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Abstract

Scale effects have long been at the heart of endogenous theories of economic growth.

Larger economies can allocate more resources to discover the (non-rival) ideas that drive

long-run productivity improvements. This paper demonstrates that—in direct contrast with

conventional wisdom—the non-rivalry of ideas implies nothing about the relationship between

population size and per capita outcomes. A larger population increases the arrival rate of both

ideas and people, potentially leaving the living standards experienced by each life unchanged.

Instead, the population size governs the speed of history. To a first-order, lives of the same

quality are lived, they just occur earlier in time if the population is larger. The relevant ques-

tion becomes only whether a larger near-term population results in more lives ever being lived.
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1 Introduction

Since Romer (1990), increasing returns to scale have been at the center of growth theory. Other

things equal, an economy with more people and resources will discover more productivity-improving

ideas. Knowledge is fundamentally non-rival, so this increase in the stock of aggregate ideas in-

creases per capita incomes. It is a remarkably simple chain of logic: More people → more ideas

→ higher per capita incomes. The global decline in fertility has resulted in renewed attention to

this relationship as economists attempt to understand the costs and benefits of this demographic

shift (Jones, 2022; Peters, 2022; Weil, 2023; Spears and Geruso, Forthcoming).

This paper demonstrates that, in contrast with conventional wisdom, the non-rivalry of ideas

implies nothing about the relationship between individual income levels and population. This

is because increasing the rate of population growth increases the arrival rate of both ideas and

the people who would benefit from these ideas, potentially offsetting the purported benefits. To

illustrate how the argument will work, consider an early articulation of this scale-based reasoning

in Phelps (1968).

If I could re-do the history of the world, halving population size each year from the

beginning of time on some random basis, I would not do it for the fear of losing Mozart

in the process. (p. 512)

Suppose there is some fixed probability that each birth produces someone as talented as Mozart. It

would then be more accurate to say that halving the historical population delays the expected date

that someone as talented as Mozart is born. At the same time, halving the historical population also

halves the number of people living in these now Mozart-less years. To a first-order, these effects

will exactly offset: the same number of people are expected to live prior to a Mozart regardless

of per-period population sizes. Consequently, no lives are improved or worsened by scale here,

even while recognizing that music is non-rival. Decreasing the population delays the arrival of a

Mozart-like figure, but it delays all other lives too.

The first part of the paper formalizes this proposition in a standard Romer/Jones endogenous

growth framework (Jones, 1995). I show analytically that the size of the population has no effect

on the number of person-years lived prior to any given TFP level. The implication of ideas being

non-rival is that cumulative TFP improvements depend on cumulative research effort over time.

If future populations decline to some smaller level, this does not change the expected number of

person-years lived without a cure for cancer, commercial supersonic air travel, quantum comput-

ing, or other future technologies. These discoveries would happen later, but proportionately fewer
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people would live in each of those years, leaving the average quality of these lives unchanged.

This finding does not, and is not meant to, refute the standard claim that non-rival ideas lead to an

aggregate economy with increasing returns to scale. The novelty is a shift of focus, away from the

income levels of time periods to the income levels of people. The positive economics are crucially

different from this vantage.

After establishing the cleanest version of the central claim in a standard endogenous growth

setting, I then study the generality of this finding. I consider three variations to the baseline model

that could plausibly rescue the original intuition regarding the benefits of population size. In con-

junction, I find that they do not.

The first modification is to endogenize research effort, rather than relying on a simple learning-

by-doing assumption wherein each individual makes some fixed ex-ante contribution to TFP.

Larger populations have larger consumer bases, which potentially changes the incentives to en-

gage in R&D. This turns out to be misleading. When the consumer base is larger, it is more

profitable both to generate new ideas and to exploit existing ones. The benefits of engaging in re-

search increase, but so does the opportunity cost. Formally, the equilibrium condition determining

the share of the population engaged in research is independent of the population size.1 Therefore,

standard market-size considerations do not overturn the main result.

Second, I relax a commonly employed linearity assumption in the R&D production function.

Specifically, I allow for convexity (or concavity) in the returns to research effort within a period.

If collaboration effects between researchers generate increasing returns, then larger per-period

populations will improve individual outcomes. Unsurprisingly, it would be better for more people

to live in a given year if there are increasing returns to scale in the research production function

itself. On the other hand, if there are diminishing returns to researchers within a period, individual

outcomes are improved by smaller populations. Akcigit and Kerr (2018) provide recent evidence

of diminishing returns in the research production function, and this is the (much) more common

assumption in the literature that calibrates/estimates long-run growth models (see e.g., Bloom et al.,

2020; Jones, 2022). Relaxing this linearity assumption provides some reason to believe smaller

populations improve each individual’s living standard, an exact reversal of the lesson typically

drawn from the fact that non-rival ideas are a driver of economic growth.

Third, I consider the implications of knowledge depreciation. This force, in isolation, unam-

1Population growth may change the exploit/explore trade-off for potential entrepreneurs (see e.g., Peters and Walsh,
2021; Karahan et al., Forthcoming), which I discuss in Section 3.1. This is a substantially different claim about the
incentives arising from differences in relative population sizes across time, not a ‘bigger-is-better’ scale effect.
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biguously serves to rescue the original intuition that larger populations improve individual out-

comes. The reason is as follows: If knowledge depreciates over time, the faster that people ‘arrive’

following the discovery of an idea, the more people benefit from that idea before it is lost. When

time erodes the knowledge base, it is beneficial for more people to live overlapping lives. Depreci-

ation of knowledge is essentially unstudied, so it is difficult to know what to make of the potential

magnitude of this effect. However, in a simple quantitative exercise, I demonstrate that plausi-

ble values for knowledge depreciation are unlikely to make this force pivotal when considered

alongside the assumption that there are diminishing returns to research effort.

Overall, the policy-relevant takeaway is that idea-discovery, on its own, is not a reason to

prefer larger populations. A smaller future population, generating less per-period technological

progress, can result in worse, unchanged, or even improved outcomes for each individual. So,

while the exact independence result relies on a knife’s edge condition, the absence of evidence for

channels that would cause meaningful deviations from this baseline suggests that a null relationship

between population size and individual incomes is a useful and novel re-understanding of (semi-

)endogenous models of economic growth.

In light of this null relationship, the last section of the paper focuses on other reasons larger

per-period populations may be preferred when economic growth comes from ideas. Namely, tem-

poral discounting, and its interaction with the fact that larger populations accelerate the arrival of

discoveries. Consider the reasons that are traditionally raised for discounting utility over time: (i)

a rate of pure time preference and (ii) the probability of death/extinction.2 The former is trivial—it

is just a preference that things happen earlier in time. If the planner prefers the exact same events

when they happen on an accelerated time horizon, then bringing forward people and discoveries

via population growth is welfare-improving. This is true even if the strongest version of the pos-

itive claim of this paper is correct. In this case, population growth would be beneficial for the

reason that it functionally serves to accelerate history.

Discounting because of death to the representative agent (i.e., existential risk) is more inter-

esting. In an expected value sense, future utility should be discounted by the probability it is not

experienced. Suppose there is some date when a large asteroid will strike earth, ending humanity.

This would give rise to an important effect of larger per-period populations: More lives are lived,

and more ideas are discovered, during humanity’s fixed temporal lifespan. It remains the case

2The third reason for discounting consumption over time is that future generations will be richer than present
generations when economic growth is positive. That is not relevant here: I am asking about the implication of moving
lives with fixed utility to different periods, not about transferring resources between periods.
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that no lives are improved conditional on existing, but more total lives are lived. This generates

what I refer to as an extensive margin effect on per capita incomes—these additional existences

are lived with access to more knowledge than average. However, this has very little to do with the

fact that ideas are non-rival. Once it is assumed that the planner values the existence of these con-

tingent lives, nearly any modeling assumptions will generate the conclusion that larger per-period

populations are beneficial.

To sharpen this point, I formalize an equivalence in this setting between (1) increasing the per-

period population size and (2) delaying the date of extinction. Underpinning this equivalence is the

fact that there is nothing, per se, important about the years in which these additional lives are lived.

Once this is seen, it becomes clear that the only relevant question—even in ideas-based growth

models—is whether a larger per-period population indeed increases the number of people to ever

live. I conclude the paper by showing that a range of plausible ways of modeling existential risk

and idea-generation can lead to a range of outcomes regarding the relationship between per-period

population size and the quality and quantity of lives that are lived.

