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Abstract

Motivated by Challenge 2 of the 5th Annual Smoky Mountains
Computational Sciences Data Challenge, we analyze the COVID-19
biomedical knowledge graph [11]. After computing geodesic statis-
tics for all nodes in the network, we present several machine learn-
ing pipelines for automated hypothesis generation. Our most perfor-
mant approach achieves classification results comparable to the state-
of-the-art on thematically similar link prediction benchmarks. Rele-
vant source code and data is available in our public GitHub repository,
described in Section 5.

1 Introduction

The volume of new research publications is prohibitively vast, motivating
scientific workflows driven by literature-based discovery. In particular, hy-
pothesis generation can reduce research risk by filtering low-probability hy-
potheses prior to experimentation and hasten the rate of scientific discovery
by automating a costly component of the experimental design process [22].

We center our analysis on the COVID-19-related bibliometric knowledge
graph generated by Oak Ridge National Laboratory, which represents rela-
tionships between biomedical concepts extracted from 435681 publications
[13]. For literature-based discovery with knowledge graphs, link prediction
using geodesic features can be powerful, but the recent advent of graph ma-
chine learning has provided impressive results, as well [15, 6]. In this work,
we consider both. Our contributions are severalfold, including both require-
ments specified by the scientific data challenge and supplemental analysis:
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1. Computation and analysis of geodesic statistics, including all-pairs
shortest paths (APSP) lengths (Section 2),

2. Machine learning pipelines incorporating geodesic and neural features
for biomedical concept link prediction (Section 3),

3. Itemization of our proposed novel connections (Section 4), and

4. Statistical examination of the COVID-19 citation network’s adjacency
structure (Section 7).

Figure 1: A) Log-log plot of Gtc’s degree distribution (red) alongside rele-
vant best-fit distributions. B) Log-log plot of the undirected and directed
(respectively) citation networks’ cumulative degree distributions (red) along-
side relevant best-fit distributions.

2 Geodesic Statistics

The training data consists of all concept-concept edge relations included
in publications up to June 2020, though these are not explicitly specified.
Instead, we regard a concept-concept edge relation as consistent with a
publication if both concepts are neighbors of a publication in the publication-
concept network. Since corresponding publication dates are available, we
generate the Training Concept Graph (Gtc) from all concept-concept edge
relations whose latest consistent publication was prior to June 2020; this
network consists of 46669 nodes, 300673 edges, and has a degree distribution
consistent with a truncated power law (Figure 1). We will refer to edges in
Gtc as positive training pairs. The remaining concept-concept edges are
withheld as positive samples for validation (we will refer to these 167172
edges as positive validation pairs), though we exclude those edges containing
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Figure 2: A) Boxplot depicting the distributions of shortest path distances
between all pairs of nodes in Gtc (All) and positive validation pairs in Gtc

(Validation). B) One shortest path (blue) between concepts C0679693 and
C0836924 in Gtc, illustrated on the induced subgraph of the Gtc containing
the nodes of the shortest path and randomly-selected neighbors of each node.

nodes not found in Gtc, as these correspond to novel conceptual discoveries
that cannot be hypothesized in this framework.

2.1 Path Lengths

We compute the APSP lengths for Gtc (provided in our GitHub repository,
Section 5). While the Floyd–Warshall algorithm is, in principle, the most
computationally performant option due to its O(|V (Gtc)|3) time complexity,
memory limitations make it intractable for a graph of this size [8, 23, 12]. In-
stead, we conduct unweighted breadth-first searches for single-source short-
est paths on a per-node basis. The average shortest path length among all
node pairs in Gtc is 4.31 (σ = 0.748).

We are also interested in the distances between pairs of nodes that will
form connections in the future. Toward this end, we measure the shortest
path lengths in Gtc of positive validation pairs; these correspond to concepts
that have recently-established connections not consistent with publications
prior to June 2020. The average shortest path length of positive validation
pairs in Gtc is 2.36 (σ = 0.541). In general, pairs of nodes that formed
connections in the validation period were already near one another.

