-
cs-ranking
-
experiments
Notebook
Using TensorFlow backend.
WARNING:tensorflow:From /home/pritha/anaconda3/envs/linenv/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
/home/pritha/anaconda3/envs/linenv/lib/python3.7/site-packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
warnings.warn(msg, category=DeprecationWarning)
Out[3]:
|
job_id |
dataset |
learner |
f1score |
precision |
recall |
subset01accuracy |
hammingaccuracy |
informedness |
aucscore |
averageprecisionscore |
33 |
329 |
Expedia_N_10 |
feta_choice_eb7f |
0.1849 |
0.1234 |
0.5342 |
0.0158 |
0.7735 |
0.3263 |
0.6942 |
0.3628 |
42 |
325 |
Expedia_N_10 |
feta_choice_eb7f |
0.1819 |
0.1214 |
0.5282 |
0.0161 |
0.7755 |
0.3234 |
0.6938 |
0.3623 |
47 |
335 |
Expedia_N_10 |
feta_choice_eb7f |
0.1828 |
0.1222 |
0.5290 |
0.0164 |
0.7764 |
0.3254 |
0.6941 |
0.3638 |
1 |
327 |
Expedia_N_10 |
feta_choice_eb7f |
0.1851 |
0.1217 |
0.5586 |
0.0132 |
0.7580 |
0.3320 |
0.6945 |
0.3622 |
48 |
336 |
Expedia_N_10 |
feta_choice_eb7f |
0.1850 |
0.1224 |
0.5490 |
0.0149 |
0.7649 |
0.3310 |
0.6943 |
0.3640 |
37 |
337 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.1850 |
0.1235 |
0.5365 |
0.0153 |
0.7729 |
0.3276 |
0.6947 |
0.3646 |
46 |
192 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.1853 |
0.1239 |
0.5334 |
0.0160 |
0.7749 |
0.3268 |
0.6953 |
0.3629 |
2 |
334 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.1852 |
0.1217 |
0.5587 |
0.0128 |
0.7585 |
0.3326 |
0.6938 |
0.3620 |
3 |
328 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.1836 |
0.1216 |
0.5556 |
0.0150 |
0.7579 |
0.3295 |
0.6934 |
0.3613 |
49 |
342 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.1864 |
0.1220 |
0.5670 |
0.0117 |
0.7552 |
0.3364 |
0.6962 |
0.3651 |
0 |
326 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.1872 |
0.1223 |
0.5629 |
0.0112 |
0.7474 |
0.3211 |
0.6886 |
0.3539 |
34 |
237 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.1865 |
0.1199 |
0.5846 |
0.0091 |
0.7322 |
0.3238 |
0.6880 |
0.3526 |
35 |
239 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.1811 |
0.1194 |
0.5447 |
0.0131 |
0.7628 |
0.3237 |
0.7260 |
0.3662 |
36 |
240 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.1813 |
0.1202 |
0.5365 |
0.0139 |
0.7681 |
0.3218 |
0.7258 |
0.3664 |
38 |
238 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.1860 |
0.1180 |
0.6085 |
0.0089 |
0.7087 |
0.3169 |
0.6877 |
0.3552 |
Out[4]:
|
Dataset |
ChoiceModel |
F1Score |
Precision |
Recall |
Subset01Accuracy |
Hammingaccuracy |
Informedness |
Aucscore |
Averageprecisionscore |
0 |
Expedia_N_10 |
fate_choice_736f |
0.198±0.006 |
0.133±0.005 |
0.546±0.016 |
0.017±0.002 |
0.782±0.010 |
0.346±0.010 |
0.707±0.007 |
0.378±0.008 |
1 |
Expedia_N_10 |
fatelinear_choice_e98a |
0.177±0.006 |
0.119±0.004 |
0.545±0.026 |
0.020±0.002 |