This paper contributes to literatures at the intersection of scale economics and long-run eco-

nomic growth. In particular, Jones (1995) builds on the Romer (1986, 1990) insight to highlight

the importance of population size/growth in driving TFP improvements (see also Kremer, 1993;

Galor and Weil, 2000; Jones, 2003, 2005). This counter-intuitive idea—that population size is a

key driver of long-run improvements to living standards—sparked a series of papers attempting to

eliminate these scale effects (Dinopoulos and Thompson, 1998; Segerstrom, 1998; Young, 1998).

Jones (1999) shows these attempts largely fail; a larger population is still richer per capita each

period in these models. Recent years have seen renewed attention and additional exploration of

this finding as the world transitions to a regime of below-replacement fertility, with the possibility

of long-term population decline (Jones, 2022; MacAskill, 2022; Peters, 2022; Spears and Geruso,

Forthcoming).

The main contribution of this paper is to demonstrate that, contrary to conventional wisdom,

these idea-based scale effects do not imply anything about whether larger populations improve

individual lives. In one way, it can be seen as offering a resolution to earlier debates about scale

effects in growth models. It can be true both that a larger population improves TFP per period

and that idea-based growth does not provide a channel through which larger populations improve

per capita outcomes. What has been overlooked is that TFP improvements per period systemat-

ically differ from TFP improvements per human life in cases where the temporal distribution of

population changes.
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Once this is established, I show that the relevant question is instead whether a larger popula-

tion allows for more lives to ever be lived. By studying long-run, aggregate welfare—that is, the

quantity and quality of lives over long time horizons—this paper also intersects with a literature

in applied welfare economics assessing changes in population sizes. Most recent and relevant is

Adhami et al. (2024), which decomposes the social welfare gains coming from population growth

versus income growth over the last six decades, finding that increases in the quantity of lives

matters much more than the increase in per capita living standards. Likewise, there is a recent

literature interested in risks to humanity’s survival that considers the question of how many people

will ever live. Aschenbrenner and Trammell (2024), Jones (2016, 2022, 2024), and Peretto and

Valente (2015, 2023) examine growth models with explicit extinction outcomes, either by way of

dangerous technological development or persistent below-replacement fertility.3

Finally, this paper contributes to an active literature assessing the overall effects of demographic

change. Vollrath (2020), Fernández-Villaverde et al. (2023), and Maestas et al. (2023) highlight

the effect of a change in the composition of the workforce. Peters and Walsh (2021), Hopenhayn

et al. (2022), and Karahan et al. (Forthcoming) study the relationship between business dynamism

and population growth. Henderson et al. (2024) discusses population pressure on fixed natural

resources. Galor (2022) and Weil (2023) give useful overviews of many important aspects of

demographic change over longer time horizons. The broader lessons of this paper with respect to

these debates are that (1) idea-based growth may not be as important a factor as previously thought,

when viewed from the perspective of people’s lives and (2) framing outcomes per life, rather than

per time period, may be useful in better understanding the implications of some of these other

channels.

The rest of the paper is structured as follows. Section 2 formalizes the main claim that the

number of life-years lived prior to a given discovery is independent of population size in ideas-

based models of economic growth. Section 3 shows this is robust to a number of relaxations of the

standard (semi-)endogenous growth model. Section 4 then argues that the value of population size

comes only through its effect on the number of people who ever live, and highlights the importance

of assumptions about extinction risks. Section 5 concludes.

3In the existential risk literature, Ord (2024a,b) develops and applies a general framework for assessing the long-run
welfare implications of changes to the joint trajectory of life-quality and survival-probability of humanity over time;
my results can be seen as a special and particularly relevant case of accelerating progress. Additionally, Greaves (2019)
similarly leverages the per human life emphasis of this paper to draw novel insights about environmental challenges
and population size.
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2 The non-rivalry of ideas does not imply a positive relation-

ship between population size and living standards

This goal of this section is to demonstrate that the non-rivalry of ideas does not, on its own, imply

that larger populations raise individual living standards. This will follow from looking at outcomes

from the perspective of people, rather than time periods. I begin by formalizing the main propo-

sition using a standard (semi-)endogenous growth framework. I then discuss the intuition for this

result, before assessing whether the standard intuition about the benefits of scale can be rescued

with relaxations of the model in Section 3.

Equation (1) is a production function of productivity improvements (i.e., ideas) developed in

the literature spawned by Jones (1995), buildling directly from Romer (1986, 1990). The key

concepts embedded in this formulation are that (i) the production of ideas increases in the effort

put towards discovering them, and (ii) that these discoveries improve aggregate productivity, A.

Ȧ(t)

A(t)
= α(t)(s(t)N(t))λA(t)−β (1)

Time, t, is continuous; Ȧ is the instantaneous change in productivity. This depends on three

factors. First, the number of individuals engaged in research. In (1) this is decomposed as the share

of the population in research, s, multiplied by the population size, N . Second, the productivity

of these researchers, α. Third, the accumulated knowledge stock, A(t), which allows for non-

linearity in idea production. There could be increasing returns to productivity gains (β < 1) if past

inventions (e.g., the computer) help generate new inventions, or there could be diminishing returns

to inventions (β > 1) if earlier discoveries are systematically easier to make. In practice, β > 1

matches the historical data better, both in aggregate and at the industry level (Jones, 1995; Bloom

et al., 2020), though this parameter is not consequential for the results established here.

The number of researchers is raised to some power λ that pins down the degree of returns to

researchers within a period. There is considerable uncertainty about what value λ should take.

One reason to believe that λ < 1 is duplication; people alive at the same time might solve the

same problems, resulting in wasted effort. On the other hand, collaboration might be a reason that

λ > 1; the ability to communicate with other researchers might result in faster progress than a

counterfactual where those same researchers live in different years.4

4In reality, this relationship likely has an ‘S’-shape, where collaboration benefits dominate at small populations,
but duplication issues dominate for large populations. It is unclear which dominates for current population sizes.
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For expositional simplicity, let λ = 1 and s(t), α(t) be some constants s̄, ᾱ. I assume a constant

α and s because the objective is to isolate the effects of population size. Of course, increasing α or

s would also increase the production of ideas, but this is not the focus of this paper. The assumption

of λ = 1 is more substantive. It imposes a constant marginal effect of population within a period

(i.e., if the world population were twice as large, exactly twice as much technological progress

would occur). To generate an analytical baseline result, I ignore possible curvature in this section.

Section 3.2 relaxes this assumption to demonstrate how the implications of the model are affected.

With these assumptions, we can rewrite (1) as follows, where θ = ᾱs̄.

Ȧ(t)

A(t)
= θN(t)A(t)−β (2)

Integrating this function delivers the following expression for the level of A in any given period.

A(t) =
(
βθ

∫ t

0

N(τ)dτ + Aβ
0

) 1
β

(3)

Equation 3, quite intuitively, states that if TFP improvements per period are a function of per-period

research effort, then cumulative TFP over time will be a function of cumulative research effort

over time. Formally, because the assumption is that people are the input to these improvements,

cumulative research effort is a scalar of cumulative person-years,
∫ t

0
N(τ)dτ .

Notice that I have not imposed a linear relationship between cumulative person-years and cu-

mulative idea production, which would be a stronger assumption than within-period linearity. If

β ̸= 1, a person-year generates more or less knowledge depending on the size of the existing

knowledge stock. The argument that follows does not depend on the value of β. Likewise, I have

not imposed that every individual, in fact, contributes to knowledge production. I have only as-

sumed that the share of individuals contributing to research is constant, not that it is equal to one

(and even this will be relaxed in Section 3.1). Every person, ex-ante, contributes to TFP progress,

but not necessarily ex-post.

Substantively, what Equation 3 does is eliminate t as an independent variable. It is cumulative

human effort, not time, that drives innovation. Our economic lives are richer than previous gen-

erations’ not merely because time has passed, but because people have been working to improve

productivity in that time. Therefore, time can be eliminated as an independent variable without

losing anything of conceptual importance.5

5Of course, this could be contested. If experiments literally take time, or exogenous natural events deliver knowl-
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The formal claim of this section is that the same number of person-years are lived prior to a

given level of TFP, regardless of population sizes. This will follow by defining person-years lived

by time t as:

i(t) =

∫ t

0

N(τ)dτ ∈ [0, I]. (4)

In continuous time, each i is an instantaneous person-experience, denoted in units of person-years.