2.2 Betweenness Centrality

Exhaustive computation of betweenness centrality for large graphs is expen-
sive in terms of both time and space. Instead, we estimate the betweenness
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Figure 3: A) Log-scale boxplot depicting the distribution of normalized
betweenness centrality of all unique nodes found in node pairs who have no
edge in training or validation (No Edge), positive training pairs (Training),
and positive validation pairs (Validation). B) Log-scale boxplot depicting
the distribution of pairwise mean normalized betweenness centrality found
in node pairs who have no edge in training or validation (No Edge), positive
training pairs (Training), and positive validation pairs (Validation).

centrality of each node in Gtc using the method of Brandes and Pich with
10000 pivot nodes [3]. Since betweenness scales with node pair count, we
normalize all measurements by dividing by the number of node pairs exclud-
ing a given node ((N − 1)(N − 2)/2, where N = |V (Gtc)|) [7].

Pairwise mean normalized betweenness centrality tends to be orders of
magnitude larger in positive training and validation pairs than in pairs who
have no edge in training or validation, but this effect disappears when con-
sidering unique nodes only (Figure 3). This is because edges are likely to
include high-betweenness nodes, but high-betweenness nodes are not nec-
essarily likely to form edges between one another. As such, betweenness
centrality may be a powerful feature for identifying negative examples (hy-
pothesized edges without a high-betweeness node are unlikely), but addi-
tional information is necessary for high-precision link prediction.

3 Link Prediction

We implement and assess three link prediction pipelines for automated hy-
pothesis generation:

1. DeepWalk node embeddings 1 are computed based on Gtc [20]. We

1We replicate the parameters used in the original DeepWalk publication - namely, a
dimensionality of 128 with 80 random walks of length 10 [20].
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construct two embedding-based pipelines:

(a) DeepWalk+MLP : For each hypothesized edge, a multi-layer per-
ceptron 2 estimates the probability of the edge based on the em-
beddings of each node (Figure 4B).

(b) DeepWalk+LR: For each hypothesized edge, we use the Hadamard
operator 3 to generate a combined representation of the edge’s
nodes’ feature vectors. We estimate the probability of the edge
using this combined representation via logistic regression (Figure
4C).

2. Geodesic+GBC : All-pairs shortest paths distances and betweenness
centrality metrics are calculated based on Gtc. For each hypothesized
edge, a gradient boosting classifier 4 estimates the probability of the
edge based on the betweenness centrality of each node and the length
of the shortest path between them (Figure 4A).

While shortest path length is an informationally-dense feature for link
prediction (Figure 2), it provides several practical challenges. First, since the
generation of training data warrants sampling positive edges and removing
them from the graph, only a small number of positive samples can be used
without excessively sparsifying the source data. For this reason, we limit
the positive training data for both pipelines to 34668 positive edge samples
(corresponding to 10% of Training Concept Graph edges).

Such a procedure may make the graph disconnected, resulting in incal-
culable shortest path lengths. Where edge removal results in disconnected
vertices in the training data, we replace the shortest path length with the
effective diameter, defined as the minimum path length whereby 90% of
connected nodes can reach one another [16].

4 Results and Discussion

Known concept-concept links are non-exhaustive, unlikely to represent all
possible scientific relationships, so our negative examples in training and
validation are samples from the edge set of the complement of the graph
of existing connections. For this reason, retrieval of true positive links may

2hidden layer sizes (64, 12), rectified linear unit activation
3Many binary operators are feasible here. We choose Hadamard for its exemplary

empirical performance in link prediction tasks with DeepWalk [9].
4100 boosting stages, maximum tree depth 3
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Figure 4: Illustration of our link prediction pipelines: Geodesic+GBC (A),
DeepWalk+MLP (B), and DeepWalk+LR (C).
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Pipeline ACC AUC AP

DeepWalk+MLP 70.0 77.6 76.4

DeepWalk+LR 74.5 82.1 83.7

Geodesic+GBC 96.8 99.4 99.5

Table 1: Results for the link prediction task on validation data, namely:
classification accuracy (ACC), area under ROC (AUC), and average preci-
sion (AP).

be more practically important than discrimination of true negative links.
Additionally, by this approach, a minor class imbalance problem must be
overcome: for all but the densest graphs, the number of existent edges is a
small fraction of possible ones.

