This notebook includes code and visualizations to test, debug, and evaluate the Mask R-CNN model.
import os
import sys
import numpy as np
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import keras
# Root directory of the project
ROOT_DIR = os.path.abspath("../../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
from mrcnn.model import log
%matplotlib inline
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
# Path to Shapes trained weights
SHAPES_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_shapes.h5")
Using TensorFlow backend.
# Run one of the code blocks
# Shapes toy dataset
# import shapes
# config = shapes.ShapesConfig()
# MS COCO Dataset
import coco
config = coco.CocoConfig()
# Device to load the neural network on.
# Useful if you're training a model on the same
# machine, in which case use CPU and leave the
# GPU for training.
DEVICE = "/cpu:0" # /cpu:0 or /gpu:0
def get_ax(rows=1, cols=1, size=16):
"""Return a Matplotlib Axes array to be used in
all visualizations in the notebook. Provide a
central point to control graph sizes.
Adjust the size attribute to control how big to render images
"""
_, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
return ax
# Create model in inference mode
with tf.device(DEVICE):
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,
config=config)
# Set weights file path
if config.NAME == "shapes":
weights_path = SHAPES_MODEL_PATH
elif config.NAME == "coco":
weights_path = COCO_MODEL_PATH
# Or, uncomment to load the last model you trained
# weights_path = model.find_last()
# Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)
# Show stats of all trainable weights
visualize.display_weight_stats(model)
conv1/kernel:0 | (7, 7, 3, 64) | -0.8616 | +0.8539 | +0.1314 |
bn_conv1/gamma:0 | (64,) | +0.0843 | +2.6420 | +0.5087 |
bn_conv1/beta:0 | (64,) | -2.4174 | +5.4189 | +1.9981 |
bn_conv1/moving_mean:0 | (64,) | -172.9685 | +94.5717 | +42.0063 |
bn_conv1/moving_variance:0*** Overflow? | (64,) | +0.0000 | +110557.9688 | +16228.7607 |
res2a_branch2a/kernel:0 | (1, 1, 64, 64) | -0.6603 | +0.3208 | +0.0768 |
bn2a_branch2a/gamma:0 | (64,) | +0.2189 | +1.8654 | +0.4149 |
bn2a_branch2a/beta:0 | (64,) | -2.1375 | +3.7690 | +1.1904 |
bn2a_branch2a/moving_mean:0 | (64,) | -6.3118 | +7.4370 | +2.4037 |
bn2a_branch2a/moving_variance:0 | (64,) | +0.0000 | +8.8091 | +2.1498 |
res2a_branch2b/kernel:0 | (3, 3, 64, 64) | -0.3813 | +0.5123 | +0.0323 |
bn2a_branch2b/gamma:0 | (64,) | +0.3195 | +1.7454 | +0.3143 |
bn2a_branch2b/beta:0 | (64,) | -1.9530 | +4.5882 | +1.5261 |
bn2a_branch2b/moving_mean:0 | (64,) | -6.7890 | +4.2754 | +2.2064 |
bn2a_branch2b/moving_variance:0 | (64,) | +0.0000 | +5.5464 | +1.1573 |
res2a_branch2c/kernel:0 | (1, 1, 64, 256) | -0.4412 | +0.3600 | +0.0411 |
res2a_branch1/kernel:0 | (1, 1, 64, 256) | -0.8513 | +0.7543 | +0.0699 |
bn2a_branch2c/gamma:0 | (256,) | -0.5887 | +3.2101 | +0.6259 |
bn2a_branch2c/beta:0 | (256,) | -1.1511 | +1.4415 | +0.4269 |
bn2a_branch2c/moving_mean:0 | (256,) | -4.2796 | +3.1055 | +1.0352 |
bn2a_branch2c/moving_variance:0 | (256,) | +0.0000 | +2.6966 | +0.4085 |
bn2a_branch1/gamma:0 | (256,) | +0.2415 | +3.5354 | +0.6298 |
bn2a_branch1/beta:0 | (256,) | -1.1511 | +1.4415 | +0.4269 |
bn2a_branch1/moving_mean:0 | (256,) | -8.1191 | +8.7749 | +2.0398 |
bn2a_branch1/moving_variance:0 | (256,) | +0.0000 | +10.3201 | +1.6540 |
res2b_branch2a/kernel:0 | (1, 1, 256, 64) | -0.2418 | +0.2263 | +0.0358 |
bn2b_branch2a/gamma:0 | (64,) | +0.2051 | +1.7890 | +0.3852 |
bn2b_branch2a/beta:0 | (64,) | -2.0730 | +1.6836 | +0.8930 |
bn2b_branch2a/moving_mean:0 | (64,) | -1.8157 | +1.7829 | +0.7466 |
bn2b_branch2a/moving_variance:0 | (64,) | +0.0000 | +3.2496 | +0.7830 |
res2b_branch2b/kernel:0 | (3, 3, 64, 64) | -0.5190 | +0.3431 | +0.0357 |
bn2b_branch2b/gamma:0 | (64,) | +0.5190 | +1.4828 | +0.2283 |
