This overview presents different facets and covers all the features of this package.
(active link on jupyter Notebook or Nbviewer)
This Notebook can also be viewed at nbviewer
from json_ntv import NtvSingle, NtvList, Ntv, NtvConnector, Datatype, Namespace, to_csv, from_csv, NtvComment
from datetime import date, datetime
from shapely import Point
ntv = """
flowchart LR
text["#10240;#10240;JSON#10240;#10240;\ntext"]
val["#10240;JSON-NTV#10240;\nvalue"]
ntv["#10240;#10240;#10240;NTV#10240;#10240;#10240;\nentity"]
nat["#10240;<b>native</b>#10240;\nentity"]
text--->|JSON load|val
val--->|JSON dump|text
val--->|Ntv.from_obj|ntv
ntv--->|.to_obj|nat
ntv--->|.to_obj|val
nat--->|Ntv.from_obj|ntv
"""
from base64 import b64encode
from IPython.display import Image, display
display(Image(url="https://mermaid.ink/img/" + b64encode(ntv.encode("ascii")).decode("ascii")))
loc_and_date = {'newyear': date(2023, 1, 2), 'Paris': Point(2.3, 48.9)}
json_loc_date = Ntv.obj(loc_and_date).to_obj(encoded=True)
Ntv.obj(json_loc_date).to_obj(format='obj') == loc_and_date
True
NTV entities :
liste = [None, 1, [1,2], {'key': 'value'}, {'key1': 'val1', 'key2': 'val2'},
{'example': [21, [1,2], {'key1': 3, 'key2': 4}]}]
for json in liste:
ntv = Ntv.obj(json)
print('{:<50} {} {}'.format(str(ntv), 'NTV entity : ', type(ntv)))
null NTV entity : <class 'json_ntv.ntv.NtvSingle'> 1 NTV entity : <class 'json_ntv.ntv.NtvSingle'> [1, 2] NTV entity : <class 'json_ntv.ntv.NtvList'> {"key": "value"} NTV entity : <class 'json_ntv.ntv.NtvSingle'> {"key1": "val1", "key2": "val2"} NTV entity : <class 'json_ntv.ntv.NtvList'> {"example": [21, [1, 2], {"key1": 3, "key2": 4}]} NTV entity : <class 'json_ntv.ntv.NtvList'>
simple = NtvSingle(3)
print('simple data : ', simple)
simple.set_name('value')
print('simple data with name : ', simple)
simple.set_name('')
print('simple data without name : ', simple)
simple data : 3 simple data with name : {"value": 3} simple data without name : 3
# {':json' : 21} and 21 are equivalent
number = 21
typed_number = {':json' : 21}
comparison = Ntv.obj(typed_number) == Ntv.obj(number)
print("Are {':json' : 21} and 21 equivalent ? ", comparison)
Are {':json' : 21} and 21 equivalent ? True
# {'paris:point' : [4.1, 40.5] } indicates that the object named 'paris' has geographical coordinates [4.1, 40.5]
city = Ntv.obj({'paris:point' : [4.1, 40.5] })
print(city.to_obj(format='obj'))
# another coordinates are available (e.g. line, polygon)
city = Ntv.obj({':polygon' : [[[0,1], [1,1], [1,0], [0,1]]] })
city.to_obj(format='obj')
{'paris': <POINT (4.1 40.5)>}
picardie = NtvList.obj({'picardie:fr.':{'oise:dep': '60', 'aisne:dep': '02', 'somme:dep': '80', 'hauts de france:reg': 32}})
# 'dep' is a type (french department) defined in the Namespace 'fr.' (french types)
# the default Namespace 'fr.' is aggregated with the 'dep' type
print(picardie, '\n')
print(picardie[0])
# '60' is the 'fr.dep' code for the department of Oise
{"picardie:fr.": {"oise:dep": "60", "aisne:dep": "02", "somme:dep": "80", "hauts de france:reg": 32}} {"oise:fr.dep": "60"}
# structure definied by JSON-Array
cities1 = Ntv.obj({'cities': [{'paris:point': [4.1, 40.5]}, {':point': [4.5, 41.2]}]})
cities2 = Ntv.obj({'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 41.2] ]})
# structure definied by JSON-Object
cities3 = Ntv.obj({'cities::point': {'paris': [4.1, 40.5], 'lyon': [4.5, 41.2]}})