For example, if the population size were a constant 10 billion, and exactly two years pass, then,

at that instant, the 20 billionth person-year is being lived. This value ranges from 0, the very

first person-experience, to I , the number of person-years that humanity collectively lives. After

formally stating the main proposition, I will discuss the intuition in detail, making explicit how to

understand the result in terms of the more familiar unit of people’s lives.

Equation 3 implies that A(t) is a function of person-years, which are now denoted i(t). There-

fore, the expression for A(t) can be simply rewritten as a function of i.

Proposition 1. The TFP accessible to an individual person-year, i, is a function only of its

order in the history of person-years.

A(i) =
(
βθi+ Aβ

0

) 1
β

It immediately follows that, conditional on β, θ, a larger population does not improve economic

outcomes for any individual i.

A(i) represents the TFP available during a given person-year, i. Time and population size no

longer enter this simplified expression. If the population size is larger, each i happens earlier in

time, but the ideas available to each i are not affected by population size. Assuming that expected

income (or utility) is tied directly to TFP, the implication that individual economic outcomes are

unaffected by population size follows immediately.

Figure 1 demonstrates the mechanisms of this result. Panels (a) and (b) plot population and

technology as they are usually plotted—against time. Panel (c) eliminates time as a variable and

plots TFP against person-years. I take this to be the more meaningful unit of analysis: Time periods

do not have incomes or experience utility, people do. Panel (c) shows that TFP available to each

person-year is unaffected by the size of the population. The curves exactly overlap. This is because

the count of individual experiences is accelerated just as fast as TFP improvements in the scenario

edge, then perhaps time should enter this function. I return to the potential direct effect of time in Section 3.3.
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with faster population growth.

Figure 1: Accelerating economic growth via population growth does not improve any life-years

(a) Faster population growth...
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(b) ...leads to faster TFP growth...
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(c) ...without improvement to any person-years.
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∫
N(τ)dτ

T
FP

Notes: Blue dotted line represents a history with faster population growth than solid orange line. Panel (b)
illustrates that TFP growth would be faster in the history with faster population. Panel (c) demonstrates—
by eliminating time as a variable—that the TFP available after a given number of person-years is invariant
to the speed of population growth.

To build up the intuition of this result, start by setting aside overlapping lives. Imagine that

each individual is born, has access to the ideas discovered before her, contributes something to the

knowledge stock, and then disappears. It is easy to see here why her order in history is all that

matters: Changing the speed at which humanity churns through these i’s does not matter for how

many people—and therefore, ideas—came before her.

The question at the heart of this paper is about whether larger per-period population sizes ben-

efit individuals through their effect on productivity improvements. To be relevant for this question,

it is necessary to extend the intuition to cases of overlapping lives. What makes this more con-
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ceptually difficult is that the i-moments are now interspersed between different people. When ten

people live for one year, ten person-years have been lived in total. However, the i’s are defined to

be ordered by time—recall from (4) that i(t) is the integral of population size over time—so the

first person-year in this ten-person world occurs after one-tenth of one year passes. It is collectively

lived between these ten people, not by one person living one year. This complicates, but does not

substantively affect, the implications of the formal proposition.

Consider another stylized example in Table 1, this time with overlapping lives. Suppose there

will be 20 billion people who ever live, each with a 100-year lifespan. (Further issues are raised

when the number of people to ever exist varies; I return to this in Section 4.) History could either

be such that 10 billion lives are lived in first 100 years, and then the next 10 billion live (call this

History A), or it could be that all 20 billion people live at once (History B). Ex-ante, it will take 1

trillion person-years of effort and economic activity to get to some key, life-improving technology.

In History A, that invention comes precisely at the moment these generations are turning over, after

100 years have passed. In History B, it comes after only 50 years, because the population in the

first century is twice as large. Relative to History A, the half of the population that would have lived

in the first century has half of their life made better (they now live 50 years with this technology,

whereas in History A they get 0 years with it). However, the other half of the population has half

of their life worsened (they now live half of their life without this technology, whereas in History

A they live their entire lives with it).

In terms of person-years, these positive and negative effects exactly cancel out. In both cases—

just as Proposition 1 indicated—1 trillion person-years are lived without this technology, 1 trillion

are lived with it. These person-years are distributed across individuals differently, but this is not

relevant for the sum of person-years lived in any given condition. A planner with explicitly egali-

tarian motives may prefer History B because the distribution of better and worse person-years are

spread more evenly over individuals. And indeed, this would represent a novel reason to prefer

accelerated population growth. But this is a normative claim about the value of equality, not the

standard positive claim that larger populations are unambiguously beneficial because they result in

more non-rival ideas.

To make this more concrete still, consider what this means for population growth today. You

and I might personally hope for more population growth while we are alive. This would result in

more innovation happening during our lives. In the language of Proposition 1, increasing the next

generation’s size is a way of assigning myself larger values of i later in my life. More person-years

will be lived between now and 2050, for example, so the i I am personally experiencing in 2050

10



Table 1: With overlapping lives, population size improves some at the (offsetting) expense of others

person-years Entire lives Entire lives
N(t) Idea at: pre-idea lived w/out idea lived w/idea

History A 10 Bil. t = 100 1 Tril. 10 Bil. 0
History B 20 Bil. t = 50 1 Tril. 0 10 Bil.

Notes: Table cataloging a scenario with overlapping lives. A larger population implies that fewer people live
their entire lives without a given discovery/idea/TFP-improvement. But it also means that more people live a
fraction of their lives without this discovery. In terms of person-years, these effects cancel out.

will be a larger value than it would have been if the next cohort of workers and innovators were

smaller. But I am implicitly swapping those i values with someone else, offsetting the benefits that

I receive.

In sum, this section demonstrates the main claim of the paper: The non-rivalry of ideas does

not imply that population size improves the knowledge base accessible to any given person-year.

Instead, the population size governs how fast society moves through life-years of an ex-ante pre-

determined quality. Section 3 shows that this baseline result is robust to relaxations of the simple

semi-endogenous growth setting used here. Section 4 considers that a larger population in each

period may lead to more people ever existing, which extends the implications of this finding in

more realistic and policy-relevant directions.

3 The independence between population size and individual

outcomes is robust to model relaxations

This section discusses potential modifications through which the importance of population size for

individual living standards may emerge when ideas drive economic growth: endogenous research

effort; non-linear returns to research effort within a period; and the depreciation of knowledge

over time. In the latter two cases, the intuition that larger populations are beneficial because of the

ideas they create can be rescued. However, taken together these effects seem likely to be quantita-

tively small and even of an ambiguous sign. They fail to generate strong reasons to disregard the

neutrality result of Section 2.
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3.1 Endogenous research effort

The results in Section 2 assume that s, the share of individuals contributing to the knowledge base,

is fixed with respect to population size. However, larger markets may incentivize more R&D,

providing additional reason to believe larger populations will lead to more idea creation. In a

world where 10, rather than 1000, people have a rare disease in a given period, it seems less

likely anyone will be incentivized to find a cure. This is true, but the causal mechanism works

in a way that makes this irrelevant for the findings of this paper—endogenizing research effort in

straightforward ways does not lead to the conclusion that larger populations improve outcomes for

individual person-years.

By holding fixed s, the main result already accounts for the fact that there will be a larger

number of researchers in a given period. The number of researchers scales linearly with N . For

this endogenous research channel to deliver the result that a larger population generates more

research per person-year, it must be driven by s increasing with N . That is, the composition of

the workforce must also change with population size. A simple general equilibrium R&D model

below shows that the standard market-size effect does not lead to this outcome.

Consider a one-period model where workers can choose before the period to either work or

search for an idea and sell the patent as an entrepreneur. The aggregate production function is a

CES aggregator of all goods that there is an idea for. In particular, the integral of possible interme-

diate goods to purchase has an upper-bound of A. When A is larger, the factors of production can

be spread over more intermediate-goods, j, which increases Y through a love-of-variety channel.

In short, the number of ways that resources can be used—and therefore aggregate consumption—is

increasing in A.

