝑟Δब + 𝑛 ⟨𝜓(n⃗)|𝑛, s⟩𝜇1⋯𝜇s

𝜇1⋯𝜇𝑠
⟨𝑛, s|𝜓(m⃗)⟩

= 𝐵𝑛, s 𝑟Δब + 𝑛 𝐶(𝑑 − 2)/2
s (cos 𝜃)

(6.41)

Then, we have the conformal blocks given from (6.39) by the sum over ̂ब:

𝐶ब(𝑢, 𝑣) = ∑
ब

⟨𝜓(n⃗)|Π̂ब e−ત�̂�|𝜓(−n⃗)⟩

= ∑
𝑛 = 0, 2 ⋯

s∈ {𝑠 + 𝑛, 𝑠+ 𝑛 − 2, ⋯,max (𝑠 − 𝑛, 𝑠 − 𝑛 mod 2)}

𝐵𝑛, s 𝑟Δब + 𝑛 𝐶(𝑑 − 2)/2
𝑗 (cos 𝜃)

(6.42)

The leading term in this expansion comes from |ब⟩ (𝑛 = 0, s = 𝑠), which can be used as a boundary
condition for the eigenvalue equation (6.36) to determine the remaining terms. For a unitary theory, we
note that all of the coefficients 𝐵𝑛, 𝑠 must be positive, since they correspond to norms of projections of
|𝜓(n⃗)⟩ onto energy eigenstates.

7 Symmetries and Rules for the Operator Product Expansion

7.1 Crossing Symmetry

Using the OPE, our interest is in deriving constraints from consistency conditions. As mentioned in
§6.2, recursing the OPE all the way to one-point functions (6.14) gives us the important property that
all of the properties of the CFT are given by the conformal dimensions {Δ𝑛}, the spins {𝑠𝑛}, and the
OPE coefficients {𝐶𝑎𝑏𝑐

𝑖𝑗ℓ }, which together defined the conformal data. However, not any random set of
numbers corresponds to a valid CFT. In particular, we note that the pairing of operators in §6.3 was
completely arbitrary. This is true in general: we can pair up the operators practically any way we want,
and, unsurprisingly, the OPE must agree no matter what order we pick. More specifically, we require
OPE associativity, described in (7.1) and depicted in Figure 16, taken from [8]:

((ओ̂𝑖 ओ̂𝑗) ओ̂𝑘) = (ओ̂𝑖 (ओ̂𝑗 ओ̂𝑘))

𝐶𝑎𝑏𝑐
𝑖𝑗ℓ (𝑥𝑖 − 𝑥𝑗) 𝐶𝑑𝑓𝑔

ℓ𝑚𝑛(𝑥𝑗 − 𝑥𝑚) ओ̂𝑛(𝑥𝑚) = 𝐶𝑎𝑏𝑐
𝑗𝑚ℓ(𝑥𝑗 − 𝑥𝑚) 𝐶𝑑𝑓𝑔

𝑖ℓ𝑛 (𝑥𝑖 − 𝑥𝑚) ओ̂𝑛(𝑥𝑚)
(7.1)

In particular, if we take the correlation function of the ओ̂𝑖 ओ̂𝑗 ओ̂𝑘 product with ओ̂𝑚, we can freely
pair (𝑖𝑗)(𝑘𝑚); the consistency condition requires that this must be equivalent to the pairing (𝑖𝑚)(𝑗𝑘).
This defines the crossing symmetry equations, depicted in Figure 15. For a system of local operators in
flat space, the solutions to the crossing symmetry equations provide a complete, fully nonperturbative,
description of the correlation functions without the Lagrangian13. We note that these conditions are the
same as the second invariance condition given in (2.24).
13More interesting things like line and surface operators, and operators on manifolds not conformally equivalent to flat

space (such as manifolds representing the system having nonzero temperature), require more conformal data.
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Figure 15: The OPE consistency condition requires the sum over all intermediate operators ̂ब with
the pairing (ओ̂𝑖 ओ̂𝑗)(ओ̂𝑘 ओ̂𝑚) be equal to the sum over all intermediate operators ̂ब with the pairing

(ओ̂𝑖 ओ̂𝑚)(ओ̂𝑗 ओ̂𝑘).

Figure 16: The OPE is associative; i.e., we can freely pair up operators associatively to recursively
reduce the operator products. The OPE must be consistent under any set of pairings we choose.

As in §6, for a concrete example, we again use the case of the correlation function of identical scalar
primaries ̂प given by ⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩. First, examining the radial quantisation in §6.5, applying
the variable transformation 𝑢 = 𝑧 ̄𝑧 and 𝑣 = (1 − 𝑧)(1 − ̄𝑧), and then taking the specific limiting case of
𝑥𝑗 → 𝑥𝑖 with all four operators colinear (given more directly by the limit 𝑧 → 0 with 𝑧 = ̄𝑧), we note
that the blocks scale as 𝑔ब(𝑢, 𝑣) = 𝑐𝑢Δब/2 = 𝑐(𝑧 ̄𝑧)Δब/2 (for 𝑐 ∈ ℂ) in this limit.

As a result of this limit, the overall function 𝑔(𝑢, 𝑣) is dominated by 𝟙, since this is the smallest-dimension
operator in the OPE. The crossing symmetry condition corresponds to applying 𝑢 ↔ 𝑣, or equivalently
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applying (𝑧, ̄𝑧) ↦ (1 − 𝑧, 1 − ̄𝑧). Applying this, the limit 𝑧 → 0 gives the individual transformed conformal
blocks as 𝑧2Δब + ln 𝑧 +⋯, which vanishes in the 𝑧 → 0 limit. As a direct consequence, we see that the OPE
requires an infinite number of primary operators. Along this limit, the sum is dominated by operators
of dimension Δ = 𝑘/√𝑧 for 𝑘 ∈ ℂ. As a result, 𝟙 is mapped to the large Δ asymptotic behaviour of the
sum 𝑧2Δब + ln 𝑧 + ⋯. Thus the crossing equation depicted in Figure 15 is satisfied as a whole, but not
necessarily block-by-block: we must also sum over the intermediate operators that appear.

Applying the crossing symmetry depicted in Figure 15 to the four-point function expressed in terms of
conformal blocks given by (6.21), we can extract a few equivalent expressions for the four-point function,
which can give us extra consistency conditions for 2D CFTs. In §6.3, we paired up the operators as
(𝑖𝑗)(𝑘𝑚), which gave us the four-point function as (6.31). If we express 𝑥𝑖, 𝑥𝑗, 𝑥𝑘, and 𝑥𝑚 as points on
a plane which we can parametrize by Wirtinger coordinates 𝑧 and ̄𝑧, the cross-ratios (2.22) now become
√𝑢 and

√
�̄�; i.e., the

√𝑣 cross-ratio is now expressible as the ̄𝑧 version of the
√𝑢 ratio:

√𝑢 ≔ |𝑧1 − 𝑧2||𝑧3 − 𝑧4|
|𝑧1 − 𝑧3||𝑧2 − 𝑧4| ;

√𝑣 ↦
√

�̄� ≔ | ̄𝑧1 − ̄𝑧2|| ̄𝑧3 − ̄𝑧4|
| ̄𝑧1 − ̄𝑧3|| ̄𝑧2 − ̄𝑧4| (7.2)

In Wirtinger coordinates, we can factorise the four-point function into purely holomorphic and purely
antiholomorphic pieces; this comes at the cost of added complexity (since we now double the number of
factors in the numerator, but allows us to make simple transformations that give us added consistency
conditions. Expressing (6.21) in Wirtinger coordinates, we have:

⟨ ̂प(𝑧𝑖, ̄𝑧𝑖) ̂प(𝑧𝑗, ̄𝑧𝑗) ̂प(𝑧𝑘, ̄𝑧𝑘) ̂प(𝑧𝑚, ̄𝑧𝑚)⟩ = ∏
𝑖 < 𝑗

𝑔(𝑢, �̄�)
∣𝑧𝑖 − 𝑧𝑗∣

2Δब
(7.3)

Performing the same pairing as (6.31) in Wirtinger coordinates (i.e., (𝑖𝑗)(𝑘𝑚)), we have:

⟨ ̂प(𝑧𝑖, ̄𝑧𝑖) ̂प(𝑧𝑗, ̄𝑧𝑗) ̂प(𝑧𝑘, ̄𝑧𝑘) ̂प(𝑧𝑚, ̄𝑧𝑚)⟩ = 𝑓𝑖𝑗प𝑓𝑘𝑚प 𝐶ब(𝑢) ̄𝐶ब(�̄�)
∣𝑧𝑖 − 𝑧𝑗∣

2Δब |𝑧𝑘 − 𝑧𝑚|2Δब
(7.4)

Meanwhile, examining the pairing (𝑖𝑚)(𝑗𝑘) in terms of the cross-ratios, this corresponds to 𝑢 ↦ 1 − 𝑢
and �̄� ↦ 1 − �̄�:

⟨ ̂प(𝑧𝑖, ̄𝑧𝑖) ̂प(𝑧𝑗, ̄𝑧𝑗) ̂प(𝑧𝑘, ̄𝑧𝑘) ̂प(𝑧𝑚, ̄𝑧𝑚)⟩ = 𝑓𝑖𝑚प𝑓𝑗𝑘प 𝐶ब(1 − 𝑢) ̄𝐶ब(1 − �̄�)
|𝑧𝑖 − 𝑧𝑚|2Δब ∣𝑧𝑗 − 𝑧𝑘∣2Δब

(7.5)

Finally, the pairing (𝑖𝑘)(𝑘𝑚) corresponds to 𝑢 ↦ 1/𝑢 and �̄� ↦ 1/�̄�, with the overall four-point function
scaled by (𝑢�̄�)−2Δब :

⟨ ̂प(𝑧𝑖, ̄𝑧𝑖) ̂प(𝑧𝑗, ̄𝑧𝑗) ̂प(𝑧𝑘, ̄𝑧𝑘) ̂प(𝑧𝑚, ̄𝑧𝑚)⟩ =
𝑓𝑖𝑘प𝑓𝑗𝑚प𝐶ब⎛⎜

⎝

1
𝑢

⎞⎟
⎠

̄𝐶ब⎛⎜
⎝

1
�̄�

⎞⎟
⎠

𝑢2Δब �̄�2Δब |𝑧𝑖 − 𝑧𝑚|2Δब ∣𝑧𝑗 − 𝑧𝑘∣2Δब
(7.6)

These expressions must all be equal, giving the same set of consistency conditions given in Figure 15, but
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now provided in terms of the structure constant products {𝑓𝑖𝑗ब𝑓𝑚𝑘ब} and {𝑓𝑖𝑚ट𝑓𝑗𝑘ट}. These consistency
conditions are given in Figure 17.