cities4 = Ntv.obj({'cities': {'paris:point': [4.1, 40.5], 'lyon:point': [4.5, 41.2]}})
print('equivalent structures ? ', cities1 == cities2 and cities3 == cities4)
# default type in a structure
cities5 = Ntv.obj({'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 41.2], {':date': '2012-02-15'}]})
print('coordinates and date in a typed structure : ', cities5)
cities5.set_type()
print('coordinates and date in an untyped structure : ', cities5)
equivalent structures ? True coordinates and date in a typed structure : {"cities::point": [{"paris": [4.1, 40.5]}, [4.5, 41.2], {":date": "2012-02-15"}]} coordinates and date in an untyped structure : {"cities": {"paris:point": [4.1, 40.5], ":point": [4.5, 41.2], ":date": "2012-02-15"}}
Ntv.obj(simple. to_obj()) == simple and \
Ntv.obj(city. to_obj()) == city and \
Ntv.obj(cities2.to_obj()) == cities2 and \
Ntv.obj(cities4.to_obj()) == cities4
True
cities5 = Ntv.obj({'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 41.2], {':date': '2012-02-15'}]})
print('without error (boolean, list pointer of error): ', cities5.validate())
cities5 = Ntv.obj({'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 241.2], {':date': '2012-02-15'}]})
print('\nwith coordinate error (boolean, list pointer of error): ', cities5.validate())
cities5 = Ntv.obj({'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 41.2], {':date': '2012-22-15'}]})
print('\nwith date error (boolean, list pointer of error): ', cities5.validate())
without error (boolean, list pointer of error): (True, []) with coordinate error (boolean, list pointer of error): (False, ['cities::point/1']) with date error (boolean, list pointer of error): (False, ['cities::point/2'])
print('Json format : ', cities2.to_obj())
print('only values : ', cities2.to_obj(simpleval=True))
print('Json text : ', cities2.to_obj(encoded=True))
print('Json binary : ', cities2.to_obj(format='cbor', encoded=True))
print('tuple format : ', cities2.to_tuple())
print('object format : ', cities2.to_obj(format='obj'))
print('simple Json : ', cities2.to_repr())
print('Json codes : ', cities2.to_repr(False, False, False))
# Codification : first letter: "s" (NtvSingle), "l" (NtvList), additional letters: 'N' (named), 'T' (typed)
Json format : {'cities::point': [{'paris': [4.1, 40.5]}, [4.5, 41.2]]} only values : [[4.1, 40.5], [4.5, 41.2]] Json text : {"cities::point": [{"paris": [4.1, 40.5]}, [4.5, 41.2]]} Json binary : b'\xa1mcities::point\x82\xa1eparis\x82\xfb@\x10ffffff\xfb@D@\x00\x00\x00\x00\x00\x82\xfb@\x12\x00\x00\x00\x00\x00\x00\xfb@D\x99\x99\x99\x99\x99\x9a' tuple format : ('NtvList', 'cities', 'point', [('NtvSingle', 'paris', 'point', [4.1, 40.5]), ('NtvSingle', '', 'point', [4.5, 41.2])]) object format : {'cities::point': [{'paris': <POINT (4.1 40.5)>}, <POINT (4.5 41.2)>]} simple Json : {'l-cities-point': ['s-paris-point-[4.1, 40.5]', 's-point-[4.5, 41.2]']} Json codes : {'lNT': ['sNT', 'sT']}
dates_json = {'dates::date': { 'date1':'1964-01-01', 'date2': '1985-02-05', 'date3': '2022-01-21'}}
dates = Ntv.obj(dates_json)
dates_comment = NtvComment(dates)
dates_comment.add({'list-op': [{'op': 'replace', 'path': 'dates/date1', 'entity': {'date1:date':'1965-01-01'}}],
'comment': 'year is not correct'})
dates_comment.add('everything is correct')
dates_reject = dates_comment.reject(all_comment=True).ntv
print('\nare rejected comments deleted ? ', dates == dates_reject)