Y =
[ ∫ A

0

y
ε−1
ε

j dj
] ε

ε−1
(5)

Each intermediate producer, j, chooses: whether to purchase a patent for an idea at price pA;

what price to charge for its good, pj; and the quantity of its good to produce, yj . It faces a linear

production function, yj = lj , where lj is labor in sector j. Labor is paid a wage w that is taken

as given by each firm in the economy. I assume a free-entry condition, such that the fixed cost to

operate will adjust to set profits to zero in equilibrium, despite the monopolistically competitive

environment. In this set-up, the fixed operating cost is the purchase of a patent, making pA the

price determined by the free-entry condition. The demand curve faced by each intermediate firm

is the result of a standard cost-minimization problem that the final good producer solves.

Overall, the problem for a firm that decides to purchase a patent and operate looks as follows
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(if the maximum profit that can be attained is less than zero, the firm will not purchase the patent

and operate).

max
pj ,yj ,lj

pjyj − wlj − pA (6)

subject to:

yj =
(pi
P

)−ε

Y (7)

yj = lj (8)

Workers supply one unit of labor inelastically. They can either earn wage w, which they take as

given, or search for an idea. If they search for an idea, they are successful with probability ω and

can sell the patent at price pA. Therefore, the equilibrium condition coming from the worker’s

problem is that the return to searching for an idea will be equal to the wage.

w = ωpA (9)

The amount of knowledge in this economy is a function of how many researchers decide to search

for ideas. Denote N as the population size and s as the share of individuals searching for ideas.

A = ωsN (10)

The full solution to the model is contained in Appendix A. What is relevant for this section is only

the equilibrium condition that determines the share of individuals who decide to search for an idea.

ε− 1 =
1− s

s
(11)

The share of the population working in research is a function only of the elasticity of substitution

between goods—it is independent of the size of the population. The intuition for this result can

be seen by considering the intermediate good producers’ problem. Intermediate firms need to

purchase both a patent and labor to produce and sell into the (now) larger market. For the same

reason that a patent becomes more valuable, so too does each unit of labor. The opportunity cost

of searching for an idea grows alongside the value of a patent, leaving the share of individuals

choosing to search for an idea unchanged.

Things become more complicated in cases where populations grow over time—this was a sim-
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ple static setting designed to demonstrate why there is not good reason to believe the fraction of

people researching is increasing in the population size. In Jones’ classic (1995) paper highlighting

the importance of population growth in R&D based models of economic growth, the equilibrium

share of researchers/entrepreneurs is increasing in population growth, but not its size (see also Pe-

ters and Walsh, 2021; Karahan et al., Forthcoming). The reason is that in these settings, patents and

business formation have dynamic value. A population that is growing faster has a larger consumer

base tomorrow than it has today, making the value of future goods higher than the value of current

goods. This tilts things in favor of researching, since these activities are investments that pay flow

dividends in proportion to future demand.

That population growth, not size, determines the share of the population in R&D is distinct.

A smaller population with faster population growth would have more research per capita than a

larger population with slower growth, for example. Furthermore, the policy relevant questions of

the coming decades may concern what population size to stabilize at (Eden and Kuruc, 2023).

Channels that rely only on growth-rate effects are irrelevant when comparing stable populations

of different sizes. Nonetheless, it is interesting to note that the dynamic structure of patents may

interact with population dynamics to determine whether population growth is an important driver

of innovation per person.

A related concern about the baseline model environment is that s may depend directly on the

productivity of the economy. For example, if wealthy economies dedicate more per capita effort

to research, the dynamics in this model get more complicated. Or, if one of the productivity-

improving ideas is an idea that also causally results in a higher fraction of individuals having the

ability to generate ideas. Improvements in agricultural yields, for example, both increase produc-

tion per period and increase the fraction of people who are in a position to generate new knowledge

because of reductions in malnutrition.

This too ends up being unimportant for the main result. It makes the dynamics more compli-

cated, but it does not break the relationship between people-years and cumulative TFP. The original

logic can be moved up one level; it still takes some X person-years to get to the point that growth

accelerates because of an improvement in s. Formally, suppose that s is written as a function of A

or, equivalently, as a function of per capita income if that depends only on A.

Ȧ

A
=θs(A)NA−β

=θNg(A) (12)
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This is just a relaxation on the functional form by which A influences TFP production. For the

same reason that the value of β did not matter, the form of g(A) is not critical: the productivity of

researchers is still tied to cumulative person-years, so all of the person-years lived prior to any i

will have had the same productivity regardless of population size.

There is not a simple mechanism by which endogenizing research effort influences the main

takeaway.

3.2 Increasing returns to research effort

In Section 2 the production function of ideas was assumed to be linear in research effort within a

period. This allowed for the derivation of a clean analytical solution between cumulative person-

years and the ideas available to an individual for an arbitrary path of population. This linearity

assumption may be too strict, and introducing the possibility of curvature makes clear that the

analytical results only arise under a knife’s edge condition. However, realistic deviations from this

knife’s edge do not appear likely to undermine the main takeaway, and may even take us further

from conventional wisdom.

Equation (13) is the original production function of ideas, reintroducing the term λ which is no

longer imposed to equal to one.
Ȧ(t)

A(t)
= θ̃N(t)λA(t)−β (13)

This relaxation results in a slightly modified version of the function determining cumulative re-

search progress over time.

A(t) =
(
βθ̃

∫ t

0

N(τ)λdτ + Aβ
0

) 1
β

(14)

This modification breaks the tight link between cumulative person-years and cumulative TFP.

When λ ̸= 1, in addition to their total number. how lives are spread out over time matters. For

example, if λ > 1, for the same number of cumulative life-years, humanity discovers more ideas if

those lives have more temporal overlap. If λ < 1, there are diminishing returns to research effort

within a period, so less is discovered with more temporal overlap.

Somewhat trivially then, for λ > 1 each person-year has more TFP accessible if historical

populations were larger. The (fixed, by definition) i person-years that occur prior to i’s existence

would have been able to take advantage of more collaborative opportunities and discover more.

Conversely, if there are diminishing returns to research effort within a period (λ < 1) the opposite

will be true.
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This can be seen formally by considering the special case where population sizes are a constant

N̄ . The constant population case is one I will return to frequently for these more complicated cases

because it allows for analytical solutions while continuing to isolate the core question of whether

larger populations influence per-person living standards.

In the case of constant populations, the relevant integrals can be simplified as follows.

A(t) =
(
βθ̃N̄λt+ Aβ

0

) 1
β

(15)

i(t) =N̄t (16)

This implies:

A(i) =
(
βθ̃N̄λ−1i+ Aβ

0

) 1
β ⇒ (17)

∂A(i)

∂N̄
=θ̃(λ− 1)N̄λ−2i

(
βθ̃N̄λ−1i+ Aβ

0

) 1−β
β

(18)

This derivative will be positive if and only if λ > 1. In the baseline case where λ = 1 it is easy to

see that the derivative is zero, generating the independence result of the prior section.

In the literature that attempts to calibrate and/or estimate the effect of aggregate research effort

on long-run growth, λ < 1 is the much more common deviation from a linearity assumption (see

e.g., Bloom et al., 2020; Jones, 2022). If this is indeed the case, then the standard model of non-

rival ideas may imply decreasing returns to scale along the margin that matters: Each individual

person-year is made worse by per-period populations being larger. It is easy to see this through

the framing of the respective arrival rates of ideas and people. The arrival of ideas accelerates

when the population is larger, but slower than the one-for-one rate that the arrival of person-years

accelerates. Therefore, each person-year has less knowledge accessible to it.

Empirical evidence for this parameter is difficult to come by. Even the evidence in Akcigit and

Kerr (2018) is of limited value here. Arguments based on firms scaling up within an economy—

or a comparative advantage argument that applies to a fixed pool of individuals (Ekerdt and Wu,

2023)—do not indicate there would be diminishing returns to scaling the entire population and

economy. And, in any case, a power function is almost certainly too simple.6 The relevant ques-

tion is whether on current margins congestion/duplication effects are dominated by collaboration

6If λ < 1 that would imply that spreading people out as much as possible over time maximizes research production
per person; λ > 1 implies that bunching people all in the same period would maximize output per researcher. Neither
of these extremes seems intuitively correct.
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effects. I know of no strong evidence on this question. This relaxation, then, does not appear to be

a reason to be confident that a larger population improves individual living standards.