Figure 17: OPE consistency conditions for 2D CFTs, written in terms of the structure constant products
{𝑓𝑖𝑗ब𝑓𝑚𝑘ब} and {𝑓𝑖𝑚ट𝑓𝑗𝑘ट}. These come from examining the symmetries of Figure 15 in 2D.

7.2 Fusion Rules for Unitary Minimal Models

In §3.3 and §4.5, we saw that operators whose conformal dimensions were at the unitarity bounds (3.33)
corresponded to Verma modules that were reducible representations of the Virasoro algebra. In particular,
we saw that these operators give null states whose sectors in the Verma module decoupled from the rest
of the Virasoro algebra, having no descendants and corresponding to zero values of the Kač determinant
(4.23), 𝑀𝑁(ℎ, 𝑐) = 0. As mentioned there, for 𝑐 < 1, these correspond to unitary minimal models
(with RCFTs being a subclass of these), which are notable for having additional structure properties.
By examining the Kač determinant for specific 𝑛-point functions, we can extract this structure, which
provides a lot of information about the structure of OPEs in unitary minimal models14.

Starting with the conformal Ward identity for scale invariance for primary operators (5.28), we consider
the action of 𝐿−𝑚 as differential operators on the expectation value of products of chiral spinless primaries
(i.e., spinless primaries which only depend on 𝑧); we derive this relation first. Applying (5.10) to (5.28),

14In principle, we could have done all of the calculations in this section right after §5.4. Since the conclusions will be applied
to OPEs of unitary minimal models, however, it made more sense to me to do this after introducing the concept of OPEs
generally.
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we have ⟨𝐿−𝑚 ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ given by:

⟨𝐿−𝑚 ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ = 1
2𝜋i ∮

𝒞(ઝ)

d𝑧 (𝑧 − ઝ)1 − 𝑚 ⟨𝑇 (𝑧) ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩

= −
𝑛

∑
𝑖 = 1

∮
𝒞(ઝ𝑖)

d𝑧
2𝜋i (𝑧 − ઝ)1 − 𝑚( Δ𝑖

(𝑧 − ઝ)2 + 1
𝑧 − ઝ

𝜕
𝜕ઝ𝑖

) ⟨ ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩

= −
𝑛

∑
𝑖 = 1

((1 − 𝑚)Δ𝑖
(ઝ𝑖 − 𝑧)𝑚 + (ઝ𝑖 − ઝ)1 − 𝑚 𝜕

𝜕ઝ𝑖
) ⟨ ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩

(7.7)

Here, 𝒞(ઝ) is the contour depicted in the left-hand side of Figure 18 and {𝒞(ઝ𝑖)} is the continuous
deformation of 𝒞(ઝ) to the contour set depicted in the right-hand side of this figure, where the minus
sign in the second line of (7.7) comes about from the contour deformation. Thus, we have the action of
𝐿−𝑚 defined by the differential operator 𝕃−𝑚 as:

𝕃−𝑚 ⟨ ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ = −
𝑛

∑
𝑖 = 1

((1 − 𝑚)Δ𝑖
(ઝ𝑖 − 𝑧)𝑚 + (ઝ𝑖 − ઝ)1 − 𝑚 𝜕

𝜕ઝ𝑖
) ⟨ ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ (7.8)

From this expression, we have 𝕃−1 as simply the sum of the individual derivatives with respect to ઝ𝑖:

𝕃−1 = −
𝑛

∑
𝑖 = 1

((1 − 1)Δ𝑖
(ઝ𝑖 − 𝑧)1 + (ઝ𝑖 − ઝ)1 − 1 𝜕

𝜕ઝ𝑖
) = −

𝑛
∑
𝑖 = 1

𝜕
𝜕ઝ𝑖

(7.9)

Figure 18: The contour 𝒞(ઝ) in (7.7) (on the left-hand side), which is continuously deformed into the
contour 𝒞(ઝ) (on the right-hand side) in this derivation. The change in contour directionality adds a
minus sign. Taken from [1].

We note that (7.8) isn’t exactly the same as (4.3), since (4.3) is 𝐿−𝑚 as a generator of the algebra, whereas
this is the action of 𝐿−𝑚 on chiral spinless primaries. This is analogous to how the action of Poincaré
generators appears slightly differently as a generator and as an operator on fields of various spin values.
In particular, we see that (7.8) is the same as (4.3) when Δ𝑖 = 0 in (7.8). This is unsurprising, since Δ𝑖
is the is the eigenvalue of the dilation operator, so it appears from (4.3) when considering 𝐿0.
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We can use (7.8) to re-express (4.28) as a differential equation, which will allow us to see the effect of
the level 2 null state in the operator product of chiral spinless primary fields. From (4.28), we have the
presence of the level 2 in a general operator product of chiral spinless primary fields given by:

(𝕃−2 − 3
2(2Δ + 1)𝕃−1) ⟨ ̂प(ઝ) ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ = 0

𝑛
∑
𝑖 = 1

( Δप
(ઝ𝑖 − ઝ)2 − 1

ઝ𝑖 − ઝ
𝜕

𝜕ઝ𝑖
− 3

2(2Δप + 1)
𝜕2

𝜕ઝ2
𝑖

) ⟨ ̂प1(ઝ1) ⋯ ̂प𝑛(ઝ𝑛)⟩ = 0
(7.10)

Applying this to the two-point function (2.12) gives us no meaningful information:

(𝕃−2 − 3
2(2Δ + 1)𝕃−1) ⟨ ̂प(ઝ) ̂प1(ઝ1)⟩ = 0

( Δप
(ઝ1 − ઝ)2 − 1

ઝ𝑖 − ઝ
𝜕

𝜕ઝ1
− 3

2(2Δप + 1)
𝜕2

𝜕ઝ2
1

) 𝑘
|ઝ1 − ઝ|2Δप

= 0

(Δप + 2Δप − 3
2(2Δप + 1)2Δप(2Δप + 1)) 𝑘

|ઝ1 − ઝ|2Δप
= (Δप + 2Δप − 3Δप)

k

|ઝ1 − ઝ|2Δप
= 0

(7.11)

For the three-point function (2.16), on the other hand, we can apply (7.10) to (2.16). We leave the full
calculation for the unabridged version, and simply report the results; this gives a constraints on the
conformal dimensions Δ ≔ Δप, Δ1, and Δ2, which we can write as a constraint for Δ2 in terms of Δ and
Δ1:

2(2Δ + 1)(Δ + 2Δ2 − Δ1) = 3(Δ − Δ1 + Δ2)(Δ − Δ1 + Δ2 + 1)

Δ2 = 1
6 + Δ

3 + Δ1 ± 2
3

√Δ2 + 3ΔΔ1 − Δ
2 + 3Δ1

2 + 1
16

(7.12)

We can apply these constraints to unitary minimal models by considering the general properties of Kač
determinant at level 2. From (4.22), we have the Kač matrix at level 2 as:

𝑀2(Δप, 𝑐) = ( ⟨प|𝐿2𝐿−2|प⟩ ⟨प|𝐿1𝐿1𝐿−2|प⟩
⟨प|𝐿2𝐿−1𝐿−1|प⟩ ⟨प|𝐿1𝐿1𝐿−1𝐿−1|प⟩

) (7.13)

The individual elements are:

⟨प|𝐿2𝐿−2|प⟩ = ⟨प∣ 𝑐2 + 4𝐿0∣प⟩ = 𝑐
2 + 4Δप

⟨प|𝐿1𝐿1𝐿−2|प⟩ = ⟨प|(𝐿1)(3𝐿−1)|प⟩ = 6Δप; ⟨प|𝐿2𝐿−1𝐿−1|प⟩ = ⟨प|(3𝐿1)(𝐿−1)|प⟩ = 6Δप;

⟨प|𝐿1𝐿1𝐿−1𝐿−1|प⟩ = ⟨प|𝐿1[𝐿1, 𝐿−1]𝐿1|प⟩ + ⟨प|𝐿1𝐿−1𝐿1𝐿−1|प⟩ (7.14)

= ⟨प|(𝐿1)(2𝐿0)(𝐿−1)|प⟩ + ⟨प|[𝐿1, 𝐿−1][𝐿1, 𝐿−1]|प⟩

= 2 ⟨प|𝐿1[𝐿0, 𝐿−1]|प⟩ + 4Δप
2 + 4Δप

2 = 4Δप + 8Δप
2
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The Kač determinant at level 2 is then:

det𝑀2(Δप, 𝑐) = 32Δप(Δप
2 − 5Δप

8 + Δप𝑐
8 + 𝑐

16)

= 32Δप(Δप − 5 − 𝑐 + √(1 − 𝑐)(25 − 𝑐))
16 )(Δप − 5 − 𝑐 − √(1 − 𝑐)(25 − 𝑐))

16 )
(7.15)

Following (4.26), we label these solutions by Δ𝑟, 𝑠; this labelling will help us understand how these
solutions fit into the broader concept of minimal models:

Δ1,1 = 0, Δ1,2 = 5 − 𝑐 − √(1 − 𝑐)(25 − 𝑐)
16 , Δ2,1 = 5 − 𝑐 + √(1 − 𝑐)(25 − 𝑐)

16 (7.16)

From (7.12), we already had a relationship between Δ ≔ Δप, Δ1, and Δ2. If we select Δप = Δ2,1 and
Δ1 = Δ𝑝, 𝑞, then we see that the two possibilities for Δ2 have the form Δ𝑝 − 1, 𝑞 and Δ𝑝 + 1, 𝑞. Thus, at most
two of the {𝑓𝑖𝑗𝑘} = {𝑓पप1प2

} in (2.16) will be nonzero. This, remarkably, restricts the OPEs of conformal
families. If [ ̂प] denotes the conformal family of ̂प, then the OPE of fields in [ ̂प2] = [ ̂प(2,1)] with fields in
any other [ ̂प(𝑝, 𝑞)] is given solely by fields in [ ̂प(𝑝 + 1,𝑞)] and fields in [ ̂प(𝑝 − 1,𝑞)]:

[ ̂प(2,1)][ ̂प(𝑝, 𝑞)] = ∑
𝑖

𝑐𝑖[ ̂प(𝑝 + 1, 𝑞), 𝑖] + ∑
𝑗

𝑐𝑗[ ̂प(𝑝 + 1, 𝑞), 𝑗] (7.17)

(As before, the square brackets denote that this is true for any field within the conformal family defined
by the corresponding primary. The product of the operators on the left-hand side are implicitly taken to
be inside a correlator.) This is a fusion rule for unitary minimal models, and is generally written as:

[ ̂प(2,1)] × [ ̂प(𝑝, 𝑞)] = [ ̂प(𝑝 + 1, 𝑞)] + [ ̂प(𝑝 + 1, 𝑞)] (7.18)

Unitary minimal models, as mentioned before, have a finite number of primaries. By examining higher-
level Kač determinants until we exhaust the theory, we retrieve the full fusion rules, which form a closed
algebra:

[ ̂प(𝑝1, 𝑞1)] × [ ̂प(𝑝2, 𝑞2)] =
𝑝1 + 𝑝2 − 1

∑
𝑘 = 1 + |𝑝1 − 𝑝2|
𝑘 + 𝑝1 + 𝑝2 odd

𝑞1 + 𝑞2 − 1
∑

ℓ = 1 + |𝑞1 − 𝑞2|
ℓ + 𝑞1 + 𝑞2 odd

[ ̂प(𝑘, ℓ)] (7.19)

For arbitrary RCFTs, we can generalise the fusion rules to the OPE of arbitrary conformal families.
RCFTs follow a fusion algebra, given for arbitrary conformal families [ ̂प𝑖] and [ ̂प𝑗] by:

[ ̂प𝑖] × [ ̂प𝑗] = ∑
𝑘

𝑁𝑘
𝑖𝑗[ ̂प𝑘] (7.20)

Here, 𝑁𝑘
𝑖𝑗 ∈ ℕ, with 𝑁𝑘

𝑖𝑗 = 0 only if {𝑓𝑖𝑗𝑘} = 0. This algebra is associative and commutative. From
the commutativity of the algebra, we have 𝑁𝑘

𝑖𝑗 = 𝑁𝑘
𝑗𝑖; meanwhile, from the associativity of the algebra,

we have [ ̂प𝑖] × ([ ̂प𝑗] × [ ̂प𝑘]) = ([ ̂प𝑖] × [ ̂प𝑗]) × [ ̂प𝑘]. Applying the fusion algebra to both sides of this
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expression gives the fusion sum rule:

[ ̂प𝑖] × ([ ̂प𝑗] × [ ̂प𝑘]) = [ ̂प𝑖] × (∑
ℓ

𝑁 ℓ
𝑗𝑘[ ̂पℓ]) = ([ ̂प𝑖] × [ ̂प𝑗]) × [ ̂प𝑘] = (∑

ℓ
𝑁 ℓ

𝑖𝑗[ ̂पℓ]) × [ ̂प𝑘]

∑
ℓ

𝑁 ℓ
𝑗𝑘[ ̂प𝑖] × [ ̂पℓ] = ∑

ℓ, 𝑚
𝑁 ℓ

𝑗𝑘𝑁𝑚
𝑖ℓ [ ̂प𝑚] = ∑

ℓ
𝑁 ℓ

𝑖𝑗[ ̂पℓ] × [ ̂प𝑘] = ∑
ℓ, 𝑚

𝑁 ℓ
𝑖𝑗𝑁𝑚

ℓ𝑘[ ̂प𝑚]

∑
𝑒𝑙𝑙

𝑁 ℓ
𝑘𝑗𝑁𝑚

𝑖ℓ = ∑
ℓ

𝑁 ℓ
𝑖𝑗𝑁𝑚

𝑖𝑘

(7.21)

Here, the last line is the fusion sum rule, which we derived since the second-to-last line holds in general
across any set of [ ̂प𝑚].

7.3 Fusion and Braiding with Conformal Blocks

In §7.1, we derived the crossing symmetry equations both for OPEs generally and for 2D CFTs. In
the latter, by writing 𝑛-point functions in Wirtinger coordinates, we were able to factorise them into
holomorphic and antiholomorphic pieces, at the cost of doubling the number of factors in the expressions.
For RCFTs, the symmetry equations give us extra structure, which are incredibly useful for practical
calculations. Since once again the original reference puts it best, I’ll quote [1] directly:

For RCFTs a simplification occurs, as there are only a finite number of conformal families
which can propagate as intermediate states. This means that the conformal blocks for the
three different channels form a finite-dimensional vector space. The crossing symmetry then
says that the different classes of conformal blocks are nothing else than three different choices
of basis which must be related by linear transformations.

The equivalence of the (𝑖𝑗)(𝑘𝑚) pairing (7.4) and the (𝑖𝑚)(𝑗𝑘) pairing (7.5) corresponds to a conformal
block change of basis known as the fusion matrix 𝐹 , defined as:

𝐶प(𝑢) = ∑
ट

𝐹 पट
𝑖𝑗𝑘𝑚𝐶ट(1 − 𝑢) (7.22)

We can understand this expression better graphically; this is given in Figure 19. Similarly, the equivalence
of the (𝑖𝑗)(𝑘𝑚) pairing (7.4) and the (𝑖𝑘)(𝑗𝑚) pairing (7.6) corresponds to a conformal block change of
basis known as the braiding matrix 𝐵, defined as:

𝐶प(𝑢) = ∑
ट

𝐵पट
𝑖𝑗𝑘𝑚𝐶ट(

1
𝑢) (7.23)

As before, we can understand this expression better graphically; this is given in Figure 20.

The symmetries of the five-point function under fusion and braiding give important identities. First,
we have the commutativity of the diagrams given in Figure 21 (taken from [44]). This gives rise to the
pentagon identity. If we keep the operator indices 𝑖𝑗𝑘𝑙 from left to right at the top of Figure 21 and the
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Figure 19: Fusion matrix for RCFTs, corresponding to a change of conformal block basis given by (7.22).

Figure 20: Braiding matrix for RCFTs, corresponding to a change of conformal block basis given by
(7.23).

index 𝑛 at the bottom, we have the commutativity of Figure 21 giving the pentagon identity as:

𝐹 𝑎𝑐
𝑖𝑗𝑘𝑏𝐹 𝑏𝑑

𝑐𝑚𝑖𝑛 = ∑
𝑒

𝐹 𝑏𝑒
𝑘𝑚𝑎𝑛𝐹 𝑎𝑑

𝑗𝑒𝑖𝑛𝐹 𝑒𝑐
𝑗𝑘𝑑𝑚 (7.24)

Meanwhile, we have the commutativity of the diagrams given in Figure 22 (modified from [44]). This
gives rise to the hexagon identity. Keeping the same labelling as before, we have the commutativity of
Figure 22 combined with the pentagon identity (7.24) giving the hexagon identity as:

∑
𝑒

𝐵𝑎𝑒
𝑖𝑗𝑘𝑏𝐵𝑏𝑐

𝑗𝑚𝑒𝑛𝐵𝑒𝑑
𝑘𝑚𝑖𝑐 = ∑

𝑓
𝐵𝑏𝑓

𝑘𝑚𝑎𝑛𝐵𝑎𝑑
𝑗𝑚𝑖𝑓𝐵𝑓𝑐

𝑗𝑘𝑑𝑛. (7.25)

Quite surprisingly, these relations appear in (2 + 1)-D topological theories, as identities for excitations
of Chern-Simons models..

8 Numerical Techniques for the Conformal Bootstrap

8.1 Conformal Bootstrap

Here, we briefly discuss the numerical techniques for the conformal bootstrap; as before, we primarily
follow [3, 4]. As mentioned in §6.3, the decomposition of 𝑔(𝑢, 𝑣) into conformal blocks given by (6.25)
is analogous to the expansion of a problem in E&M or QM in the natural basis of L2. This allows
us to reformulate the crossing equation depicted in Figure 15 (or, equivalently, the second condition in
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Figure 21: Pentagon identity for the fusion matrix. Here, we implicitly keep the labels 𝑖𝑗𝑘𝑙 from left to
right at the top and the index 𝑛 at the bottom. Taken from [44].

(2.24)) as a linear-algebraic expression rather than trying to solve it exactly [45]. From this, we can derive
bounds on the CFT data, and thus allows us to make statements on some of the data (in particular, the
smallest operator dimension values) without having to calculate the entire thing. Starting again with the
four-point function ⟨ ̂प(𝑥𝑖) ̂प(𝑥𝑗) ̂प(𝑥𝑘) ̂प(𝑥𝑚)⟩ of identical scalar primaries ̂प, we can rewrite the crossing
equation as:

∑
ब

𝑓2पपब (𝑣Δप 𝐶ब(𝑢, 𝑣) − 𝑢Δप 𝐶ब(𝑣, 𝑢))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹 Δप

Δब𝑠(𝑢,𝑣)

≔ ∑
ब

𝑓2पपब 𝐹 Δप
Δब𝑠ब(𝑢, 𝑣) = 0 (8.1)

Defining the functions 𝐹 Δप
Δब𝑠ब(𝑢, 𝑣) in this fashion allows us to interpret the crossing equation as an equation

for the linear dependence of vectors. Specifically, since the 𝑓2पपब are all positive, we can interpret 𝐹 Δप
Δब𝑠ब(𝑢, 𝑣)

as vectors F⃗Δप
Δब𝑠ब in the infinite-dimensional vector space of possible functions f(𝑢, 𝑣) of 𝑢 and 𝑣, with the

crossing equation corresponding to the equation that determines whether or not the {F⃗Δप
Δब𝑠ब}s are a

linearly dependent set:
∑

Δब, 𝑠ब
𝑓2पपब F⃗

Δप
Δब𝑠ब = 0 (8.2)

This may or may not be possible, depending on what the {F⃗Δप
Δब𝑠ब}s are. If they’re linearly dependent,

then this equation is satisfied and the conformal data we’re giving does correspond to a valid CFT; if
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Figure 22: Hexagon identity for the fusion and braiding matrices. Here, we use the same labelling as in
Figure 21. Modified from [44] (the original labels the braiding matrices as “R”).

they’re not linearly dependent, then it’s not. The statement of linear dependence is equivalent to stating
that there exists a separating plane 𝛼 such that all of the {F⃗Δप

Δब𝑠ब}s lie on one side of the plane; this is
depicted in Figure 23. As a result, if a separating plane exists, then the proposed conformal data does
not give a valid CFT.

Recasting the crossing equation in this way directly gives rise to an algorithm, which we can use to
implement this condition numerically:

1. Start with a proposed set of conformal data (i.e., a proposed set of conformal dimensions {Δ𝑛}, the
spins {𝑠𝑛}, and the OPE coefficients {𝐶𝑎𝑏𝑐

𝑖𝑗ℓ }).

2. Try to find a linear nonnegative functional 𝛼 that acts on all of the {F⃗Δप
Δब𝑠ब} such that for all of them,

we have 𝛼[F⃗Δप
Δब𝑠ब] ≥ 0.

3. If 𝛼 exists, then the conformal data does not give a valid CFT.

We can use the algorithm to bound the OPE coefficients as well [3, 4, 46], by examining the separating
cone Λ; the algorithm stays the same, and we have the linear dependency relation and functional relation
for a specific operator ओ̂ given respectively by:

1 − 𝑓2
पपओ 𝐹 Δप

𝑑Δओ𝑠ओ(𝑢, 𝑣) = ∑
ब

𝑓2पपब 𝐹 Δप
Δब𝑠ब(𝑢, 𝑣) = 0, Λ[𝐹 Δप

𝑑Δओ𝑠ओ] ≥ 0, Λ[1] = 1 (8.3)
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Figure 23: The linear algebraic interpretation (8.2) of the crossing equation corresponds to determining
whether a separating plane 𝛼 exists such that all of the {F⃗Δप

𝑑Δब𝑠ब}s lie on one side of the plane. If such a
plane exists, then the proposed conformal data does not give rise to a valid CFT. Taken from [3, 4].