dates_accept = dates_comment.accept().ntv
print("is 'date1' updated (1965-01-01) ? ", dates_accept['date1'].val == '1965-01-01')
are rejected comments deleted ? True is 'date1' updated (1965-01-01) ? True
ntv_lis = Ntv.obj({'array or object': [{'key1': 'value1'}, {'key2': 'value2'}]})
ntv_obj = Ntv.obj({'array or object': {'key1': 'value1', 'key2': 'value2'}})
print('are NTV entities from a JSON-array or a JSON-object the same ? ', ntv_lis == ntv_obj, '\n')
print('ntv - Array : ', ntv_lis.to_obj(ntv_list=True))
print('ntv - Object : ', ntv_lis.to_obj(ntv_list=False))
print('\nAn NTV entity has JSON-array and JSON-object representation' )
are NTV entities from a JSON-array or a JSON-object the same ? True ntv - Array : {'array or object': {'key1': 'value1', 'key2': 'value2'}} ntv - Object : {'array or object': {'key1': 'value1', 'key2': 'value2'}} An NTV entity has JSON-array and JSON-object representation
example = { 'example::': {
"fruits": [
{"kiwis": 3, "mangues:int": 4, "pommes": None },
{"panier": True } ],
"legumes::json": {
"patates:string": "amandine",
"poireaux": False },
"viandes": ["poisson",{":string": "poulet"},"boeuf"] }}
# tree with value
Ntv.obj(example).to_mermaid('NTV flowchart', disp=True)
# tree with leaves row
Ntv.obj(example).to_mermaid('NTV flowchart', disp=True, leaves=True)
Ntv.obj({'city': {'paris': [2.3, 48.9], 'lyon': [4.8, 45.8] } }).to_mermaid('full NTV', disp=True)
Ntv.obj({'city::point': {'paris': [2.3, 48.9], 'lyon': [4.8, 45.8] } }).to_mermaid('mixed JSON-NTV', disp=True)
Ntv.obj({'city:': {'paris': [2.3, 48.9], 'lyon': [4.8, 45.8] } }).to_mermaid('full JSON', disp=True)
import os
import sys
os.path
sys.path.insert(0, 'C:\\Users\\phili\\github\\ntv-pandas')
import ntv_pandas
field_data = {'dates::datetime': ['1964-01-01', '1985-02-05', '2022-01-21']}
tab_data = {'index': [1, 2, 3],
'dates::datetime': ['1964-01-01', '1985-02-05', '2022-01-21'],
'value': [10, 20, 30],
'value32::int32': [10, 20, 30],
'coord::point': [[1,2], [3,4], [5,6]],
'names::string': ['john', 'eric', 'judith']}
field = Ntv.obj({':field': field_data})
tab = Ntv.obj({':tab' : tab_data})
# the DataFrame Connector is associated with Datatype 'tab' in dicobj
sr = field.to_obj(format='obj', dicobj={'field': 'SeriesConnec'})
df = tab.to_obj (format='obj', dicobj={'tab': 'DataFrameConnec'})
# pandas dtype conform to Ntv type
print(sr, '\n')
print(df.dtypes)
df
0 1964-01-01 1 1985-02-05 2 2022-01-21 Name: dates, dtype: datetime64[ns] dates datetime64[ns] value int64 value32 int32 coord::point object names string[python] dtype: object
dates | value | value32 | coord::point | names | |
---|---|---|---|---|---|
1 | 1964-01-01 | 10 | 10 | POINT (1 2) | john |
2 | 1985-02-05 | 20 | 20 | POINT (3 4) | eric |
3 | 2022-01-21 | 30 | 30 | POINT (5 6) | judith |
# the dataframe generated from NTV data from a first dataframe is identical to this first dataframe
df2 = Ntv.obj(df).to_obj(format='obj', dicobj={'tab': 'DataFrameConnec'})
print('df2 is identical to df ? ', df2.equals(df))
df2 is identical to df ? True
import csv
tab = {'index': [1, 2, 3],
'dates::date': ['1964-01-01', '1985-02-05', date(2022, 1,2)],
'value': [10, 20, 30],
'value32::int32': [10, 20, 30],
'coord::point': [[1,2], [3,4], datetime(2022, 1,2, 10)],
'names::string': ['john', 'eric', 'judith']}
ntv_tab = Ntv.obj(tab)
print('Json format :\n', ntv_tab)