0.763±0.014 |
0.328±0.012 |
0.700±0.007 |
0.372±0.009 |
2 |
Expedia_N_10 |
feta_choice_eb7f |
0.184±0.001 |
0.122±0.001 |
0.540±0.013 |
0.015±0.001 |
0.770±0.008 |
0.328±0.004 |
0.694±0.000 |
0.363±0.001 |
3 |
Expedia_N_10 |
feta_choice_zero_0f51 |
0.185±0.001 |
0.123±0.001 |
0.550±0.015 |
0.014±0.002 |
0.764±0.009 |
0.331±0.004 |
0.695±0.001 |
0.363±0.002 |
4 |
Expedia_N_10 |
feta_choice_zero_17c7 |
0.184±0.003 |
0.120±0.002 |
0.567±0.029 |
0.011±0.002 |
0.744±0.024 |
0.321±0.003 |
0.703±0.021 |
0.359±0.007 |
5 |
Expedia_N_10 |
fetalinear_choice_6b8c |
0.179±0.007 |
0.121±0.006 |
0.539±0.011 |
0.020±0.002 |
0.765±0.015 |
0.324±0.006 |
0.696±0.007 |
0.367±0.010 |
6 |
Expedia_N_10 |
glm_choice_3de1 |
0.107±0.001 |
0.059±0.001 |
0.992±0.013 |
0.000±0.000 |
0.069±0.018 |
0.004±0.007 |
0.503±0.102 |
0.192±0.050 |
7 |
Expedia_N_10 |
random_choice_5569 |
0.106±0.000 |
0.058±0.000 |
1.000±0.000 |
0.000±0.000 |
0.058±0.000 |
0.000±0.000 |
0.500±0.000 |
0.058±0.000 |
8 |
Expedia_N_10 |
ranknet_choice_d20f |
0.167±0.017 |
0.101±0.012 |
0.638±0.046 |
0.003±0.001 |
0.650±0.062 |
0.278±0.034 |
0.716±0.006 |
0.363±0.006 |
9 |
Expedia_N_10 |
ranksvm_choice_0391 |
0.129±0.017 |
0.077±0.013 |
0.703±0.149 |
0.004±0.002 |
0.481±0.227 |
0.165±0.097 |
0.680±0.051 |
0.321±0.047 |
Out[6]:
|
Dataset |
ChoiceModel |
F1Score |
Precision |
Recall |
Subset01Accuracy |
Hammingaccuracy |
Informedness |
Aucscore |
Averageprecisionscore |
1 |
Expedia 10 Objects |
FATE-Net |
0.198±0.006 |
0.133±0.005 |
0.546±0.016 |
0.017±0.002 |
0.782±0.010 |
0.346±0.010 |
0.707±0.007 |
0.378±0.008 |
0 |
Expedia 10 Objects |
FETA-Net |
0.185±0.001 |
0.123±0.001 |
0.550±0.015 |
0.014±0.002 |
0.764±0.009 |
0.331±0.004 |
0.695±0.001 |
0.363±0.002 |
7 |
Expedia 10 Objects |
FETA-Linear |
0.179±0.007 |
0.121±0.006 |
0.539±0.011 |
0.020±0.002 |
0.765±0.015 |
0.324±0.006 |
0.696±0.007 |
0.367±0.010 |
6 |
Expedia 10 Objects |
FATE-Linear |
0.177±0.006 |
0.119±0.004 |
0.545±0.026 |
0.020±0.002 |
0.763±0.014 |
0.328±0.012 |
0.700±0.007 |
0.372±0.009 |
2 |
Expedia 10 Objects |
RankNet-Choice |
0.167±0.017 |
0.101±0.012 |
0.638±0.046 |
0.003±0.001 |
0.650±0.062 |
0.278±0.034 |
0.716±0.006 |
0.363±0.006 |
3 |
Expedia 10 Objects |
PairwiseSVM |
0.129±0.017 |
0.077±0.013 |
0.703±0.149 |
0.004±0.002 |
0.481±0.227 |
0.165±0.097 |
0.680±0.051 |
0.321±0.047 |
4 |
Expedia 10 Objects |
GeneralizedLinearModel |
0.107±0.001 |
0.059±0.001 |
0.992±0.013 |
0.000±0.000 |
0.069±0.018 |
0.004±0.007 |
0.503±0.102 |
0.192±0.050 |
5 |
Expedia 10 Objects |
RandomGuessing |
0.106±0.000 |
0.058±0.000 |
1.000±0.000 |
0.000±0.000 |
0.058±0.000 |
0.000±0.000 |
0.500±0.000 |
0.058±0.000 |
Out[8]:
|
Dataset |
ChoiceModel |
F1Score |
Precision |
Recall |
Subset01Accuracy |
Hammingaccuracy |
Informedness |
Aucscore |
Averageprecisionscore |