8.2 Conformal Bootstrap Implementation

These algorithms have the obvious problem that the second step (finding 𝛼 or Λ, respectively) is incredibly
difficult in general: both the space that the {F⃗Δप

Δब𝑠ब}s live on, and the space of functionals that 𝛼 and
Λ live on are infinite-dimensional. Specifically, we have an infinite number of constraints (corresponding
to each distinct possible Δब and 𝑠ब, the first being uncountably infinite and the second being countably
infinite), as well as the space of all possible functionals. As is often the case (especially numerically), this
is remedied by restricting ourselves to finite subspaces of the infinite spaces we’re actually dealing with;
this trades off rigour in our statements for tractability. In particular, if we can’t find the functionals, we
can no longer definitely say that this corresponds to a valid set of conformal data: either it is a valid set
of conformal data, or our artificial restrictions ended up excluding the values that would have given the
seperating plane / cone.

Each of these infinities is typically handled in different ways [3, 4, 9]:

• For the continuous functional space, restrict 𝛼 (or Λ) to be determined by a linear combination of
derivatives of 𝐹(𝑧, ̄𝑧) around the crossing-symmetric point 𝑧 = ̄𝑧 = 1/2, up to a finite derivative order
𝑝:

𝛼(𝐹) = ∑
𝑚 + 𝑛 ≤ 𝑝

𝛼𝑚𝑛
𝜕𝑚

𝜕𝑧𝑚
𝜕𝑛

𝜕 ̄𝑧𝑛 𝐹(𝑧, ̄𝑧)∣
𝑧 = ̄𝑧 = 1/2

(8.4)

Thus, 𝛼 is now parametrised by a finite number of coefficients 𝛼𝑚𝑛, which can be searched over
computationally.

• For the continuous infinity of the conformal dimensions Δब:

– Discretise the set of Δबs being searched and impose an upper cutoff. This turning the search over
{Δब}s into a finite set of linear equations, which can be minimised using matrix techniques for
simultaneous linear equations; given by linear optimisation.

– Directly construct an 𝑛-simplex (i.e., 𝑛-hypertriangle) from a finite set of {F⃗Δप
Δब𝑠ब}s, and use the

continuous simplex algorithm (which uses Newton’s method to find an optimal simplex over a
continuous interval of {Δब}s and discrete set of spins).

– In addition to the finite derivative order approximation for 𝛼, approximate the 𝛼[F⃗Δप
Δब𝑠ब] ≥ 0 con-
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straints as a set of polynomial inequalities for all 𝑦 ≥ 0, and use semidefinite programming:

𝛼(𝐹) = ∑
𝑚 + 𝑛 ≤ 𝑝

𝛼𝑚𝑛 𝑃 𝑚𝑛
𝑠 (Δmin

𝑠 + 𝑦) ≥ 0 (8.5)

• For the countable infinity of spins 𝑠ब, impose a finite maximum spin.

To close out this excursion, we provide two specific examples of the bootstrap in action. For a 2D CFT
with a real-valued scalar primary प with conformal dimension Δप = 1/8, we define the vectors ⃗v and
conformal blocks 𝐶प by:

⃗v(𝐹) = (𝐻(1/2, 3/5) − 𝐻(1/2, 1/3), 𝐻(1/2, 3/5) − 𝐻(1/3, 1/4)) ∈ ℝ

𝐻(𝑧, ̄𝑧) ≔ 𝐹(𝑢, 𝑣)
𝑢Δप − 𝑣Δप

∣
Δप = 1/8

, 𝑢 = 𝑧 ̄𝑧, 𝑣 = (1 − 𝑧)(1 − ̄𝑧),

𝐶प = 𝑘+(𝑧) 𝑘−( ̄𝑧) + 𝑘−(𝑧)𝑘+( ̄𝑧), 𝑘± ≔ 𝑥(Δप ± 𝑠प)/2
2𝐹1(Δप ± 𝑠प

2 , Δप ± 𝑠प
2 , Δप ± 𝑠प, 𝑥)

(8.6)

As discussed in §8.1, the vectors ⃗v(𝐹) defined this way sum to zero (i.e., are linearly dependent) only
if we have a valid CFT with that corresponding conformal data. The plots of the vanishing { ⃗v(𝐹)} are
given in Figure 24, with the stress-energy tensor identified amongst the possible operators, as well as the
separating plane and the solutions on a different side of the plane as the rest of the possible theories.

Figure 24: Plots of vanishing { ⃗v(𝐹)}, corresponding to valid sets of conformal data. Larger dots corre-
spond to vectors located at the unitarity bound Δप = 𝑠प, with the stress-energy tensor प = 𝑇𝜇𝜈 identified
as a primary operator. The thicker region of the curve corresponds to a different half-plane (identified by
the dashed line) from the remaining operators. Taken from [3, 4].
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More generally, we can use the bootstrap technique to search for valid CFTs across smallest scaling
dimension, and combine this technique with other properties (such as specific symmetries) to further
restrict the space of theories being searched. As an example, restricting ourselves to ℤ2 theories with odd
primary प, we can pick a value of the minimum scaling dimension Δ0 such that all of the scalars in the
प × प OPE have dimension Δ ≥ Δ0. Then, applying the finite derivative power technique (8.4), we can
identify theories based on the power of Δप as a function of Δ0; these are shown in Figure 25. Notably,
we see that the very physically valuable example of the 2D Ising model corresponds to a kink in the
allowable region boundary as we increase the derivative power; this interest in kinks is a general feature
of the numerical bootstrap approach [3, 4].

Figure 25: Upper bounds on the dimension Δ0 of the smallest dimension scalar primary in the प × प
OPE as a function of Δप (labelled here as Δ𝜙). Λ here denotes the power 𝑝 of the derivative in (8.4);
several different values are provided, with the light blue region corresponding to the allowed theories
underneath the largest power (𝑝 = 28). The dashed line denotes the lowest-dimension scalar primary in
the free boson model, whose scalar primary operators are given by cos (𝑘प). The 2D Ising model, as well
as certain unitary minimal models, have been identified. Taken from [3, 4].

9 Chern-Simons Theory and CFTs

This section discusses Chern-Simons theory, a type of topological quantum field theory that arises as the
effective theory of strongly correlated electrons in fractional quantum Hall states. We might ask why this
seemingly-unrelated theory is being discussed in a discussion of CFT; however, we’ll see that all of the
properties of Chern-Simons theory come from CFT, and in particular CFT calculations will allow us to
solve any problem we have involving Chern-Simons.

9.1 Chern-Simons and the Winding Number

A topological quantum field theory is a physical theory described by a Hamiltonian and/or a Lagrangian
density in which all quantities of the system depend only on topological invariants. The statement that
every quantity depends solely on topological invariants is equivalent to saying that all observables must
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be independent of any local quantities. Thus, nothing can depend on changes of the metric tensor 𝑔𝜇𝜈,
since 𝑔𝜇𝜈 defines the local properties of the space that the theory lives on.

We can make this statement concrete by considering the stress-energy tensor 𝑇 𝜇𝜈, defined as the functional
derivative of the action 𝑆 with respect to the metric tensor:

𝑇 𝜇𝜈 ≔ 𝛿𝑆
𝛿𝑔𝜇𝜈

(9.1)

Then, saying that every physical quantity must be independent of local quantities, and must depend only
on topological invariants, is equivalent to saying that the variation of 𝑆 with respect to 𝑔𝜇𝜈 is necessarily
zero. In other words, we always have 𝑇 𝜇𝜈 = 0. This might be concerning at first: if every component of the
stress-energy tensor is always zero, then the energy – the 𝑇 00 component – must also always be zero, and
thus the Hamiltonian (the quantum mechanical energy operator) must always be zero as well. However,
we know that a Lagrangian constructed solely out of 𝑛-forms will also be invariant under changes of 𝑔𝜇𝜈
[47, 48].

If we try to build 𝑛-forms out of a generic gauge field 𝐴𝜇, we can perhaps hope that we can construct
a Lagrangian that has some nonzero physics. For a Lagrangian to represent valid physics, at least one
term must have spacetime derivatives (to represent kinetic energy), and this term must yield nonzero
physics by itself. Thus, the simplest possible 𝑛-form we can start with is the exterior derivative d𝐴; i.e.,
a 2-form. For 𝑛 = 2, we have either d𝐴 = 𝜀𝜇𝜈𝜕𝜇𝐴𝜈 or 𝐴 ∧ 𝐴 = 𝜀𝜇𝜈𝐴𝜇𝐴𝜈. For d𝐴, Stokes’ theorem gives
us ∫ℳ d𝐴 = ∫𝜕ℳ 𝐴 over any manifold ℳ; thus, all of the information of the theory lives on the boundary
𝜕ℳ of the manifold ℳ. For manifolds without boundary, 𝐴 is necessarily zero. Even for manifolds
with boundary, however, this term gives zero: since 𝐴𝜇 is a gauge field, we can always find a gauge
transformation that makes 𝐴𝜇 vanish no matter what 𝐴𝜇 we write down.

For 𝑛 = 3, on the other hand, the two possibilities are 𝐴∧d𝐴 = 𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌 or 𝐴∧𝐴∧𝐴 = 𝜀𝜇𝜈𝜌𝐴𝜇𝐴𝜈𝐴𝜌.
In isolation, the first term gives rise to nonzero physics; combining it with the second term gives a different
(but closely related) nonzero physical model generalizing the physics of the first term. The first term is
the Abelian Chern-Simons (ACS) theory; ℒACS = 𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌. Combining the first and second terms,
meanwhile, gives us the non-Abelian Chern-Simons (NACS) theory [49–53] over the manifold ℳ, given
by the Lagrangian:

𝑆NACS = ∫
ℳ

d𝑑𝑥 ℒNACS = 𝑘
4𝜋 ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝐴𝜇𝜕𝜈𝐴𝜌 − 2i
3 𝐴𝜇𝐴𝜈𝐴𝜌] (9.2)

(Here, 𝐴𝜇 ≔ 𝐴𝑎
𝜇त𝑎 is defined over the Lie group 𝐺, with corresponding Lie algebra 𝔤. त𝑎 ∈ 𝔤 are the

generators of 𝐺 with commutation relation [त𝑎, त𝑏] = i𝑓𝑎𝑏𝑐त𝑐, and the trace in 𝑆NACS is in the algebra 𝔤.)
In the rest of this section, we will focus on the NACS Lagrangian specifically (and drop the “NA”), due
to its generality: everything that we derive for NACS (and the properties that relate NACS to conformal
field theories and holography) will also be true for ACS.