Figure 2: Second-order channels can generate effect of either sign

(a) Decreasing returns to research effort

0

A0

Larger populations
reduce knowledge

available for each i

i =
∫
N(τ)dτ

T
FP

Slower population growth
Faster population growth

(b) Knowledge depreciation over time

0

A0

Larger populations
increase knowledge
available for each i

i =
∫
N(τ)dτ

T
FP

Notes: Blue dotted line represents a history with faster population growth than solid orange line. Panel (a) illustrates
that if there are decreasing returns to knowledge generation within a period, larger populations reduce the TFP available
for each lifetime—a stark reversal of what non-rival ideas are thought to imply. Panel (b) illustrates that if knowledge
depreciates over time, the result that larger populations improve individual outcomes is retained. It is unclear which
of these is the dominant force.

3.3 Depreciation of knowledge

Knowledge depreciation leads to an unambiguous theoretical prediction—its existence works to

rescue the link between non-rival ideas and the benefits of population size. Furthermore, and

unlike the case of λ > 1, it does so for the original reason that knowledge is non-rival and can be

freely used once it is discovered. The relevant question is whether the quantitative magnitude of

knowledge depreciation makes this a significant force.

Consider the following implementation of depreciation, where, generally, it is a function of

economic activity that period.

Ȧ(t)

A(t)
= θN(t)A(t)−β − δA(Y (t)) (19)

This can be integrated into a closed-form solution under the special cases where depreciation is

a constant δ̄A and β = 0. This value of β corresponds to the original Romer (1990) formulation,

and nothing in the paper has depended on the choice of β, making it an inconsequential parameter

for developing intuitions. The assumption that δA is constant is the most natural starting point for
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depreciation, matching the standard assumption for how physical capital is commonly assumed to

depreciate.

With these parameter values, and a constant population level, A follows a simple exponential

growth process that depends on the size of the population. I will again take advantage of the fact

that with constant populations N̄t = i(t).

A(t) =A0e
θN̄te−δAt

A(i) =A0e
θie−δAt (20)

For any i, the first two terms of (20) are fixed. The third term depends on when person-year i is

lived. In particular, the earlier in time that i is lived, the larger is the knowledge base she has access

to. To reduce the time period in which each i lives, N̄ has to be larger (e.g., humanity gets to its

100 billionth person-year earlier if annual populations are larger).

The intuition for this result is straightforward when again thinking about the arrival rate of

person-years. For the ith person, there is now a drag on the knowledge accessible to them that is a

function of time. If an idea was discovered long before the ith person-year, this person will have

less access to it, in expectation. In the fixed number of life-years lived prior to i, there are a fixed

number of discoveries (assuming λ = 1). It is therefore better if person i lives nearer in time to

those discoveries. The way to promote person i living closer in time to more of her predecessors

is for the population to be large, so that more births happen over a shorter time period.

An appealing feature of this result is that the benefits of population size are retained for the

‘right’ reasons—knowledge is non-rival, so having more people around benefits everyone. Con-

sider the limiting case where the depreciation rate on knowledge is one, so that the only knowl-

edge accessible to person i is the knowledge discovered in the period in which she lives. Having

many contemporaries benefits her because the ideas her contemporaries produce are non-rival. The

mechanism in Section 2 that breaks the intuition about population sizes is that person i would have

had access to all of her predecessors ideas, regardless of when they occur. If knowledge depreci-

ates, this is no longer true and it can be beneficial to live alongside others.

Furthermore, the symmetric case of exogenous knowledge appreciation seems significantly

less plausible. This is why its effect is less ambiguous than the relaxation that λ ̸= 1, which

could plausibly work in either direction. It is not inconceivable that something isomorphic to

knowledge appreciation exists—e.g., if some costless knowledge is accumulated from exogenous

natural events—but this seems very unlikely to be as important as the passing of time eroding the
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knowledge base. The addition of a force capturing exogenous growth/decay serves to return the

result that larger populations are beneficial because of non-rival knowledge.

As a final conceptual point, it is important to note that the ways in which we might enrich the

formulation of depreciation would serve to strengthen this takeaway. Namely, consider specifying

knowledge depreciation as a function of economic activity within a period. It seems likely that in

periods with more economic activity, fewer valuable ideas go unused and forgotten.7 Rather than

being non-rival—where my use does not erode its availability—knowledge may be amplifying—

my use increases its availability for others. Section 2 demonstrated that knowledge being non-rival

was not enough to generate increasing returns to scale. But if knowledge is amplifying, larger

populations will again generate better outcomes for everyone.

There is very little evidence on the functional form or magnitude of knowledge depreciation.

Its existence is unlikely to change the balanced growth properties of models with exponential

growth in populations, so it has received little attention within this literature to date. But, as noted

in Jones (2022) and Eden and Kuruc (2023), it is a crucial parameter in models without long-

term population growth. A future of zero or negative population growth appears to be the most

likely demographic context of the coming decades, so more focus is likely to be paid to the rate

at which knowledge depreciates. The result in this section furthers this emphasis on knowledge

depreciation, even for settings of population growth.

3.4 Summary of Independence Result: Population size has no clear intensive-
margin effect on individual incomes

The lesson of this section is that the main result of Section 2 cannot be easily avoided with sim-

ple model relaxations. I first showed that endogenizing research effort does not affect the main

lesson of Section 2, at least not without second-order reasons for why the share of the population

researching should increase with a larger per-period population. The takeaways of Sections 3.2

and 3.3 are less straightforward, especially when taken in conjunction.

Increasing returns to scale within the research production function, λ > 1, would generate the

result that larger populations improve individual outcomes. However, that is arguably less relevant

than the fact that if λ < 1 the standard intuition is reversed—smaller populations improve individ-

ual outcomes. Depreciation is less theoretically ambiguous. If it is the quantitatively significant

7This is an important conceptual distinction from capital. In models where capital utilization can vary over the
business cycle, depreciation of capital increases when the economy is running hot, reducing the value of this excess
production. The machines are worked harder and breakdown faster.
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Figure 3: Quantitatively, second-order effects have ambiguous effect when considered jointly
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λ = 0.75, δA = 0.1%
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i =
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T
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Faster population growth

Notes: Blue dotted lines represent a history with faster population growth than solid orange line, under different
parameterizations for λ, δA. When λ = 0.75, the directional effect depends on small differences in δA, leaving little
reason to deviate from the baseline results of a null effect.

force, it generates the takeaway that larger populations improve individual outcomes. But we know

little about its magnitude. The implicit consensus is that it is not an important force; nearly every

study of ideas-based economic growth rounds it to zero.

Figure 3 demonstrates that it would be difficult to be confident in any particular deviation from

the first-order result that larger populations have no effect on individual living standards. It plots

the relationship of interest—TFP per person-year—for values of λ and δA. I begin with λ = 0.75,

following Bloom et al. (2020) and Jones (2022). For δA, there is less guidance. I plot the cases of

both δA = 0.1%, 0.3% for two reasons. First, this seems a plausible order of magnitude; anything

larger would imply that depreciation is a 50% drag on TFP growth, which seems a priori too

large. Second, these values happen to generate different directional conclusions, so they helpfully

demonstrate how these forces quantitatively trade-off. If λ = 0.75 and δA = 0.1%, the relationship

between population sizes and each person’s income is negative; if λ = 0.75 and δA = 0.3%,

the relationship between population sizes and each person’s income is positive. Distinguishing

between these cases with our current body of evidence is infeasible. While the exact analytical

results in Section 2 are contingent on specific assumptions, the qualitative point that there is no

clear relationship between population sizes and individual incomes generated by the existence of
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non-rival ideas is robust.

This is what I will call the intensive margin, to distinguish it from what comes in Section 4.

Proposition 2. Let per capita economic outcomes, for a set of I person-years, be defined simply

as:

ȳ(I) =

∫ I

0

ξA(i)di (21)

If A(i) is independent of per-period population size, it immediately follows that ȳ(I) is also in-

dependent of per-period population size. Therefore, per capita outcomes are fixed with respect

to population size conditional on I .

It is easy to see why this is true. Each i’s experience is invariant to population sizes, so unless

is are included or excluded from this average, it will remain fixed. Conversely, if larger popula-

tions cause more people to ever exist, this could be an extensive margin through which average

experiences are improved if these contingent person-years are systematically better or worse than

average. Changing the number of good or bad existences is a different conceptual channel by which

we would think of per capita outcomes being improved or worsened. I turn to this consideration in

the next section.

4 The quantity of person-years, discounting, & extinction risk

Sections 2 and 3 have argued that standard endogenous growth frameworks imply that the size of

the population governs the speed of historical events—the arrival and experience of person-years

and discoveries—not the quality or content of those person-years. This section will explore the

extensivemargin: More people will plausibly live in histories with larger per-period populations. I

show that, if this is the case, then the extensive margin effect on average incomes will be positive.