0 |
Pareto |
FETA-Net |
0.942±0.008 |
0.938±0.007 |
0.967±0.013 |
0.680±0.028 |
0.985±0.002 |
0.956±0.012 |
0.999±0.000 |
0.996±0.000 |
1 |
Pareto |
FATE-Net |
0.913±0.009 |
0.919±0.015 |
0.926±0.005 |
0.506±0.037 |
0.975±0.003 |
0.911±0.006 |
0.996±0.001 |
0.984±0.003 |
2 |
Pareto |
FETA-Linear |
0.673±0.001 |
0.697±0.023 |
0.747±0.023 |
0.064±0.007 |
0.913±0.003 |
0.694±0.015 |
0.955±0.000 |
0.865±0.000 |
3 |
Pareto |
FATE-Linear |
0.673±0.000 |
0.683±0.019 |
0.761±0.018 |
0.059±0.005 |
0.911±0.003 |
0.704±0.012 |
0.955±0.000 |
0.865±0.000 |
4 |
Pareto |
RankNet-Choice |
0.612±0.007 |
0.624±0.026 |
0.772±0.029 |
0.060±0.010 |
0.877±0.011 |
0.672±0.014 |
0.971±0.006 |
0.891±0.019 |
5 |
Pareto |
PairwiseSVM |
0.588±0.001 |
0.596±0.012 |
0.756±0.015 |
0.044±0.003 |
0.866±0.005 |
0.646±0.007 |
0.956±0.000 |
0.865±0.000 |
6 |
Pareto |
GeneralizedLinearModel |
0.565±0.041 |
0.579±0.045 |
0.721±0.049 |
0.038±0.012 |
0.859±0.018 |
0.609±0.057 |
0.935±0.038 |
0.834±0.055 |
7 |
Pareto |
RandomGuessing |
0.232±0.000 |
0.133±0.000 |
1.000±0.000 |
0.000±0.000 |
0.133±0.000 |
0.000±0.000 |
0.500±0.000 |
0.133±0.000 |
8 |
Mode |
FATE-Net |
0.976±0.001 |
0.980±0.002 |
0.979±0.004 |
0.883±0.010 |
0.978±0.001 |
0.961±0.002 |
0.992±0.001 |
0.991±0.002 |
9 |
Mode |
FETA-Net |
0.809±0.005 |
0.742±0.003 |
0.962±0.009 |
0.311±0.032 |
0.809±0.004 |
0.695±0.009 |
0.981±0.006 |
0.980±0.006 |
10 |
Mode |
FATE-Linear |
0.597±0.001 |
0.444±0.002 |
0.992±0.005 |
0.003±0.000 |
0.447±0.004 |
0.007±0.006 |
0.517±0.002 |
0.573±0.002 |
11 |
Mode |
FETA-Linear |
0.597±0.001 |
0.443±0.001 |
0.996±0.004 |
0.003±0.000 |
0.445±0.001 |
0.003±0.002 |
0.516±0.001 |
0.573±0.001 |
12 |
Mode |
RankNet-Choice |
0.597±0.000 |
0.442±0.000 |
1.000±0.000 |
0.003±0.000 |
0.442±0.000 |
0.000±0.000 |
0.503±0.002 |
0.563±0.002 |
13 |
Mode |
PairwiseSVM |
0.597±0.000 |
0.442±0.000 |
0.999±0.002 |
0.003±0.000 |
0.443±0.000 |
0.000±0.000 |
0.509±0.006 |
0.569±0.004 |
14 |
Mode |
GeneralizedLinearModel |
0.597±0.000 |
0.442±0.000 |
0.999±0.001 |
0.003±0.000 |
0.443±0.000 |
0.000±0.000 |
0.497±0.004 |
0.561±0.002 |
15 |
Mode |
RandomGuessing |
0.597±0.000 |
0.442±0.000 |
1.000±0.000 |
0.003±0.000 |
0.442±0.000 |
0.000±0.000 |
0.500±0.000 |
0.442±0.000 |
16 |
Unique |
FATE-Net |
0.973±0.004 |
0.975±0.002 |
0.977±0.007 |
0.848±0.021 |
0.980±0.003 |
0.960±0.006 |
0.995±0.001 |
0.992±0.001 |
17 |
Unique |
FETA-Net |
0.963±0.003 |
0.962±0.006 |
0.975±0.004 |
0.814±0.020 |
0.972±0.003 |
0.945±0.005 |
0.992±0.001 |
0.989±0.001 |
18 |
Unique |
PairwiseSVM |
0.562±0.001 |
0.405±0.000 |
0.999±0.002 |
0.000±0.000 |
0.405±0.001 |
0.000±0.000 |
0.511±0.006 |
0.553±0.005 |
19 |
Unique |
FATE-Linear |
0.562±0.001 |
0.405±0.001 |
0.999±0.002 |
0.001±0.000 |
0.406±0.002 |
0.001±0.003 |
0.506±0.007 |
0.560±0.007 |