Before continuing, we note that we constructed the Chern-Simons Lagrangians out of 3-forms. As a result,
this Lagrangian can only be defined on odd-dimensional manifolds. Physically, this means we require an
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even number of dimensions plus one time dimension. Although Chern-Simons theory is of some interest
to the physics of fundamental particles and strings, we can also recognize this as an effective theory
for two-dimensional systems; i.e., a Lagrangian that emerges from strong electron-electron correlations
in condensed matter systems where electron motion is confined by a strong confining potential to two
spatial dimensions. In fact, Chern-Simons theories are precisely the effective theories that emerge from
the collective fermion behavior of electrons in fractional quantum Hall states [52, 54–56]. The detailed
physics of the fractional quantum Hall states will be skipped here, since it’s not relevant to examining
the properties of Chern-Simons models15.

As always, we can construct the path integral to determine the physical quantities. Applying the NACS
Lagrangian (9.2) to the definition of the path integral given by 𝑍 = ∫D𝐴𝜇 exp{i𝑆/ℏ}, this gives:

𝑍CS = ∫D𝐴𝜇 exp{ i𝑆CS
ℏ } = ∫D𝐴𝜇 exp

⎧{
⎨{⎩

−i𝑘
4𝜋ℏ ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝐴𝜇𝜕𝜈𝐴𝜌 − 2i
3 𝐴𝜇𝐴𝜈𝐴𝜌]

⎫}
⎬}⎭

(9.3)

For NACS to be a valid physical theory, we require that the path integral remain invariant under gauge
transformations; in other words, under the gauge transformation, the path integral must acquire no more
than an overall phase e2𝑛𝜋i = 1 (with 𝑛 ∈ ℤ) to 𝑍. For 𝑔 ∈ 𝐺, the gauge transformation for 𝐴𝜇 is given
by 𝐴𝜇 ↦ 𝑔−1𝐴𝜇𝑔 + i𝑔−1𝜕𝜇𝑔. Under this transformation, the Lagrangian transforms as:

𝑆CS ↦ 𝑆CS + 𝑘
4𝜋 ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌(𝜕𝜇Tr[(𝜕𝜈𝑔)𝑔−1𝐴𝜌] + 1
3Tr[𝑔

−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜈𝑔)𝑔−1(𝜕𝜌𝑔)]) (9.4)

For the path integral to remain invariant under this transformation, the extra terms in the action must
contribute an overall phase to the path integral:

𝑍 = ∫D𝐴𝜇 exp{ i𝑆CS
ℏ } ⟼

∫D𝐴𝜇 exp
⎧{
⎨{⎩

i𝑆CS
ℏ + i𝑘

4𝜋ℏ ∫
ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 𝜕𝜇Tr[(𝜕𝜈𝑔)𝑔−1𝐴𝜌] + i𝑘
12𝜋ℏ ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜈𝑔)𝑔−1(𝜕𝜌𝑔)]
⎫}
⎬}⎭

⟼ e2𝑛𝜋i e2𝑚𝜋i ∫D𝐴𝜇 exp{ i𝑆CS
ℏ }

We thus require both terms to be integers, in order for this transformation to contribute nothing more
than an overall phase to the path integral. Focusing first on the second term in (9.4) induced by the
gauge transformation, we can define this term as proportional to the winding number:

𝑤(𝑔) = 1
24𝜋2ℏ ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜈𝑔)𝑔−1(𝜕𝜌𝑔)] (9.5)

If we have 𝐺 = SU(𝑁), the winding number must be an integerThis then forces 𝑘 ∈ ℤ. We note that any
15In general, this is the advantage of effective field theories: we can write down Lagrangians that completely capture the

physics at the scale we’re looking at, without having to worry about the microscopic dynamics.
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𝑤(𝑔) ∈ ℤ and 𝑘 ∈ ℤ will leave the path integral invariant. In terms of 𝑤(𝑔) the overall transformations
to 𝑆CS for any 𝑤(𝑔), 𝑘 ∈ ℤ is given by:

𝑆CS ↦ 𝑆CS + 𝑘
4𝜋 ∫

ℳ

d𝑑𝑥 (𝜕𝜇Tr[𝜀𝜇𝜈𝜌(𝜕𝜈𝑔)𝑔−1𝐴𝜌] + 2𝜋ℏ𝑘𝑤(𝑔)) + 𝑘
4𝜋 ⋅ 1

3 ⋅ 24ℏ𝜋2

= 𝑆CS + બ𝜕ℳ + 2𝜋ℏ𝑘𝑤(𝑔)
(9.6)

(In the first line, we also pulled 𝜀𝜇𝜈𝜌 into the overall derivative for the first term in (9.4), and wrote it as
બ(𝜕ℳ), in preparation for looking at that term shortly.) The corresponding transformation to 𝑍 is then:

𝑍 = ∫D𝐴𝜇 exp{ i𝑆CS
ℏ } ↦ ∫D𝐴𝜇 exp{ i𝑆CS

ℏ + 2𝜋iℏ𝑘𝑤(𝑔)
ℏ } = e2𝜋i𝑘𝑤(𝑔) ∫D𝐴𝜇 exp{ i𝑆CS

ℏ } (9.7)

The winding number provides a concrete sense of what is meant by a “large” gauge transformation: a
gauge transformation that gives 𝑤(𝑔) ∈ ℤ ∖ 0 will keep the path integral the same, but not the action
itself. Large gauge transformations wind around the spacetime manifold ℳ; this is depicted in Figure 26.

Figure 26: A large gauge transformation (orange) can wind around a compact manifold (blue) multiple
times. The winding number (9.5) counts the number of times this transformation wraps around the
manifold.

Ordinarily, (9.7) also gives us a condition on 𝑘: since we know 𝑤(𝑔) ∈ ℤ, we’re required to have 𝑘 ∈ ℤ
in order to keep the states supporting the Chern-Simons theory from failing. (This is the origin of
fractionalized quantum Hall conductance.) Conversely, we can interpret (9.7) as a condition on gauge
transformations: for fixed 𝑘, 𝑤(𝑔) ∈ ℤ, anything that contributes a large gauge transformation (in the
sense of changing the value of 𝑤(𝑔) by an integer) can keep the Chern-Simons states from failing but can
mess up the internal dynamics of the theory.

9.2 Chern-Simons and Wess-Zumino-Novikov-Witten Theories

Turning our attention now to the first term in (9.4), which we wrote in (9.6) as બ𝜕ℳ, we saw there
that we could pull 𝜀𝜇𝜈𝜌 inside the derivative; i.e., the entirety of બ𝜕ℳ is a derivative term. Again by
Stokes’ theorem, we have ∫ℳ 𝜕𝜇𝑓 = ∫𝜕ℳ 𝑓 ; i.e., this entire term lives on the boundary of ℳ. In quantum
field theory, we would ordinarily set the boundary to zero, making this vanish identically; however, in a
condensed matter system, we can no longer do this. Instead, we can cycle through the terms in the trace
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(pulling 𝜀𝜇𝜈𝜌 back out of the trace) and integrate by parts to get:

𝑘
4𝜋 ∫

ℳ

d𝑑𝑥 𝜕𝜇Tr[𝜀𝜇𝜈𝜌(𝜕𝜈𝑔)𝑔−1𝐴𝜌] = 𝑘
4𝜋 ∫

𝜕ℳ

d(𝑑 − 1)𝑥Tr[𝜀𝜇𝜈𝜌(𝜕𝜈𝑔)𝑔−1𝐴𝜌]

= 𝑘
4𝜋 ∫

𝜕ℳ

d(𝑑 − 1)𝑥 𝜀𝜇𝜈𝜌 Tr[𝑔−1𝐴𝜌(𝜕𝜈𝑔)]

= 𝑘𝜆
4𝜋 ∫

𝜕ℳ

d(𝑑 − 1)𝑥Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜇𝑔)]

(9.8)

(Here, 𝜆 ∈ ℝ.)

It might look as though we’ve swapped one inscrutable expression for another in doing this. However, this
term is a very famous model, the nonlinear sigma model (NLSM) [57], which exhibits classical conformal
symmetry. The emergence of a field theory with classical conformal symmetry at the boundary term
of Chern-Simons strongly suggests that states at the edge of Chern-Simons theories are conformal field
theories (CFTs). The fact that this was derived from the first term in (9.4); i.e., the kinetic term, which
we need to be nonzero in the Lagrangian to have a sensible theory, suggests that this is a general property
of Chern-Simons theories (both Abelian and non-Abelian). These suspicions are enhanced when we put
the final form of the boundary variation in (9.8) back into the variation in (9.4):

𝛿𝑆CS = 𝑘𝜆
4𝜋 ∫

𝜕ℳ

d(𝑑 − 1)𝑥Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜇𝑔)] + 𝑘
12𝜋 ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜈𝑔)𝑔−1(𝜕𝜌𝑔)] (9.9)

This is, itself, the action for a specific class of CFTs called the Wess-Zumino-Novikov-Witten (WZNW)
theories. Explicitly, this tells us that the boundaries of NACS theories are WZNW CFTs, whose behaviour
(conserved charges, currents, etc.) depend on the winding number. (This is, in fact, true for abelian Chern-
Simons as well.) 𝑘 is, specifically, the WZNW central charge, which tells us the specific kind of WZNW
model we’re dealing with.

By itself, the derivation of (9.9) from (9.4) is already quite powerful: it tells us that the properties of
the WZNW CFT help determine essential properties of NACS, and vice-versa. In particular, we see that
every Chern-Simons model has a WZNW CFT associated with it on its edges, and that large NACS gauge
transformations in the bulk (ℳ) can change the values of WZNW currents on the boundary (𝜕ℳ). The
relation between the bulk theory and the boundary theory is even stronger, however, which we can see
by examining the Chern-Simons wavefunctions in 𝑑 = 2 + 1 (i.e., the Chern-Simons wavefunctions in two
spatial and one time dimension).