to_csv('test.csv', ntv_tab)
f = open('test.csv', 'r')
print('\nCSV format :\n', f.read())
ntv_tab2 = from_csv('test.csv', single_tab=False)
print('is NTV entity from CSV identical to the initial NTV entity ? ', ntv_tab == ntv_tab2)
Json format : {"index": [1, 2, 3], "dates::date": ["1964-01-01", "1985-02-05", "2022-01-02"], "value": [10, 20, 30], "value32::int32": [10, 20, 30], "coord::point": [[1, 2], [3, 4], {":datetime": "2022-01-02T10:00:00"}], "names::string": ["john", "eric", "judith"]} CSV format : index,dates::date,value,value32::int32,coord::point,names::string 1,"""1964-01-01""",10,10,"[1, 2]","""john""" 2,"""1985-02-05""",20,20,"[3, 4]","""eric""" 3,"""2022-01-02""",30,30,"{"":datetime"": ""2022-01-02T10:00:00""}","""judith""" is NTV entity from CSV identical to the initial NTV entity ? True
ntv = Ntv.obj({'dataframe::tab': [df, df2], 'series::field': [sr], 'coord::point': [[1,2], [3,4], [5,6]], 'name': 'walter'}, True)
print('simple representation : ', repr(ntv), '\n')
# ntv is converted into json data
print('json representation :\n', ntv, '\n')
# ntv is converted into objects according to the chosen connectors
data = ntv.to_obj(format='obj', dicobj={'tab': 'DataFrameConnec', 'field': 'SeriesConnec'})
print('data without conversion eg "name" :\n', data['name'], '\n')
print('data with conversion eg "dataframe" :')
data['dataframe::tab'][0] # 'tab' type is converted into DataFrame object
simple representation : {"dataframe::tab": [{"index": [1, 2, 3], "dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"], "value": [10, 20, 30], "value32::int32": [10, 20, 30], "coord::point": [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], "names::string": ["john", "eric", "judith"]}, {"index": [1, 2, 3], "dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"], "value": [10, 20, 30], "value32::int32": [10, 20, 30], "coord::point": [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], "names::string": ["john", "eric", "judith"]}], "series::field": [[{"dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"]}]], "coord::point": [[1, 2], [3, 4], [5, 6]], "name": "walter"} json representation : {"dataframe::tab": [{"index": [1, 2, 3], "dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"], "value": [10, 20, 30], "value32::int32": [10, 20, 30], "coord::point": [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], "names::string": ["john", "eric", "judith"]}, {"index": [1, 2, 3], "dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"], "value": [10, 20, 30], "value32::int32": [10, 20, 30], "coord::point": [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], "names::string": ["john", "eric", "judith"]}], "series::field": [[{"dates::datetime": ["1964-01-01T00:00:00.000", "1985-02-05T00:00:00.000", "2022-01-21T00:00:00.000"]}]], "coord::point": [[1, 2], [3, 4], [5, 6]], "name": "walter"} data without conversion eg "name" : walter data with conversion eg "dataframe" :
dates | value | value32 | coord::point | names | |
---|---|---|---|---|---|
1 | 1964-01-01 | 10 | 10 | POINT (1 2) | john |
2 | 1985-02-05 | 20 | 20 | POINT (3 4) | eric |
3 | 2022-01-21 | 30 | 30 | POINT (5 6) | judith |
print(type(data))
print(data.keys())
print(data['name'])
<class 'dict'> dict_keys(['dataframe::tab', 'series::field', 'coord::point', 'name']) walter
air_quality = Ntv.obj({'air quality measure':{'concentration': {'value min': 0, 'value max': 0},