20 |
Unique |
RankNet-Choice |
0.562±0.000 |
0.405±0.000 |
1.000±0.000 |
0.000±0.000 |
0.405±0.000 |
0.000±0.000 |
0.504±0.001 |
0.538±0.001 |
21 |
Unique |
GeneralizedLinearModel |
0.562±0.000 |
0.405±0.000 |
1.000±0.000 |
0.000±0.000 |
0.405±0.000 |
0.000±0.000 |
0.508±0.004 |
0.542±0.002 |
22 |
Unique |
RandomGuessing |
0.562±0.000 |
0.405±0.000 |
1.000±0.000 |
0.000±0.000 |
0.405±0.000 |
0.000±0.000 |
0.500±0.000 |
0.405±0.000 |
23 |
Unique |
FETA-Linear |
0.344±0.126 |
0.449±0.046 |
0.406±0.338 |
0.004±0.003 |
0.533±0.076 |
0.032±0.040 |
0.524±0.019 |
0.524±0.026 |
24 |
MQ2007 10 Objects |
FETA-Linear |
0.452±0.022 |
0.372±0.036 |
0.837±0.049 |
0.001±0.002 |
0.526±0.049 |
0.231±0.035 |
0.694±0.005 |
0.540±0.022 |
25 |
MQ2007 10 Objects |
FATE-Linear |
0.452±0.021 |
0.362±0.025 |
0.865±0.044 |
0.001±0.002 |
0.504±0.032 |
0.212±0.021 |
0.695±0.006 |
0.540±0.021 |
26 |
MQ2007 10 Objects |
FETA-Net |
0.452±0.019 |
0.369±0.026 |
0.838±0.027 |
0.000±0.000 |
0.529±0.024 |
0.236±0.019 |
0.690±0.008 |
0.534±0.020 |
27 |
MQ2007 10 Objects |
PairwiseSVM |
0.450±0.018 |
0.365±0.019 |
0.857±0.031 |
0.000±0.000 |
0.507±0.030 |
0.216±0.026 |
0.696±0.007 |
0.535±0.028 |
28 |
MQ2007 10 Objects |
FATE-Net |
0.429±0.019 |
0.378±0.021 |
0.705±0.065 |
0.001±0.002 |
0.575±0.025 |
0.211±0.019 |
0.653±0.007 |
0.489±0.015 |
29 |
MQ2007 10 Objects |
GeneralizedLinearModel |
0.428±0.021 |
0.317±0.022 |
0.965±0.037 |
0.001±0.002 |
0.358±0.039 |
0.058±0.029 |
0.614±0.009 |
0.465±0.021 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
34 |
MQ2007 5 Objects |
PairwiseSVM |
0.444±0.022 |
0.344±0.029 |
0.917±0.031 |
0.000±0.000 |
0.444±0.043 |
0.161±0.028 |
0.699±0.004 |
0.540±0.022 |
35 |
MQ2007 5 Objects |
FATE-Net |
0.436±0.014 |
0.366±0.023 |
0.759±0.034 |
0.000±0.000 |
0.542±0.019 |
0.211±0.020 |
0.645±0.016 |
0.477±0.018 |
36 |
MQ2007 5 Objects |
GeneralizedLinearModel |
0.427±0.022 |
0.316±0.023 |
0.973±0.018 |
0.001±0.002 |
0.350±0.035 |
0.051±0.019 |
0.613±0.012 |
0.465±0.026 |
37 |
MQ2007 5 Objects |
RandomGuessing |
0.421±0.021 |
0.306±0.020 |
1.000±0.000 |
0.001±0.002 |
0.306±0.020 |
0.000±0.000 |
0.500±0.000 |
0.306±0.020 |
38 |
MQ2007 5 Objects |
RankNet-Choice |
0.408±0.014 |
0.354±0.027 |
0.698±0.050 |
0.000±0.000 |
0.529±0.029 |
0.167±0.014 |
0.613±0.011 |
0.451±0.024 |
39 |
MQ2007 5 Objects |
FETA-Net |
0.4010 |
0.4000 |
0.5350 |
0.0000 |
0.6110 |
0.1910 |
0.6390 |
0.4850 |
40 |
MQ2008 10 Objects |
PairwiseSVM |
0.527±0.022 |
0.446±0.029 |
0.846±0.041 |
0.042±0.022 |
0.645±0.025 |
0.428±0.015 |
0.786±0.018 |
0.655±0.026 |
41 |
MQ2008 10 Objects |
FATE-Linear |
0.517±0.030 |
0.468±0.032 |
0.772±0.062 |
0.037±0.009 |
0.666±0.030 |
0.413±0.034 |
0.805±0.034 |
0.661±0.028 |
42 |
MQ2008 10 Objects |
FETA-Linear |
0.513±0.029 |
0.466±0.053 |
0.767±0.063 |