Writing (9.2) in 𝑑 = 2 + 1 explicitly in terms of its individual components, writing ℳ = Σ × ℝ (where
Σ is our 2D planar surface with boundary 𝜕Σ and ℝ is time), and fixing the gauge as 𝐴0 = 𝜑CS = 0, we
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have:

𝑆CS = 𝑘
4𝜋 ∫

Σ × ℝ

d3𝑥Tr[𝐴0(𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖 + 𝐴𝑖𝐴𝑗 − 𝐴𝑗𝐴𝑖) − 𝐴𝑖
d𝐴𝑗
d𝑡 + 𝐴𝑗

d𝐴𝑖
d𝑡 + 2i

3 𝐴0𝐴𝑖𝐴𝑗]

𝑆CS, 𝐴0 = 0 = 𝑘
4𝜋 ∫

Σ × ℝ

d3𝑥Tr[−𝐴𝑖
d𝐴𝑗
d𝑡 + 𝐴𝑗

d𝐴𝑖
d𝑡 ] = − 𝑘

4𝜋 ∫
Σ × ℝ

d3𝑥 𝜀𝑖𝑗 Tr[𝐴𝑖
d𝐴𝑗
d𝑡 ]

(9.10)

We note that the final expression comes from the kinetic term in (9.2), so this is the (2 + 1)-d Lagrangian
for both the abelian and non-Abelian Chern-Simons theories. From the final expression, we can directly
write down the Poisson bracket and canonical commutation relation (CCR):

{𝐴𝑖( ⃗x), 𝐴𝑗( ⃗y)} = 𝜀𝑖𝑗 𝛿𝑎𝑏 𝛿2( ⃗x− ⃗y), [𝐴𝑖( ⃗x), 𝐴𝑗( ⃗y)] = 2𝜋i
𝑘 𝜀𝑖𝑗 𝛿𝑎𝑏 𝛿2( ⃗x− ⃗y) (9.11)

(Here, 𝛿𝑎𝑏 is over the algebra indices in 𝔤.) A notable curiosity is that the components of 𝐴𝜇 are canonically
conjugate to each other.

We could, in principle, try to construct the Chern-Simons wavefunctions from the Hamiltonian. However,
from (9.10) and the fact that the components of 𝐴𝜇 are canonically conjugate to each other, we see that
the Lagrangian is already in the form 𝐿 = 𝜋 ̇ઢ (where 𝜋 is the canonical conjugate momentum of ઢ and
̇ઢ is the time derivative of ઢ). This gives the Hamiltonian 𝐻 = 𝜋 ̇ઢ − 𝐿 = 0, as we expect from requiring

𝑇 𝜇𝜈 = 0 earlier.

Luckily, we can also construct the wavefunctions from the CCR, which gives us a crucial result. Without
loss of generality, we can select 𝐴𝑖 as the “coordinate” and 𝐴𝑗 as the “conjugate momentum”. Thus, 𝐴𝑗
acts on wavefunctions in “position” space as functional derivatives with respect to 𝐴𝑖:

𝐴𝑗 |𝜓(𝐴𝑖)⟩ = −2𝜋i
𝑘

𝛿 |𝜓⟩
𝛿𝐴𝑖

(9.12)

Next, we can consider the field strength tensor 𝐹𝑖𝑗, which in terms of (9.12) explicitly has the form:

𝐹𝑖𝑗 = 𝜕𝑖𝐴𝑗 − 𝜕𝑗𝐴𝑖 + [𝐴𝑖, 𝐴𝑗] = −2𝜋i
𝑘 ( 𝜕

𝜕𝑥𝑖
𝛿

𝛿𝐴𝑖
− 𝜕

𝜕𝑥𝑗 𝐴𝑖) − 4𝜋2

𝑘2 (𝐴𝑖
𝛿

𝛿𝐴𝑖
− 𝛿

𝛿𝐴𝑖
𝐴𝑖) (9.13)

By definition, 𝐹𝑖𝑗 must generate unitary gauge transformations 𝑈 on Σ:

𝑈 = exp{i∫ d3𝑥 𝜃𝑖𝑗𝐹𝑖𝑗} (9.14)

(Here, 𝜃𝑖𝑗 is the tensor of infinitesimal parameters corresponding to the gauge transformation strength.)
Since 𝑈 is a gauge transformation, on physical states, we require 𝑈 = 𝟙:

𝑈 |𝜓(𝐴𝑖)⟩ = exp{i∫ d3𝑥 𝜃𝑖𝑗𝐹𝑖𝑗} |𝜓(𝐴𝑖)⟩ = 𝟙 |𝜓(𝐴𝑖)⟩ = |𝜓(𝐴𝑖)⟩ (9.15)

Now, taking the derivative 𝜕𝑘 of (9.15) will give us back 𝐹𝑖𝑗, and gives us that the action of 𝐹𝑖𝑗 on physical
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states |𝜓(𝐴𝑖)⟩ is zero; which we can combine with (9.13) to get a functional differential equation:

𝜕[𝑈 |𝜓(𝐴𝑖)⟩]
𝜕𝑥𝑘 = 𝜕𝑈

𝜕𝑥𝑘 |𝜓(𝐴𝑖)⟩ + 𝑈 𝜕 |𝜓(𝐴𝑖)⟩
𝜕𝑥𝑘 = 𝜕 |𝜓(𝐴𝑖)⟩

𝜕𝑥𝑘

𝜕
𝜕𝑥𝑘 [exp{i∫ d3𝑥 𝜃𝑖𝑗𝐹𝑖𝑗}] |𝜓(𝐴𝑖)⟩ + 𝟙𝜕 |𝜓(𝐴𝑖)⟩

𝜕𝑥𝑘 = 𝜕 |𝜓(𝐴𝑖)⟩
𝜕𝑥𝑘

𝜃𝑖𝑗𝐹𝑖𝑗 |𝜓(𝐴𝑖)⟩ + 𝜕 |𝜓(𝐴𝑖)⟩
𝜕𝑥𝑘 = 𝜕 |𝜓(𝐴𝑖)⟩

𝜕𝑥𝑘

𝐹𝑖𝑗 |𝜓(𝐴𝑖)⟩ = −2𝜋i
𝑘 ( 𝜕

𝜕𝑥𝑖
𝛿 |𝜓(𝐴𝑖)⟩

𝛿𝐴𝑖
− 𝜕[𝐴𝑖 |𝜓(𝐴𝑖)⟩]

𝜕𝑥𝑗 ) − 4𝜋2

𝑘2 (𝐴𝑖
𝛿 |𝜓(𝐴𝑖)⟩

𝛿𝐴𝑖
− 𝛿 |𝜓(𝐴𝑖)⟩

𝛿𝐴𝑖
𝐴𝑖) = 0

( 𝜕
𝜕𝑥𝑖

𝛿
𝛿𝐴𝑖

+ 𝜕
𝜕𝑥𝑖 𝐴𝑖 − i𝑘

2𝜋 [𝐴𝑖,
𝜕

𝜕𝐴𝑖
])

(9.16)

(In writing the second-to-last line, 𝐹𝑖𝑗 |𝜓(𝐴𝑖)⟩ = 0, we used the fact that 𝜃𝑖𝑗 are parameters; i.e., not
dependent on the “coordinate” 𝐴𝑖.)

This is a functional differential equation that we can solve to get |𝜓(𝐴𝑖)⟩, the Chern-Simons wavefunctions.
We can either solve this the hard way (directly) or a much easier way, by using the connection to the
WZNW CFT from earlier and seeing if we can gain any insight from that. Remarkably, this differential
equation is directly solved by the WZNW path integral, meaning that the Chern-Simons wavefunctions
are, identically, the WZNW path integrals:

|𝜓CS(𝐴𝑖)⟩ = ∫ 𝒟𝑔 exp
⎧{
⎨{⎩

𝑘𝜆
4𝜋 ∫

𝜕ℳ

d(𝑑 − 1)𝑥Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜇𝑔)]

+ 𝑘
12𝜋 ∫

ℳ

d𝑑𝑥 𝜀𝜇𝜈𝜌 Tr[𝑔−1(𝜕𝜇𝑔)𝑔−1(𝜕𝜈𝑔)𝑔−1(𝜕𝜌𝑔)] + 𝑘 ∫
ℳ

d𝑑𝑥Tr[𝐴𝜇(𝜕𝜇𝑔)𝑔−1]
⎫}
⎬}⎭

(9.17)

The importance of this result is difficult to overstate, both for topological quantum computation and for
physics in general. All of the properties of the system can be determined by examining the time evolution
of the system’s wavefunction spectrum, or by examining the path integral of the system. (9.17) explicitly
gives us a correspondence between the Chern-Simons wavefunctions and the WZNW path integrals; thus,
computing any quantity in a Chern-Simons theory automatically computes a specific quantity in a cor-
responding WZNW theory, and vice versa, and properties of the Chern-Simons theory determine the
corresponding WZNW theory, and vice-versa. This is a much stronger relationship than (9.9), and one of
the strongest statements in physics; this is the bulk-boundary CS-WZNW correspondence. As a result,
when trying to calculate the properties of CS theories, we can instead calculate properties of WZNW
theories or vice-versa.

9.3 Anyons in 2D

As mentioned in §9.2, the CS-WZNW correspondence (9.17) tells us that the properties of the Chern-
Simons theory and spectrum are uniquely specified by the corresponding WNZW theory. The particle
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excitations of (2 + 1)-d Chern-Simons theory are anyons, whose properties are entirely determined by
the boundary WNZW theory. These are a class of particle unique to (2 + 1) dimensions, which have a
different type of exchange statistics than bosons and fermions. In particular, whereas bosons acquire a
positive sign upon two successive interchanges and fermions acquire a minus sign, anyon exchange involves
a more general phase factor ei𝜃 for any 𝜃 ∈ ℝ (hence the name anyon).

We can understand this heuristically first. In a system with identical particles, we can define an exchange
operator ̂𝐸 as an operator that swaps two indistinguishable particles: ̂𝐸 |1, 2⟩ = |2, 1⟩. Then, applying

̂𝐸 twice gives us the same state: ̂𝐸2 |1, 2⟩ = |1, 2⟩. Thus, the eigenvalues of ̂𝐸2 are ei𝜃 for any real angle
𝜃 ∈ ℝ. We can think of a single application of ̂𝐸 as equivalent to a half-circle rotation followed by a
translation of both:

Figure 27: For indistinguishable particles in any dimension, a single exchange operation corresponds to
a rotation of one particle around the other, followed by a translation of both. Modified from [50].

In this framework, ̂𝐸2 corresponds to rotating particle 2 completely around particle 1 (or vice versa),
with the path of particle 2 creating a loop around particle 1:

Figure 28: In light of Figure 27, two successive exchange operations correspond to looping one particle
around the other.

This loop defines a plane, with particle 1 coplanar with the loop. In three (or more) dimensions, we can
continuously deform the loop out of the plane, and contract it down to a single point. Conversely, in two
dimensions, we can’t, and particle 1 serves as a fundamental obstruction to this contraction:

Figure 29: Circling particle 2 around particle 1 creates a loop that defines a plane, with particle 1
coplanar to the plane. In 𝑑 ≥ (3 + 1), we can continuously deform this loop out of the plane and contract
it to a point, which is not possible in 𝑑 = (2 + 1).