We evaluate performance based on classification accuracy, area under
a receiver operating characteristic curve, and average precision score, as
outlined in Table 1. Since this COVID-19 biomedical knowledge graph
is a novel dataset without an established state-of-the-art for link predic-
tion, we consider the thematically similar PubMed benchmark, for which
Pan et. al achieve link prediction results similar to those of our best-
performing Geodesic+GBC [18]. We also predict novel relations by using
Geodesic+GBC to rank the highest positive class probabilities of negative
samples in validation. The top five predicted novel relations by this method
are (’C0035236’, ’C1441604’), (’C0027362’, ’C0020967’),
(’C0003062’, ’C0012754’), (’C0086418’, ’C0027934’), and
(’C0006104’, ’C0333230’). Our top 1000 predictions are itemized in the
GitHub repository (Section 5).

Geodesic statistics are exceedingly effective features for link prediction,
but their advantage comes at significant computational and memory costs
for large graphs. For instance, our pre-computed APSP data alone is over 6
GB in size, and such resources may not be available in all use cases. Addi-
tionally, as the knowledge graph grows over time, re-computation of features
must be repeated from scratch, making the time-consuming task of comput-
ing geodesic features entirely unscalable. As such, the more moderately
performant DeepWalk+LR pipeline may still be better-suited for a practical
production environment. For the purpose of guiding scientific experimenta-
tion, however, these computations are likely to be infrequent, making the
less scalable but higher-precision Geodesic+GBC pipeline preferable.

Unresolved in this work is the possibility that the edge-generation proce-
dure may vary over time, especially as scientific research in a particular field
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becomes more saturated. For instance, it is conceivable that early connec-
tions tend to include the most popular concepts via a procedure like prefer-
ential attachment [2], whereas later link formation may be more dependent
on path distance or other geodesic statistics. Analysis of this possibility war-
rants reconstruction of a plausible time series of the COVID-19 biomedical
knowledge graph’s evolution and is left for future work.

5 Source Code

Source code and processed data are available in our public GitHub reposi-
tory: https://github.com/lucasmccabe/covid19-link-prediction. We
also provide
kg browser, a convenient utility for accessing our processed data and models.
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All graphs are generated using NetworkX [10]. Statistical analyses of
degree distributions in Sections 2 and 7 are completed using the powerlaw
library [1]. In Section 3, our classifiers use Scikit-learn [19] and our Deep-
Walk implementation uses Karate Club [21].
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7 The Network Structure of COVID-19 Citations

Scientific collaboration networks of various kinds have been reported to be
scale-free [14]. Here, we generate citation networks from the provided list of
paper citations and fit reference distributions to their degree sequences using
the methods of Clauset and colleagues [5]. In general, the evidence is con-
sistent with weak power law or log-normal behavior, consistent with Broido
and Clauset’s observation that ”for most networks, log-normal distributions
fit the data as well or better than power laws” [4].

Figure 5: A, C) Log-log plot of the undirected and directed (respectively)
citation networks’ degree distributions (red) alongside best-fit power law
distributions (blue). B, D) Log-log plot of the undirected and directed (re-
spectively) citation networks’ cumulative degree distributions (red) along-
side best-fit power law distributions (blue).

7.1 The Undirected Case

In the undirected case, we do not consider the the direction of citations,
assessing the general connectivity of the network. We compare the maxi-
mum likelihood power law fit (α = 3.04) to that of lognormal, exponential,
and Weibull distributions, reporting the loglikelihood ratios and relevant p-
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values between the power law and alternative distributions in Table 2. We
find moderate evidence supporting a power law degree distribution to the
undirected version of the citation network (Figure 5 A-B), though we cannot
reject a lognormal fit at the 0.05 significance level.

Reference Distribution R p

Log-Normal 0.6462 0.5181

Exponential 7.146 8.910e-13

Weibull 2.840 0.0045

Table 2: Assessment of distribution fit for the undirected citation network,
showing log-likelihood ratio (R) of maximum likelihood power law vs. ref-
erence distribution alongside corresponding p-values (p).

7.2 The Directed Case

In the directed case, we consider the the direction of citations, analyzing
the in-degree distribution of the network. We find a power law exponent
of 2.68, similar to the corresponding value found by Newman in biomedical
collaboration networks [17]. The in-degree distribution is plausibly power
law or log-normally distributed (Figure 5 C-D).

Reference Distribution R p

Log-Normal -0.0582 0.9536

Exponential 5.938 2.873e-13

Weibull 1.431 0.1526

Table 3: Assessment of distribution fit for the directed citation network,
showing log-likelihood ratio (R) of maximum likelihood power law vs. ref-
erence distribution alongside corresponding p-values (p).
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