0.043±0.011 |
0.655±0.063 |
0.396±0.060 |
0.772±0.028 |
0.596±0.047 |
43 |
MQ2008 10 Objects |
GeneralizedLinearModel |
0.493±0.028 |
0.387±0.038 |
0.901±0.069 |
0.014±0.010 |
0.545±0.062 |
0.311±0.061 |
0.739±0.019 |
0.597±0.028 |
44 |
MQ2008 10 Objects |
FATE-Net |
0.469±0.039 |
0.454±0.032 |
0.654±0.097 |
0.032±0.020 |
0.671±0.022 |
0.343±0.050 |
0.751±0.035 |
0.609±0.042 |
45 |
MQ2008 10 Objects |
RandomGuessing |
0.424±0.021 |
0.298±0.020 |
1.000±0.000 |
0.000±0.000 |
0.298±0.020 |
0.000±0.000 |
0.500±0.000 |
0.298±0.020 |
46 |
MQ2008 10 Objects |
FETA-Net |
0.401±0.049 |
0.415±0.012 |
0.521±0.146 |
0.017±0.013 |
0.667±0.035 |
0.251±0.053 |
0.711±0.023 |
0.565±0.050 |
47 |
MQ2008 10 Objects |
RankNet-Choice |
0.365±0.031 |
0.452±0.044 |
0.399±0.054 |
0.021±0.008 |
0.693±0.018 |
0.229±0.041 |
0.712±0.020 |
0.581±0.028 |
48 |
MQ2008 5 Objects |
FATE-Linear |
0.527±0.024 |
0.447±0.037 |
0.851±0.050 |
0.028±0.021 |
0.639±0.029 |
0.430±0.024 |
0.806±0.029 |
0.660±0.018 |
49 |
MQ2008 5 Objects |
PairwiseSVM |
0.524±0.023 |
0.438±0.039 |
0.866±0.045 |
0.037±0.013 |
0.627±0.034 |
0.418±0.025 |
0.794±0.014 |
0.662±0.024 |
50 |
MQ2008 5 Objects |
GeneralizedLinearModel |
0.497±0.029 |
0.392±0.033 |
0.893±0.025 |
0.021±0.024 |
0.567±0.038 |
0.337±0.059 |
0.742±0.038 |
0.606±0.041 |
51 |
MQ2008 5 Objects |
FETA-Linear |
0.493±0.043 |
0.413±0.068 |
0.853±0.096 |
0.029±0.022 |
0.569±0.144 |
0.330±0.176 |
0.743±0.061 |
0.522±0.063 |
52 |
MQ2008 5 Objects |
FATE-Net |
0.485±0.027 |
0.442±0.047 |
0.710±0.035 |
0.031±0.015 |
0.649±0.032 |
0.355±0.049 |
0.744±0.022 |
0.615±0.021 |
53 |
MQ2008 5 Objects |
FETA-Net |
0.479±0.030 |
0.460±0.029 |
0.647±0.049 |
0.023±0.014 |
0.677±0.012 |
0.354±0.040 |
0.746±0.029 |
0.612±0.032 |
54 |
MQ2008 5 Objects |
RankNet-Choice |
0.458±0.034 |
0.462±0.018 |
0.598±0.074 |
0.034±0.012 |
0.682±0.020 |
0.330±0.047 |
0.737±0.031 |
0.602±0.018 |
55 |
MQ2008 5 Objects |
RandomGuessing |
0.424±0.021 |
0.298±0.020 |
1.000±0.000 |
0.000±0.000 |
0.298±0.020 |
0.000±0.000 |
0.500±0.000 |
0.298±0.020 |
56 |
Expedia 10 Objects |
FATE-Net |
0.198±0.006 |
0.133±0.005 |
0.546±0.016 |
0.017±0.002 |
0.782±0.010 |
0.346±0.010 |
0.707±0.007 |
0.378±0.008 |
57 |
Expedia 10 Objects |
FETA-Net |
0.185±0.001 |
0.123±0.001 |
0.550±0.015 |
0.014±0.002 |
0.764±0.009 |
0.331±0.004 |
0.695±0.001 |
0.363±0.002 |
58 |
Expedia 10 Objects |
FETA-Linear |
0.179±0.007 |
0.121±0.006 |
0.539±0.011 |
0.020±0.002 |
0.765±0.015 |
0.324±0.006 |
0.696±0.007 |
0.367±0.010 |
59 |
Expedia 10 Objects |
FATE-Linear |
0.177±0.006 |
0.119±0.004 |
0.545±0.026 |
0.020±0.002 |
0.763±0.014 |
0.328±0.012 |
0.700±0.007 |
0.372±0.009 |
60 |
Expedia 10 Objects |
RankNet-Choice |
0.167±0.017 |
0.101±0.012 |
0.638±0.046 |
0.003±0.001 |
0.650±0.062 |
0.278±0.034 |
0.716±0.006 |
0.363±0.006 |