Quite surprisingly, this argument is not only heuristic, but indeed a genuine property of the path integral.
For a general system (i.e., a system with an as-of-yet-unspecified Lagrangian ℒ in arbitrary dimension),
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we can consider the position-space path integral where we specify the endpoints as equal to the starting
points, such that 𝑥𝑓

𝜇 = 𝑥𝑖
𝜇. Thus, the time evolution gives rise to a loop in position space:

𝑍 = ∫
𝑥𝑓

𝜇 = 𝑥𝑖
𝜇

𝑥𝑓
𝜇, 𝑥𝑖

𝜇

𝒟𝑥𝜇 exp{ i
ℏ ∫ d𝑑𝑥𝜇 ℒ} (9.18)

We can characterise the loop 𝑥𝑓
𝜇 = 𝑥𝑖

𝜇 in terms of their homotopy class [50]. If two loops (or, in general
in any topology, two paths) can be continuously deformed into each other, they’re considered homo-
topic (or, equivalently, homotopically equivalent or in the same homotopy class); the set of all homotopy
classes forms the fundamental group 𝜋1. Since 𝜋1 forms a transformation group on the measure 𝑥𝜇, we
can factorise the path integral by a one-dimensional complex-valued irreducible representation of 𝜋1 (if
such a representation exists, which it does):

𝑍 = ∑
અ∈ 𝜋1

𝜒(અ) ∫
𝑥અ,𝑓

𝜇 = 𝑥અ,𝑖
𝜇

𝑥અ,𝑓
𝜇, 𝑥અ,𝑖

𝜇

𝒟𝑥અ𝜇 exp{ i
ℏ ∫ d𝑑𝑥અ𝜇 ℒ} (9.19)

We can define the particles as a collection of hard / impenetrable particles by defining their positions
⃗x𝑖 ∈ ℝ𝑑 − 1 as points excluded from the configuration space that 𝑍 is defined over:

Δ ≔ {( ⃗x1, ⋯ , ⃗x𝑛) ∈ ℝ𝑑 − 1 ∶ ⃗x𝑖 = ⃗x𝑗 for 𝑖 ≠ 𝑗} (9.20)

In terms of Δ, then, the configuration space is defined as (ℝ𝑑 − 1 − Δ)/𝑆𝑛, where 𝑆𝑛 is the permutation
group, and the corresponding fundamental group 𝜋1(𝑆𝑛) is given by [58–60]:

𝑀𝑛 ≔ ℝ𝑑 − 1 − Δ
𝑆𝑛

, 𝜋1(𝑀𝑛) =
⎧{
⎨{⎩

𝑆𝑛 if 𝑑 ≥ 3
𝐵𝑛 if 𝑑 = 2

(9.21)

Here, 𝐵𝑛 is the braid group. In 𝑑 ≥ 3, we have 𝜒(અ) = ±1; i.e., the system supports either bosons or
fermions. However, for 𝑑 = 2, we have 𝜒(અ) = ei𝜃 for 𝜃 ∈ ℝ: the particle statistics interpolates continuously
between bosons and fermions. (We note that for 𝑑 = 1, we can map bosons and fermions to each other
[61, 62]. Additionally, if we didn’t impose “hardness” on the particles (i.e., if we didn’t remove Δ), then
the particles would simply be bosons.) We can specifically derive 𝜒(અ) to be in terms of the angle that
one particle loops around another:

𝜒(અ) = exp
⎧{
⎨{⎩
i𝜈 ∑

𝑖<𝑗

𝑡𝑓

∫
𝑡𝑖

dત
d𝜙𝑖𝑗
dત

⎫}
⎬}⎭

(9.22)

Here, 𝜙𝑖𝑗 is the phase that each particle picks up while encircling the other; this is, in fact, the Berry
phase. Meanwhile, 𝜈 is related to the genus of the manifold that our 2D surface is defined over. (As
always, we leave the derivation of (9.22), and the demonstration that soft particles reduce to bosons, for
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the unabridged version.)

A Extra Derivations

A.1 Cauchy-Riemann Equations and the Scale Factor

For a conformally invariant system with 𝜑∗𝑔 = Λ𝑔, We examine the infinitesimal coordinate transforma-
tions 𝑥𝜇 ↦ 𝑦𝜇 up to first order in 𝜖(𝑥) ≪ 1. To this order, we have 𝑦 given by 𝑦𝜌 = 𝑥𝜌 + 𝜖𝜌(𝑥) + O(𝜖2).
Applying this to the conformality requirement (1.1) for 𝑔𝜇𝜈 ↦ 𝑔𝜌𝜎, we have:

𝑔𝜌𝜎
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈 = 𝑔𝜌𝜎
𝜕[𝑥𝜌 + 𝜖𝜌(𝑥) + O(𝜖2)]

𝜕𝑥𝜇
𝜕[𝑥𝜎 + 𝜖𝜎(𝑥) + O(𝜖2)]

𝜕𝑥𝜈

= 𝑔𝜌𝜎( 𝜕𝑥𝜌

𝜕𝑥𝜇 + 𝜕𝜖𝜌

𝜕𝑥𝜇 + O(𝜖2))(𝜕𝑥𝜎

𝜕𝑥𝜈 + 𝜕𝜖𝜎

𝜕𝑥𝜈 + O(𝜖2)) = 𝑔𝜌𝜎(𝛿𝜌
𝜇 + 𝜕𝜖𝜌

𝜕𝑥𝜇 )(𝛿𝜎
𝜈 + 𝜕𝜖𝜎

𝜕𝑥𝜈 ) + O(𝜖2)

= 𝑔𝜌𝜎
⎛⎜⎜⎜
⎝

𝛿𝜌
𝜇𝛿𝜎

𝜈 + 𝛿𝜌
𝜇

𝜕𝜖𝜎

𝜕𝑥𝜈 + 𝛿𝜎
𝜈

𝜕𝜖𝜌

𝜕𝑥𝜇 + 𝜕𝜖𝜌

𝜕𝑥𝜇
𝜕𝜖𝜎

𝜕𝑥𝜈⏟
O(𝜖2)

⎞⎟⎟⎟
⎠

+ O(𝜖2)

= 𝑔𝜌𝜎 𝛿𝜌
𝜇 𝛿𝜎

𝜈 + 𝑔𝜌𝜎 𝛿𝜌
𝜇

𝜕𝜖𝜎

𝜕𝑥𝜈 + 𝑔𝜌𝜎 𝛿𝜎
𝜈

𝜕𝜖𝜌

𝜕𝑥𝜇 + O(𝜖2) = 𝑔𝜇𝜈 + 𝑔𝜇𝜎
𝜕𝜖𝜎

𝜕𝑥𝜈 + 𝑔𝜌𝜈
𝜕𝜖𝜌

𝜕𝑥𝜇 + O(𝜖2)
(A.1)

Now, using the fact that 𝑔𝜇𝜈 is constant with respect to 𝜕𝜇, we can bring 𝑔𝜇𝜈 inside the derivatives:

𝑔𝜌𝜎
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈 = 𝑔𝜇𝜈 + 𝜕[𝑔𝜇𝜎𝜖𝜎]
𝜕𝑥𝜈 + 𝜕[𝑔𝜌𝜈𝜖𝜌]

𝜕𝑥𝜇 + O(𝜖2) (A.2)

Finally, applying 𝜖𝜇 = 𝑔𝜇𝜈 𝜖𝜈, this gives:

𝑔𝜌𝜎
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈 = 𝑔𝜇𝜈 + 𝜕[𝑔𝜇𝜎 𝜖𝜎]
𝜕𝑥𝜈 + 𝜕[𝑔𝜌𝜈 𝜖𝜌]

𝜕𝑥𝜇 + O(𝜖2) = 𝑔𝜇𝜈 + 𝜕𝜖𝜇
𝜕𝑥𝜈 + 𝜕𝜖𝜈

𝜕𝑥𝜇 + O(𝜖2) (A.3)

We want to find the conditions under which this is equivalent to the conformality requirement given in
(1.1); i.e., we want to find the conditions that up to O(𝜖2) satisfy:

𝑔𝜌𝜎
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈 = 𝑔𝜇𝜈 + ( 𝜕𝜖𝜇
𝜕𝑥𝜈 + 𝜕𝜖𝜈

𝜕𝑥𝜇 ) = Λ(𝑥) 𝑔𝜇𝜈 (A.4)

If we write 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈 = 𝐾(𝑥) 𝑔𝜇𝜈 for some scalar function 𝐾(𝑥), we can write the above expression as:

𝑔𝜌𝜎
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈 = 𝑔𝜇𝜈 + ( 𝜕𝜖𝜇
𝜕𝑥𝜈 + 𝜕𝜖𝜈

𝜕𝑥𝜇 ) + O(𝜖2) = 𝑔𝜇𝜈 + 𝐾(𝑥) 𝑔𝜇𝜈 = (1 + 𝐾(𝑥)) 𝑔𝜇𝜈 = Λ(𝑥) 𝑔𝜇𝜈 (A.5)

This gives the constraint:
1 + 𝐾(𝑥) = Λ(𝑥) (A.6)
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To actually determine 𝐾(𝑥), we trace out 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈 = 𝐾(𝑥) 𝑔𝜇𝜈 by contracting it with 𝑔𝜇𝜈:

𝑔𝜇𝜈(𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈) = 𝐾(𝑥) 𝑔𝜇𝜈 𝑔𝜇𝜈 (A.7)

Evaluating each side, and using 𝛿𝜇
𝜇 = 𝑑 where 𝑑 is the dimension of the theory, we have:

𝑔𝜇𝜈(𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈) = 𝜕𝜇𝜖𝜇 + 𝜕𝜈𝜖𝜈 = 𝜕𝜇𝜖𝜇 + 𝜕𝜇𝜖𝜇 = 2𝜕𝜇𝜖𝜇

𝐾(𝑥) 𝑔𝜇𝜈 𝑔𝜇𝜈 = 𝐾(𝑥)(𝛿𝜇
𝜇) = 𝐾(𝑥) ⋅ 𝑑

(A.8)

This gives 𝜂𝜇𝜈(𝜕𝜈𝜖𝜇 + 𝜕𝜇𝜖𝜈) = 𝐾(𝑥) 𝑔𝜇𝜈 𝑔𝜇𝜈 as 2 𝜕𝜇𝜖𝜇 = 𝐾(𝑥) ⋅ 𝑑, so we have 𝐾(𝑥) as:

𝐾(𝑥) 𝐾(𝑥) = 2 𝜕𝜇𝜖𝜇
𝑑 (A.9)

From this, we have that the transformation 𝑦𝜌 = 𝑥𝜌 + 𝜖𝜌 (𝑥) + O(𝜖2) is conformal when we have:

𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈 = 2 𝜕𝜇𝜖𝜇
𝑑 = 2(𝜕 ⋅ 𝜖)

𝑑 𝑔𝜇𝜈 (A.10)

(This is entirely unsurprising: these are just the Cauchy-Riemann equations.) This then gives the scale
factor to order O(𝜖) as:

Λ(𝑥) = 1 + 𝐾(𝑥) = 1 + 2 𝜕𝜇𝜖𝜇
𝑑 (A.11)

These directly lead us to two famous identities. For the first, we start by taking the contravariant derivative
𝜕𝜈 of the 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈 relation and contracting over 𝜈. This gives:

𝜕𝜈[𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈] = 𝜕𝜈[2(𝜕 ⋅ 𝜖)
𝑑 𝑔𝜇𝜈]

𝜕𝜈 𝜕𝜈 𝜖𝜇 + 𝜕𝜈 𝜕𝜇 𝜖𝜈 = 2
𝑑 (𝜕𝜈 𝑔𝜇𝜈)⏟

𝜕𝜇

(𝜕 ⋅ 𝜖) = 2
𝑑 𝜕𝜇(𝜕 ⋅ 𝜖)

(A.12)

(Here, we used the fact that (𝜕 ⋅ 𝜖) is a scalar with respect to 𝜕𝜈.) Since we’re in Minkowski space,
the Riemann tensor 𝑅𝜆

𝜎𝜇𝜈 given by 𝑅𝜆
𝜎𝜇𝜈 = 𝜕𝜇Γ𝜆

𝜈𝜎 − 𝜕𝜈Γ𝜆
𝜇𝜎 vanishes everywhere, and thus the covariant

derivatives 𝜕𝜇 equal partial derivatives ∇⃗. Thus, [𝜕𝜇, 𝜕𝜈] = 0, and so we have:

[𝜕𝜇, 𝜕𝜈] = [𝑔𝜇𝛼 𝜕𝛼, 𝜕𝜈] = [𝑔𝜇𝛼 𝜕𝛼, 𝜕𝜈] = 𝑔𝜇𝛼 [𝜕𝛼, 𝜕𝜈] = 0 (A.13)

This gives 𝜕𝜈 𝜕𝜈 𝜖𝜇 + 𝜕𝜈 𝜕𝜇 𝜖𝜈 as:

𝜕𝜈 𝜕𝜈 𝜖𝜇 + 𝜕𝜈 𝜕𝜇 𝜖𝜈 = □ 𝜖𝜇 + 𝜕𝜇 𝜕𝜈 𝜖𝜈 = □ 𝜖𝜇 + 𝜕𝜇 𝜕𝜈 𝜖𝜈 = □ 𝜖𝜇 + 𝜕𝜇(𝜕 ⋅ 𝜖) (A.14)
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Plugging this into (A.12), we have:

𝜕𝜈 𝜕𝜈 𝜖𝜇 + 𝜕𝜈 𝜕𝜇 𝜖𝜈 = 2
𝑑 𝜕𝜇(𝜕 ⋅ 𝜖)□ 𝜖𝜇 + 𝜕𝜇(𝜕 ⋅ 𝜖) = 2

𝑑 𝜕𝜇(𝜕 ⋅ 𝜖) (A.15)

Taking the derivative of this with respect to 𝜕𝜈 now gives:

𝜕𝜈[□ 𝜖𝜇 + 𝜕𝜇(𝜕 ⋅ 𝜖)] = 𝜕𝜈[ 2
𝑑 𝜕𝜇(𝜕 ⋅ 𝜖)]

𝜕𝜈 □ 𝜖𝜇 + 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖) = 2
𝑑 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖)

(A.16)

Interchanging 𝜈 ↔ 𝜇 in the 2nd term on the LHS and on the RHS, and using □ = 𝜕𝛼𝜕𝛼 to commute 𝜕𝜈
with □, we get:

□ 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) = 2
𝑑 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) (A.17)

Then, exchanging 𝜇 ↔ 𝜈 in (A.17), we get:

□ 𝜕𝜇 𝜖𝜈 + 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖) = 2
𝑑 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖) (A.18)

Then, adding (A.18) and (A.17) together, we get:

□ 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) + □ 𝜕𝜇 𝜖𝜈 + 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖) = 2
𝑑 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) + 2

𝑑 𝜕𝜈 𝜕𝜇(𝜕 ⋅ 𝜖)

(𝜕𝜇 𝜕𝜈 + 𝜕𝜈 𝜕𝜇)(𝜕 ⋅ 𝜖) + □(𝜕𝜇 𝜖𝜈 + 𝜕𝜈 𝜖𝜇) = 2
𝑑 (𝜕𝜇 𝜕𝜈 + 𝜕𝜈 𝜕𝜇)(𝜕 ⋅ 𝜖)

(A.19)

Using [𝜕𝜇, 𝜕𝜈] = 0, we have 𝜕𝜇 𝜕𝜈 + 𝜕𝜈 𝜕𝜇 = 𝜕𝜇 𝜕𝜈 + 𝜕𝜇 𝜕𝜈 = 2 𝜕𝜇 𝜕𝜈. Applying this and (A.10), we have:

(2 𝜕𝜇 𝜕𝜈)(𝜕 ⋅ 𝜖) + □( 2
𝑑 (𝜕 ⋅ 𝜖) 𝑔𝜇𝜈) = 2

𝑑 (2 𝜕𝜇 𝜕𝜈)(𝜕 ⋅ 𝜖)

𝑑 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) + 𝑔𝜇𝜈 □(𝜕 ⋅ 𝜖) − 2 𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) = 0

(𝑑 − 2)𝜕𝜇 𝜕𝜈(𝜕 ⋅ 𝜖) + 𝑔𝜇𝜈 □(𝜕 ⋅ 𝜖) = 0

[(𝑑 − 2)𝜕𝜇 𝜕𝜈 + 𝑔𝜇𝜈 □](𝜕 ⋅ 𝜖) = 0

(A.20)

Before continuing, we note something quite important about this equation, following [2]. The 𝑑 − 2 term
highlights that the identity we get from further manipulations will hold specifically for 𝑑 ≥ 3. 2D CFTs,
on the other hand, are incredibly special; this expression is just one example. ([2] also discusses the 𝑑 = 1
case; i.e., conformal quantum mechanics.) Contracting this with 𝑔𝜇𝜈, we get:

𝑔𝜇𝜈[(𝑑 − 2)𝜕𝜇 𝜕𝜈 + 𝑔𝜇𝜈 □](𝜕 ⋅ 𝜖) = 0

((𝑑 − 2)𝑔𝜇𝜈 𝜕𝜇 𝜕𝜈 + 𝑔𝜇𝜈 𝑔𝜇𝜈 □)(𝜕 ⋅ 𝜖) = 0
(A.21)
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Applying 𝑔𝜇𝜈𝜕𝜇 = 𝜕𝜈 and 𝑔𝜇𝜈 𝑔𝜇𝜈 = 𝛿𝜇
𝜇 = 𝑑, this expression is simply:

((𝑑 − 2)𝜕𝜈𝜕𝜈 + 𝑑□)(𝜕 ⋅ 𝜖) = ((𝑑 − 2)□ + 𝑑□)(𝜕 ⋅ 𝜖) = (2𝑑 − 2)□(𝜕 ⋅ 𝜖) = 0

(𝑑 − 1)□(𝜕 ⋅ 𝜖) = 0
(A.22)

(Again, this is specifically for 𝑑 ≥ 3.) For the second identity, we take the derivative of (A.10) with respect
to 𝜕𝜌:

𝜕𝜌[𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜖𝜈] = 𝜕𝜌[2 (𝜕 ⋅ 𝜖)
𝑑 𝑔𝜇𝜈]

𝜕𝜌 𝜕𝜈 𝜖𝜇 + 𝜕𝜌 𝜕𝜇 𝜖𝜈 = 2
𝑑 𝑔𝜇𝜈 𝜕𝜌[𝜕 ⋅ 𝜖] + 2

𝑑 (𝜕 ⋅ 𝜖) 𝜕𝜌[𝑔𝜇𝜈]
(A.23)

Since we’re in flat space, we have 𝜕𝜌[𝑔𝜇𝜈] = 0, so this gives:

𝜕𝜌 𝜕𝜈 𝜖𝜇 + 𝜕𝜌 𝜕𝜇 𝜖𝜈 = 2
𝑑 𝑔𝜇𝜈 𝜕𝜌[𝜕 ⋅ 𝜖] (A.24)

We can take cyclic rotations of the indices:

𝜕𝜇 𝜕𝜌 𝜖𝜈 + 𝜕𝜈 𝜕𝜌 𝜖𝜇 = 2
𝑑 𝑔𝜌𝜇 𝜕𝜈[𝜕 ⋅ 𝜖] (A.25)

𝜕𝜈 𝜕𝜇 𝜖𝜌 + 𝜕𝜇 𝜕𝜈 𝜖𝜌 = 2
𝑑 𝑔𝜈𝜌 𝜕𝜇[𝜕 ⋅ 𝜖] (A.26)

Then, (A.25) plus (A.26) minus (A.24) gives:

𝜕𝜇 𝜕𝜌 𝜖𝜈 + 𝜕𝜈 𝜕𝜌 𝜖𝜇 + 𝜕𝜈 𝜕𝜇 𝜖𝜌 + 𝜕𝜇 𝜕𝜈 𝜖𝜌 − 𝜕𝜌 𝜕𝜈 𝜖𝜇 − 𝜕𝜌 𝜕𝜇 𝜖𝜈

= 2
𝑑 𝑔𝜌𝜇 𝜕𝜈[𝜕 ⋅ 𝜖] + 2

𝑑 𝜂𝜈𝜌 𝜕𝜇[𝜕 ⋅ 𝜖] − 2
𝑑 𝜂𝜇𝜈 𝜕𝜌[𝜕 ⋅ 𝜖] (A.27)

Applying [𝜕𝛼, 𝜕𝛽] = 0 and regrouping to collect the stuff that cancels, we can rewrite the LHS as:

𝜕𝜌 𝜕𝜇 𝜖𝜈 − 𝜕𝜌 𝜕𝜇 𝜖𝜈 + 𝜕𝜌 𝜕𝜈 𝜖𝜇 − 𝜕𝜌 𝜕𝜈 𝜖𝜇 + 𝜕𝜇 𝜕𝜈 𝜖𝜌 + 𝜕𝜇 𝜕𝜈 𝜖𝜌 = 2
𝑑 (𝑔𝜌𝜇 𝜕𝜈 + 𝑔𝜈𝜌 𝜕𝜇 − 𝑔𝜇𝜈 𝜕𝜌)[𝜕 ⋅ 𝜖] (A.28)

The first four terms on the LHS cancel, giving our other identity:

2𝜕𝜇 𝜕𝜈 𝜖𝜌 = 2
𝑑 (𝑔𝜌𝜇 𝜕𝜈 + 𝑔𝜈𝜌 𝜕𝜇 − 𝑔𝜇𝜈 𝜕𝜌)[𝜕 ⋅ 𝜖]

𝜕𝜇 𝜕𝜈 𝜖𝜌 = 1
𝑑 (𝑔𝜌𝜇 𝜕𝜈 + 𝑔𝜈𝜌 𝜕𝜇 − 𝑔𝜇𝜈 𝜕𝜌)[𝜕 ⋅ 𝜖]

(A.29)
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