This result is related to temporal discounting, so I first discuss the interaction of discounting with

the finding that population size governs how fast events unfold.

There are two reasons typically given for discounting utility over time; one normative, one

positive. The normative one is simple. The planner may just prefer that things happen earlier in

time, a rate of pure time preference. This is incorporated to reflect the fact that people are impatient

in a way that suggests utility experienced earlier in time is more valuable than utility experienced

later. There is disagreement among economists about whether and how the planner should inherit

this impatience (see e.g., Drupp et al., 2018; Eden, 2023). The relevant thought experiment for
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this setting is straightforward: Does the planner have reason to prefer one of two histories with

exactly identical person-years if one history happens over the course of 500,000 years rather than

1,000,000 years? If so, this is a novel reason to prefer larger populations. It is not that lives are,

on-net, improved, it is that there is value in having events happen earlier. Resolving the normative

debate about whether the rate of pure time preference should be greater than zero is beyond the

scope of this paper, but it is worth noting how this normative parameter interacts with the positive

findings here.

The positive case for discounting is much more interesting in this context. It relies on an

expected value argument about whether there will be future experiences at all. For an individual,

this represents their probability of death. For society as a whole, this might represent the fact

that each year carries some risk that humanity goes extinct. Acknowledging this implies a need

to discount the utility that would be experienced in 500 years by the probability there has been

an extinction event by then. This line of reasoning provides the strongest reason to prefer larger

per-period populations, though it ends up having little-to-nothing to do with the original Romer

(1990) point that ideas are non-rival. In fact, depending on how extinction risks are modeled, I

show that ideas-based growth models may be one of a small class of models in which the planner

does not prefer larger populations.

Consider first a simple asteroid case, where each year carries some fixed exogenous probability

of extinction via a natural event. Regardless of the population size, there is some ex-post year in

which this event occurs. Call this date of extinction TX . The proposition in Section 2 indicated

that the quality of person-years is identical conditional on that person-year happening—for a fixed

number of total person-years, I , per capita outcomes are unaffected. But it is easy to see that a

larger per-period population will get through more person-years prior to TX .

Furthermore, because the TFP available to a given person-year, A(i), is increasing in i, these

contingent person-years are the highest quality person-years. For example, if humanity makes

it through 110 billion person-years, rather than 100 billion person-years, the marginal 10 billion

person-years will have all the knowledge accessible to the 100 billion unconditional person-years,

and then some. As a result, total life-years lived and the average quality of life-years are both

improved when per-period populations are larger and extinction happens at some exogenous date.

There is a positive relationship between per capita outcomes and population size over the whole of

human history, accounted for entirely by the extensive margin.

Figure 4 depicts this case. It is organized just as Figure 1, the difference here is that I no longer

assume that humanity goes on indefinitely. Panels (a) and (b) do not show anything surprising. If
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Figure 4: Exogenous Extinction Event at TX

(a) Each population makes it to TX .
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Notes: Dotted line represents a history with faster population growth than solid line. Panel (a) depicts how large these respective pop-

ulations get by the extinction event at TX . Panel (b) illustrates that TFP reaches higher levels in the history with larger populations.

Panel (c) demonstrates, for the person-years lived in either history, there is no quality of life improvement. All potential benefits

come along the extensive margin; marginal person-years are the highest quality, because TFP accumulates with person-years.

population and TFP growth are faster, higher levels of each are reached by the time of extinction.

The substantive contribution lies in panel (c). Recall that the x-axis here depicts the measure

of person-years as humanity lives them. Let IS be the number of person-years the small popula-

tion gets through; IL is the number of person-years the larger population gets through. As noted

above, conditional on reaching a specific person-year the TFP available during that person-year is

unaffected. This is the intensive margin result showing up in the case where total existences differ.

The extensive margin is captured by the TFP available to the person-years that are contingent on

whether the high- or low-population history is realized. Figure 4 demonstrates that any effect of

population size must come via the extensive margin.

In this simple setting where the knowledge accessible to an individual is directly linked to
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cumulative person-years, there is an equivalence between increasing the population size in each

period and delaying the date of extinction. What matters is only the number of person-years ever

lived, not when they are lived, so a z% increase in per-period populations has the same effect as

extending humanity’s lifespan in a way that generates an additional z% of people existing.

This equivalence is helpful for seeing the results from a different angle that has nothing to

do with endogenous growth models. Consider instead the question of how to value extending

humanity’s lifespan by some length of time. The first-order (and perhaps only) question we would

grapple with is how to value the lives of individuals who’s existences are contingent on delaying

extinction. Those who would get to live, but otherwise would not. It would also be true that—if

economic growth continues—those last-existing people would have the highest income levels, so

including their life-years would serve to increase average human living standards. But that would

seem trivial, or entirely irrelevant, relative to the fact that those lives would be lived. By way of

analogy, even in (semi-)endogenous growth models then, the only relevant questions surround how

many people will ever live.

If we ask this question directly—does a larger per-period population lead to more individuals

ever living—the departures from conventional wisdom can get even more extreme. Models where

population size increases innovation rates may represent a small class of models that also overturns

this intuitive claim. Consider the possibility of endogenous extinction. Research focused on the

portfolio of existential threats finds that human-caused (anthropogenic) extinction, via dangerous

technologies, appears much more likely than naturally-caused (exogenous) extinction (see e.g.,

Rees, 2003; Ord, 2020). A recent large-scale forecasting exercise—led by an economist at the

Federal Reserve Bank of Chicago—elicited extinction probabilities from experts on individually

risky technologies as well as “Superforecasters” (Karger et al., 2023).8 Median projections of

existential risk this century were on the order of 1%, with more than 99% being anthropogenic.9

When humanity entered the nuclear age, the consensus is that the annual probability of extinction

dramatically increased; many forecast that the same may be true for future advances in artificial

intelligence or bioengineering.

As a stylized case, endogenous extinction might be modeled as in Jones (2016): each new idea

8Superforecasters are generalists who have displayed a track record of exceptionally good probabilistic calibration
and accuracy on a range of geopolitical events (Tetlock and Gardner, 2016). The domain experts were from areas such
as pandemics/bioweapons, artificial intelligence and nuclear weapons.

9Between groups, Superforecasters predicted a 1% chance of extinction by 2100, with 0.004% coming from non-
anthropogenic risks; domain experts estimated a 6% chance of extinction, with a similar 0.004% non-anthropogenic
risk.
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has some probability of ending humanity (Jones aptly calls this a model of “Russian Roulette”

growth). Denote the ex-post level of technology that ends humanity as AX . As should be clear by

this point in the paper, AX is reached once some number of cumulative person-years have been

lived. Consequently, the number of person-years lived is independent of the size or growth rate of

the population when extinction is endogenized under the baseline assumptions in this paper.

Figure 5: Endogenous Extinction Event at AX

(a) AX occurs later with small populations.
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Notes: Dotted line represents a history with faster population growth than solid line. Panel (a) depicts how large these respective

populations get by the time each reaches AX . Panel (b) illustrates how fast each reaches the existential technology. Panel (c)

demonstrates that the exact same number of lives are lived, at the exact same quality, prior to reaching AX .

Figure 5 illustrates this case using the same three panels as in Figures 1 and 4. The difference

here is that time itself is not the causal variable that ends humanity, A is. AX acts like an upper-

bound on TFP. As can be seen in panel (c), the intensive margin remains identical across population

histories. However, there is no longer an extensive margin effect from the population being larger.

This eliminates any difference between histories, aside from the fact that one occurs on a condensed
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time horizon.

The discussion of existential risk will be further enriched in a moment, but first pause to appre-

ciate how deeply this result contrasts with the lessons drawn from Romer (1990) and the literature

it has spawned. Population size (and its growth rate) have been at the center of studies of long-run

growth in living standards and economic outcomes; scale effects are nearly impossible to avoid

when ideas are non-rival. This would seem to quickly lead to the conclusion that larger popula-

tions improve social outcomes. But here, closing the model with a simple and plausible assumption

about extinction eliminates any effect of population: Both the quantity and quality of life-years ever

lived are independent of per-period population size. This is far too simple of a model to be confi-

dent in the complete neutrality of population size or growth, but it makes clear that the effects of

population are contingent on assumptions that are not typically probed.