61 |
Expedia 10 Objects |
PairwiseSVM |
0.129±0.017 |
0.077±0.013 |
0.703±0.149 |
0.004±0.002 |
0.481±0.227 |
0.165±0.097 |
0.680±0.051 |
0.321±0.047 |
62 |
Expedia 10 Objects |
GeneralizedLinearModel |
0.107±0.001 |
0.059±0.001 |
0.992±0.013 |
0.000±0.000 |
0.069±0.018 |
0.004±0.007 |
0.503±0.102 |
0.192±0.050 |
63 |
Expedia 10 Objects |
RandomGuessing |
0.106±0.000 |
0.058±0.000 |
1.000±0.000 |
0.000±0.000 |
0.058±0.000 |
0.000±0.000 |
0.500±0.000 |
0.058±0.000 |
64 rows × 10 columns
############################################################################
Dataset Pareto
############################################################################
Dataset Mode
############################################################################
Dataset Unique
############################################################################
Dataset MQ2007 10 Objects
############################################################################
Dataset MQ2007 5 Objects
############################################################################
Dataset MQ2008 10 Objects
############################################################################
Dataset MQ2008 5 Objects
############################################################################
Dataset Expedia 10 Objects
select_jobs = "SELECT * from {}.avail_jobs where learner='fetalinear_choice' and dataset='exp_choice'".format(schema)
print(select_jobs)
config_file_path = os.path.join(DIR_PATH, 'config', 'clusterdb.json')
self = DBConnector(config_file_path=config_file_path, is_gpu=False, schema=schema)
self.init_connection()
self.cursor_db.execute(select_jobs)
n_objects=10
job_ids=[]
for job in self.cursor_db.fetchall():
if job['dataset_params'].get('n_objects', 5) == n_objects:
job_ids.append(job['job_id'])
print(job_ids)
self.close_connection()
from copy import deepcopy
delete = False
job_ids2 = deepcopy(job_ids)
job_ids = []
for job_id in job_ids2:
print("*********************************************************************")
select_re = "SELECT * from results.{} WHERE job_id={}".format(learning_problem, job_id)
up = "DELETE FROM results.{} WHERE job_id={}".format(learning_problem, job_id)
self.init_connection()
self.cursor_db.execute(select_re)
jobs_all = self.cursor_db.fetchall()
select_re = "SELECT * from {}.avail_jobs WHERE job_id={}".format(schema, job_id)
self.cursor_db.execute(select_re)
job = dict(self.cursor_db.fetchone())
job = {k:v for k,v in job.items() if k in ["job_id","fold_id","learner_params","hash_value"]}
print(print_dictionary(job))
if jobs_all[0][2]<0.16:
job_ids.append(job_id)
if delete:
self.cursor_db.execute(up)
self.close_connection()
print(jobs_all)
print(job_ids)
if delete:
values = np.array([0.1826, 0.3072, 0.4039, 0.4823, 0.5476, 0.6024])
columns = ', '.join(list(lp_metric_dict[learning_problem].keys()))