'unit': '',
'coordinates:point': None,
'pollutant': ''}})
measure = [3.51, 4.2, 'mg/m3', [4.1, 45.2], 'NO2']
air_quality.set_value(measure)
print(air_quality)
{"air quality measure": {"concentration": {"value min": 3.51, "value max": 4.2}, "unit": "mg/m3", "coordinates:point": [4.1, 45.2], "pollutant": "NO2"}}
mass = Ntv.obj({'mass:float[kg]': 25})
print(mass.ntv_type.base_name, mass.ntv_type.extension)
float kg
For example:
measurement = Ntv.obj({':$sensor': [3.51, 4.2, 'mg/m3', [4.1, 45.2]]})
print('measurement : ', measurement)
print('infos : ', measurement.val[1], measurement.val[3], measurement.type_str, '\n')
person = Ntv.obj({'main Breaking Bad character:$character': {'surname': 'white', 'first name': 'walter', 'alias': 'heisenberg'}})
print('personage : ', person)
print('infos : ', person.val['alias'], person.type_str)
measurement : {":$sensor": [3.51, 4.2, "mg/m3", [4.1, 45.2]]} infos : 4.2 [4.1, 45.2] $sensor personage : {"main Breaking Bad character:$character": {"surname": "white", "first name": "walter", "alias": "heisenberg"}} infos : heisenberg $character
Example :
from dataclasses import dataclass
import datetime
# custom classes
@dataclass
class Sensor:
name: str
measurement: float
unit: str
coord: list
date: datetime.datetime
# custom data
val1 = Sensor('sensor1', 4.2, 'mg/l', [4,42], datetime.datetime(2021, 2, 5))
val2 = Sensor('sensor1', 5.1, 'mg/l', [4,42], datetime.datetime(2021, 2, 10))
val3 = ["sensor2", 4.2, "mg/l", [5, 42], '2021-04-06']
# simple value
print('representation class Sensor :\n', val1, '\n')
representation class Sensor : Sensor(name='sensor1', measurement=4.2, unit='mg/l', coord=[4, 42], date=datetime.datetime(2021, 2, 5, 0, 0))
class SensorConnec(NtvConnector):
clas_obj = 'Sensor'
clas_typ = '$sensor'
@staticmethod
def to_obj_ntv(ntv_value, **kwargs):
'''convert ntv_value into the return object'''
return Sensor(*ntv_value[0:4], datetime.datetime.fromisoformat(ntv_value[4]))
@staticmethod
def to_json_ntv(self, name=None, typ=None):
''' convert object into the NTV entity (value, name, type)'''
return ([self.name, self.measurement, self.unit, self.coord, self.date.isoformat()], None, '$sensor')
ntv1 = Ntv.obj(val1)
print('representation NTV (to_json_ntv) :\n',ntv1, '\n')
val1_bis = ntv1.to_obj(format='obj')
print('reflexivity of conversion ? ', val1_bis == val1, '\n')
# assembly value
first_test = {'campaign': 'first test', 'result::$sensor': [val1, val2, val3], 'date measure:datetime': '2012-01-10'}
first_test_ntv = Ntv.obj(first_test)
print("'first test' representation NTV :\n",first_test_ntv, '\n')
first_test_obj = first_test_ntv.to_obj(format='obj', dicobj={'$sensor': 'SensorConnec'})
print("'first test' representation with object :\n", first_test_obj["result::$sensor"][0])
representation NTV (to_json_ntv) : {":$sensor": ["sensor1", 4.2, "mg/l", [4, 42], "2021-02-05T00:00:00"]} reflexivity of conversion ? True 'first test' representation NTV : {"campaign": "first test", "result::$sensor": [["sensor1", 4.2, "mg/l", [4, 42], "2021-02-05T00:00:00"], ["sensor1", 5.1, "mg/l", [4, 42], "2021-02-10T00:00:00"], ["sensor2", 4.2, "mg/l", [5, 42], "2021-04-06"]], "date measure:datetime": "2012-01-10"} 'first test' representation with object : Sensor(name='sensor1', measurement=4.2, unit='mg/l', coord=[4, 42], date=datetime.datetime(2021, 2, 5, 0, 0))