To emphasize the contingency of these population-related effects, Table 2 mixes and matches

assumptions from earlier subsections with assumptions about existential risks to demonstrate how

the implications can vary. To keep things tractable and isolate the effects of scale, for all of these

cases but one I compare two constant population sizes, L and S where L > S.10 The rows represent

different stylized examples for extinction scenarios. The first two have already been discussed;

exogenous extinction (e.g., the asteroid case) and endogenous extinction by the invention of a

dangerous technology.

We could also imagine the probability of extinction being endogenized in other ways. The

third row represents a case where each individual life-year poses some risk of ending humanity (a

caricature of this case could be that every person-year poses some risk of generating a radicalized

individual who wants to end humanity). The fourth row represents the case where technology

instead improves our safety each period. For example, suppose that new game-theoretic solutions

for nuclear deterrent are discovered, or our ability to withdraw carbon from the atmosphere in a

cost-effective way reduces the probability of a warming-related catastrophe. Or, this could capture

an endogenous social response to spend more on preserving the future as wealth increases, as in

Jones (2016) and Aschenbrenner and Trammell (2024). The fifth row represents the case where the

number of people on the planet in a given period increases the chances of existential risk—perhaps

because ecological boundaries are pushed too far. Finally, the sixth row considers that below-

replacement fertility rates may itself be an extinction assumption—sustained exponential decay in

population sizes eventually results in extinction (Jones, 2022; Spears and Geruso, Forthcoming;

10Again, this assumption of constant long-run population sizes isolates size effects from growth-rate effects, which
may be important for transitory dynamics.
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Peretto and Valente, 2023).

The columns represent different assumptions for the law of motion for knowledge. Earlier it

was discussed that λ becomes a particularly important term because it governs whether collabo-

ration benefits (λ > 1) exceed duplication/congestion costs (λ < 1) of population size within a

period. Introducing knowledge depreciation has similar implications to λ exceeding one, generat-

ing a positive intensive margin effect of population size (e.g., it rescues the benefits of population

size on individual outcomes). As discussed in Section 3.4, there are cases where the effect on

the intensive margin is ambiguous—for example, λ < 1 and δA > 0—which makes a qualitative

prediction of their effect infeasible. The left-column can be thought of as cases where the intensive

margin is negative; the right-column are cases where the intensive-margin effect is positive.

It is helpful to keep in mind that the limiting case where λ = 0 corresponds to cases where

TFP is independent of population size. This nests endogenous growth models that fully eliminate

scale effects, as well as simple models of exogenous economic growth. The intensive margin of

population growth is negative here because accelerating the arrival of person-years does not affect

the arrival of ideas, so more years are lived with lower TFP than if these life-years came later in

time.11

Consider the top row of Table 2, the case of exogenous extinction at some unknown time TX .

Here, larger populations increase both the knowledge base accessible to the average person and the

number of people to ever live. The case for λ = 1 is already detailed in Figure 4. If λ > 1, this

would imply that larger per-period populations produce even more knowledge than they otherwise

would, giving large populations a further advantage over the case when λ = 1. When λ < 1,

the larger population continues to get through more person-years prior to TX . As long as λ ≥ 0,

more people ever living implies that (weakly) more knowledge is accumulated.12 Furthermore,

reaching a higher level of TFP implies the average level per person will be higher because I have

restricted focus to cases where the population is constant over time. With λ = 0 (where TFP

growth is independent of population) then the exact same level of TFP is reached when a fixed TX

constrains humanity’s temporal lifespan.

Moving to the second row, this is the case where AX functionally serves as an upper-bound

on TFP, as was detailed for λ = 1 in Figure 5. This is the case where a sufficiently powerful and

dangerous technology, once invented, leads quickly to humanity’s extinction. When λ = 1 the

11In an unrealistic case, if growth in per capita living standards were truly independent of population size, it would
be best to back-load humanity as much as possible in time.

12As long as λ > 0 an additional person-year has some benefit for TFP improvement.
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Table 2: The effects of a larger population depend on extinction and TFP growth assumptions

λ < 1 λ = 1 λ > 1
(& δA = 0) (& δA = 0) (or δA > 0)

TX causes extinction (e.g., asteroid)
ȳL ≥ ȳS
IL > IS

AX causes extinction (e.g., advanced A.I.)
ȳL = ȳS

IL > IS IL = IS IL < IS

IX causes extinction (e.g., rogue actor)
ȳL < ȳS ȳL = ȳS ȳL > ȳS

IL = IS

A decreases risk (e.g., carbon capture)
ȳL > ȳS
IL > IS

N̄ causes extinction (e.g., ecological collapse)
ȳL(? )ȳS
IL(? )IS

Sustained below-replacement fertility
ȳL > ȳS
IL > IS

Notes: The implication of larger populations, L, relative to smaller populations, S on per capita outcomes ȳj ,
and number of individuals to ever live, Ij , under different modeling assumptions. For example, the top-row
indicates that per capita outcomes and the number of people to ever live are both higher when populations are
larger (ȳL > ȳS , IL > IS) if extinction is exogenous, regardless of the assumption on idea-generation. The
second row indicates that per capita incomes are invariant to population size if A causes extinction, but the
relationship between the number of people who ever live and per period population size depends on assumptions
about knowledge generation.
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result is that there is no effect on the quantity or quality of lives of larger populations. Economic

growth and extinction are directly tied to person-years, so the arrival of each is accelerated in

proportion to person-years when the population is increased.

The cases where λ ̸= 1 break this independence result, but in an unintuitive way. Consider λ >

1 (or equivalently, a large value of δA). This is where idea-generation benefits from collaboration,

and hence has increasing returns. If the population were to be a bit larger, the acceleration in

idea-generation is faster than the acceleration in person-years. This implies that fewer person-

years are lived when populations are larger, because AX is reached dispropotionately faster. At

the same time, because the same “upper-bound” on TFP is reached, per capita incomes are not

improved. A larger population results in fewer people living, with unchanged average life-quality,

when collaboration effects make population size especially important for research progress. This is

true even if every invention but the final, dangerous one improves lives.13 The reverse case works

in exactly the opposite manner, and can be easiest to conceptualize for the limiting case where TFP

growth is unaffected by population growth (λ = 0). Here, increasing the population size simply

results in more lives being lived prior to reaching AX . When λ = 0, the time at which AX is

reached is unaffected by population size, so it is easy to see why more people live prior to AX if

per-period populations are large. Again, the average level of TFP per person is unaffected because

AX remains the upper bound. As a result, if something like Jones (2016)’s Russian Roulette model

of growth is correct, the case for larger populations is stronger when idea-generation is less affected

by population size.

In the third row, the causal driver of extinction is directly person-years. One example of this

is use of a finite non-renewable resource: Only a certain number of people can ever live prior to

using up this resource, so the model is closed with an assumption that directly constrains person-

years (Greaves, 2019). Alternatively, it could be that every person-year has some probability of

making contact with a novel pathogen that could cause an existential pandemic. When λ = 1

this is identical to the case that AX causes extinction because cumulative person-years are tied

directly to TFP levels. However, when λ ̸= 1 conclusions in the opposite direction are generated.

Collaboration effects or knowledge depreciation would imply that larger populations are indeed

better, as the same fixed number of people would benefit from having more contemporaries. In

an (unrealistic) limit, having all I individuals live at the same time would maximize the TFP

they collectively reach. Conversely, spreading these lives out over time would increase per capita

13This particular case has close similarities to the result in Ord (2024a).
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incomes if λ < 1.14

In the fourth row, we have a case where A decreases risk. This works similarly to the case where

extinction is exogenous. Partly, that is because many of these cases are enriched versions of purely

exogenous risk. If asteroid detection-and-deflection technology can reduce the risks we face, the

case for population size becomes even stronger (see e.g., Spears and Geruso, Forthcoming). If the

dominant effect of technological progress is to reduce the probability of extinction in any given

period, achieving these gains through a larger population increases the expected number of people

to ever live and per capita incomes.