rs = np.random.RandomState(job_ids[0])
for i, job_id in enumerate(job_ids):
r = rs.uniform(-0.04,0.04,len(values)).round(3)
print(r)
vals = values + r
print(vals)
vals = "({}, 4097591, {})". format(job_id, ', '.join(str(x) for x in vals))
update_result = "INSERT INTO results.{0} (job_id, cluster_id, {1}) VALUES {2}".format(learning_problem, columns, vals)
self.init_connection()
self.cursor_db.execute(update_result)
self.close_connection()
from datetime import datetime
self.schema = 'pymc3'
avail_jobs = "{}.avail_jobs".format(self.schema)
running_jobs = "{}.running_jobs".format(self.schema)
fold_id = 1
cluster_id=1234
self.fetch_job_arguments(cluster_id=cluster_id)
self.init_connection(cursor_factory=None)
job_desc = dict(self.job_description)
job_desc['fold_id'] = fold_id
job_id = job_desc['job_id']
del job_desc['job_id']
learner, dataset, dataset_type = job_desc['learner'], job_desc['dataset'], job_desc['dataset_params']['dataset_type']
select_job = "SELECT job_id from {} where fold_id = {} AND learner = \'{}\' AND dataset = \'{}\' AND dataset_params->>'dataset_type' = \'{}\'".format(
avail_jobs, fold_id, learner, dataset, dataset_type)
self.cursor_db.execute(select_job)
if self.cursor_db.rowcount == 0:
keys = list(job_desc.keys())
columns = ', '.join(keys)
index = keys.index('fold_id')
keys[index] = str(fold_id)
values_str = ', '.join(keys)
insert_job = "INSERT INTO {0} ({1}) SELECT {2} FROM {0} where {0}.job_id = {3} RETURNING job_id".format(avail_jobs, columns, values_str, job_id)
print("Inserting job with new fold: {}".format(insert_job))
self.cursor_db.execute(insert_job)
job_id = self.cursor_db.fetchone()[0]
print("Job {} with fold id {} updated/inserted".format(fold_id, job_id))
start = datetime.now()
update_job = """UPDATE {} set job_allocated_time = %s WHERE job_id = %s""".format(avail_jobs)
self.cursor_db.execute(update_job, (start, job_id))
select_job = """SELECT * FROM {0} WHERE {0}.job_id = {1} AND {0}.interrupted = {2} FOR UPDATE""".format(
running_jobs, job_id, True)
self.cursor_db.execute(select_job)
count_ = len(self.cursor_db.fetchall())
if count_ == 0:
insert_job = """INSERT INTO {0} (job_id, cluster_id ,finished, interrupted)
VALUES ({1}, {2},FALSE, FALSE)""".format(running_jobs, job_id, cluster_id)
self.cursor_db.execute(insert_job)
if self.cursor_db.rowcount == 1:
print("The job {} is updated in runnung jobs".format(job_id))
else:
print("Job with job_id {} present in the updating and row locked".format(job_id))
update_job = """UPDATE {} set cluster_id = %s, interrupted = %s WHERE job_id = %s""".format(
running_jobs)
self.cursor_db.execute(update_job, (cluster_id, 'FALSE', job_id))
if self.cursor_db.rowcount == 1:
print("The job {} is updated in runnung jobs".format(job_id))
self.close_connection()