Cases in the fifth row are those where the population size in a given period increases the prob-

ability of existential risk. As Weil (2023) points out, this results in an ambiguous effect on the

number of people to live. When combined with endogenous growth components, this also im-

plies that the effect on the average quality of life is ambiguous. The reason this case would not

straightforwardly prefer smaller populations is because there is a trade-off between the probabil-

ity of extinction per period and the number of people who live per period. Formally, the expected

number of people to ever live is 1
px
N̄ with px being the per-period risk of extinction. If the relation-

ship between population size and pX has less than unit elasticity, a larger population gets through

more life-years and discoveries in expectation (making this similar to the exogenous extinction

case). If the relationship has unit elasticity, the expected number of people to live is invariant to

per-period population sizes, which makes this equivalent the case where some IX leads to extinc-

tion. If the elasticity is more than one, then smaller per period populations lead to more people

ever living. Interestingly, this demonstrates that even if ecologists are correct about being near

planetary boundaries, for the recommendation to follow that population sizes ought to be shrunk,

it must be the case the elasticity of extinction risk per-period with respect to population size is

greater than one. Little is known about this elasticity.

Finally, consider the last case where sustained below-replacement fertility is the existential

threat. Jones (2022) calls an equilibrium with this property an “Empty Planet” outcome; Peretto

and Valente (2023) directly calls it an extinction steady-state. This may not be a mere theoretical

novelty: Spears and Geruso (Forthcoming) make the case that this is the path we are headed on,

with no obvious equilibrating mechanism that will stabilize populations. The intuition here cannot

be developed for constant population cases, as the entire concern is a sustained negative growth

14Again, suppose λ = 0, so that idea-generation happens independent to the population size. Then the planner
would want those life-years to happen as slowly as possible. In the constant population case, that means the smallest
per-period populations.
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rate. Instead lets consider the larger population case one where the growth rate is less negative,

or that the initial population is larger. This case is isomorphic to exogenous extinction. A stable

population size with some constant probability of extinction is expectationally equivalent to a

population that exponentially decays with certainty. So, just as Jones (2022) finds, less population

decay is better for per capita incomes. However, the framing in this paper suggests a different

lesson. It is not so much that economic growth ends and the population disappears. Growth ends

because and exactly when there are no more people around to generate additional ideas.15 There is

no difference in the outcome, but the policy-relevant emphasis might reasonably be shifted to be

avoiding extinction, rather than avoiding economic stagnation.

It is difficult to know what to take away from this table—but that is precisely the point. It is

premature to take confident stances on which of these rows represents the right stylized model of

extinction, or even which column of the idea-generation function is most likely. The results of

this section demonstrate that the effect of increasing population sizes can depend entirely on these

assumptions. Based on the consensus that anthropogenic risks are much more significant than

natural risks (Karger et al., 2023) and that λ = 1 is a reasonable approximation, the single most

likely model formulation might be the middle column of row two or three. This would indicate that

a current best guess is that population size truly does nothing but accelerate history. On the other

hand, many of these cases indicate population does affect the number of individuals to ever live,

so in expectation it may remain a positive force. Future research on demographic change needs to

think seriously about how the model is closed, which should be informed via additional research

on the threats that humanity faces over the coming century and beyond.

5 Conclusion

The question of whether a declining population will lead to counterfactual losses in living stan-

dards is complicated. Alongside the production of non-rival ideas, there are a host of issues that

may depend on the size or age structure of the population: environmental pressures, human capital

investments, pension financing, business formation decisions, etc. However, given the importance

of non-rival ideas in explaining past economic growth, this channel has received substantial atten-

tion among economists thinking about population decline.

This paper shows this may be a mistake. The joint-distribution of people and the stock of

ideas available during their lifetime is invariant to population size, at least without assuming an
15E.g., the end of economic growth is not itself bad, because it ends only once there are no people on the planet.
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interaction with forces beyond the non-rivalry of ideas. The population size and its effect on the

speed at which non-rival ideas are generated may be important for influencing economic growth per

period, but I show this is importantly different from influencing economic growth per human life.

Indeed, I show that our intuitions can be completely reversed under plausible parameter values: if

idea-creation within a period has diminishing returns to researchers, each life is worsened by the

population size being larger, even in a simple model where non-rival ideas are the only determinant

of living standards.

The key consideration appears to be whether a larger population allows more people to ever

live, over the whole of human history. If so, and if population size has any effect on non-rival idea

creation, larger populations raise total and average utility experienced over the whole of history.

However, this points to the critical nature of assumptions about existential threats. When the

variable that matters is the expected number of people to ever live, it is not surprising that model

results turn on assumptions about the constraints on the number of people who will ever live.

Unsurprisingly, then, the importance of extinction assumptions makes it difficult to be confident

in any particular directional takeaway. One conclusion of this paper is that economists interested in

the effects of population dynamics and economic growth must grapple with the issue of extinction,

echoing a point made in Jones (2016) for technological progress. Based on available theories and

commonly assumed parameters, I conclude that larger per period populations are likely to increase

the expected number of people to ever live, raising the total and average utility.
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Appendix

A Solution to the Model of Endogenous Research Effort

Aggregate output is a CES aggregator of intermediate goods, each with the respective production
functions, where lj is the labor allocted to sector j.

Y =
[ ∫ A

0

y
ε−1
ε

j dj
] ε

ε−1

yj =lj

A is the measure of ideas in this economy, endogenously produced by potential entrepreneurs.
Denoting the share of people in this economy who search for ideas s, we have a production function
of A that is:

A = ω × s×N.

That is, each individual has some probability ω of discovering a profitable idea. I assume that each
worker inelastically supplies one unit of labor, so that the market clearing condition dictates that
the sum of wage earners plus entrepenuers is the total population, N .

Let us first focus on each intermediate firm’s production decision, conditional on operating (that
is, j ∈ [0, A]). The demand curve for each yj can be solved through a standard cost-minimization
problem by the final good firm that aggregates these products.

min
yj

∫ A

0

yjpj such that
[ ∫ A

0

y
ε−1
ε

j dj
] ε

ε−1 ≥ Y (22)

This delivers the demand curve:
yj =

(pj
P

)−ε

Y, (23)

where I have defined P , the aggergate price level, as the Lagrange multiplier.16

Each intermediate producer, j, faces a problem of whether to purchase a patent at price pA,
what price to charge for its good, pj , and how much of its good to produce with a linear production
function, yj = lj , where lj is labor in sector j that gets paid a wage w that is taken as given by each
small firm. I assume a free-entry condition, such that the fixed cost to operate, pA, will be equal to

16This is because the lagrange multiplier captures the cost of having the constraint tightened, on the margin. Here,
the constraint is producing one more unit of the final good. The marginal cost of producing Y will equal the price of
Y in a competitive equilibrium.
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the profit this monopolistically competitive firm can earn in equilibrium. The problem for a firm
that decides to purchase a patent and operate looks as follows (if the maximum profit that can be
attained is less than zero, the firm will not operate).

max
pj ,yj ,lj

pjyj − wlj − pA (24)

subject to:

yj =
(pi
P

)−ε

Y (25)

yj = lj (26)

Subbing these constraints directly into the problem and taking a first-order condition, we obtain
the usual result that CES monopolistic competition delivers a price that is a constant mark-up over
marginal costs (here, the wage). This implies a value for pA that set profits to zero, by the free
entry condition.

pj =− ε

1− ε
w (27)

pA =(− ε

1− ε
− 1)wyj (28)

Also note that ωpA = w in equilibrium, as the expected value of being an entrepreneur must
be equal to the wage. We can use this fact to substitute w from the right hand side of (28), and
simplify the expression.

pA =
( 1

ε− 1

)
ωpAyj ⇒

(ε− 1)

ω
= yj

Finally, notice that in a symmetric equilibrium each yj will be identical. Furthermore, each
yj = lj , the amount of labor supplied in that industry. Recalling that the share of the population
earning wages is (1 − s), this implies that there are (1 − s)N total workers split across the A

industries. So, each lj =
(1−s)N

A
. However, we also know in equilibrium that A = ω× s×N . This
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lets us sub in our new expression for lj for yj . Simplifying, we get:

(ε− 1)

ω
=

(1− s)N

ωsN
⇒

(ε− 1) =
1− s

s
(29)

First, verify that the intuition of this result makes sense. As ε → 1, s → 1. This is the case
of perfect complements: the love-of-variety is so extreme that nearly everyone is employed in
research to expand the line of product varieties. When ε → ∞, s → 0. This is the case of perfect
substitutes. Consumers do not care about which products they consume, so everyone is employed
in the production sector rather than expanding the variety of products.

But what is most important for the application here is that this function is independent of N .
It is not the case that a larger market endogenously allocates a larger share of the population to
research. So, the assumption employed throughout the paper that s is independent of N seems to
be, at least, a good baseline assumption.
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