bn2b_branch2b/beta:0 | (64,) | -2.4756 | +2.7818 | +1.2069 |
bn2b_branch2b/moving_mean:0 | (64,) | -1.8361 | +0.9368 | +0.5723 |
bn2b_branch2b/moving_variance:0 | (64,) | +0.0938 | +1.0783 | +0.2077 |
res2b_branch2c/kernel:0 | (1, 1, 64, 256) | -0.3330 | +0.3228 | +0.0414 |
bn2b_branch2c/gamma:0 | (256,) | -0.0329 | +1.8095 | +0.4257 |
bn2b_branch2c/beta:0 | (256,) | -1.3059 | +0.9721 | +0.3463 |
bn2b_branch2c/moving_mean:0 | (256,) | -2.5336 | +2.1111 | +0.5033 |
bn2b_branch2c/moving_variance:0 | (256,) | +0.0000 | +0.2187 | +0.0333 |
res2c_branch2a/kernel:0 | (1, 1, 256, 64) | -0.3040 | +0.2175 | +0.0412 |
bn2c_branch2a/gamma:0 | (64,) | +0.2683 | +1.8338 | +0.2863 |
bn2c_branch2a/beta:0 | (64,) | -2.0358 | +0.8512 | +0.7946 |
bn2c_branch2a/moving_mean:0 | (64,) | -4.7340 | +1.6664 | +1.2255 |
bn2c_branch2a/moving_variance:0 | (64,) | +0.0000 | +3.4985 | +0.7644 |
res2c_branch2b/kernel:0 | (3, 3, 64, 64) | -0.2020 | +0.2138 | +0.0378 |
bn2c_branch2b/gamma:0 | (64,) | +0.6155 | +1.5482 | +0.2177 |
bn2c_branch2b/beta:0 | (64,) | -2.4321 | +1.8318 | +0.6352 |
bn2c_branch2b/moving_mean:0 | (64,) | -1.4939 | +0.1422 | +0.2628 |
bn2c_branch2b/moving_variance:0 | (64,) | +0.2278 | +2.0831 | +0.3304 |
res2c_branch2c/kernel:0 | (1, 1, 64, 256) | -0.2842 | +0.2529 | +0.0430 |
bn2c_branch2c/gamma:0 | (256,) | -0.0200 | +2.3871 | +0.5297 |
bn2c_branch2c/beta:0 | (256,) | -1.6989 | +1.1085 | +0.4321 |
bn2c_branch2c/moving_mean:0 | (256,) | -1.2794 | +0.7256 | +0.2929 |
bn2c_branch2c/moving_variance:0 | (256,) | +0.0010 | +0.7414 | +0.1125 |
res3a_branch2a/kernel:0 | (1, 1, 256, 128) | -0.5027 | +0.6187 | +0.0304 |
bn3a_branch2a/gamma:0 | (128,) | +0.4905 | +1.3262 | +0.1895 |
bn3a_branch2a/beta:0 | (128,) | -1.8565 | +2.5853 | +0.7641 |
bn3a_branch2a/moving_mean:0 | (128,) | -4.2267 | +2.1703 | +0.9005 |
bn3a_branch2a/moving_variance:0 | (128,) | +0.0545 | +8.9011 | +1.2696 |
res3a_branch2b/kernel:0 | (3, 3, 128, 128) | -0.3236 | +0.4518 | +0.0223 |
bn3a_branch2b/gamma:0 | (128,) | +0.4706 | +1.8430 | +0.2200 |
bn3a_branch2b/beta:0 | (128,) | -1.9615 | +1.9157 | +0.7933 |
bn3a_branch2b/moving_mean:0 | (128,) | -6.0335 | +3.2213 | +1.9778 |
bn3a_branch2b/moving_variance:0 | (128,) | +0.0001 | +6.6136 | +0.8450 |
res3a_branch2c/kernel:0 | (1, 1, 128, 512) | -0.4927 | +0.3402 | +0.0283 |
res3a_branch1/kernel:0 | (1, 1, 256, 512) | -0.4507 | +0.6643 | +0.0290 |
bn3a_branch2c/gamma:0 | (512,) | -0.0033 | +3.7310 | +0.6223 |
bn3a_branch2c/beta:0 | (512,) | -0.9694 | +1.4581 | +0.3727 |
bn3a_branch2c/moving_mean:0 | (512,) | -1.5891 | +1.4301 | +0.3907 |
bn3a_branch2c/moving_variance:0 | (512,) | +0.0002 | +0.8632 | +0.1073 |
bn3a_branch1/gamma:0 | (512,) | -0.0138 | +2.7207 | +0.4812 |
bn3a_branch1/beta:0 | (512,) | -0.9694 | +1.4580 | +0.3727 |
bn3a_branch1/moving_mean:0 | (512,) | -3.7382 | +2.8448 | +0.8043 |
bn3a_branch1/moving_variance:0 | (512,) | +0.0029 | +5.7492 | +0.6063 |
res3b_branch2a/kernel:0 | (1, 1, 512, 128) | -0.1992 | +0.1954 | +0.0252 |
bn3b_branch2a/gamma:0 | (128,) | +0.5946 | +1.5472 | +0.1807 |
bn3b_branch2a/beta:0 | (128,) | -3.9918 | +0.6877 | +0.6492 |
bn3b_branch2a/moving_mean:0 | (128,) | -3.0865 | +1.0082 | +0.6388 |
bn3b_branch2a/moving_variance:0 | (128,) | +0.2999 | +3.6467 | +0.6298 |
res3b_branch2b/kernel:0 | (3, 3, 128, 128) | -0.2305 | +0.2760 | +0.0241 |
bn3b_branch2b/gamma:0 | (128,) | +0.4863 | +1.5054 | +0.2365 |
bn3b_branch2b/beta:0 | (128,) | -2.4436 | +1.4355 | +0.6833 |
bn3b_branch2b/moving_mean:0 | (128,) | -2.1539 | +1.4636 | +0.5130 |
bn3b_branch2b/moving_variance:0 | (128,) | +0.0961 | +1.6067 | +0.2474 |
res3b_branch2c/kernel:0 | (1, 1, 128, 512) | -0.3111 | +0.4652 | +0.0288 |
bn3b_branch2c/gamma:0 | (512,) | -0.0367 | +2.0281 | +0.4083 |
bn3b_branch2c/beta:0 | (512,) | -1.5916 | +1.1728 | +0.3779 |
bn3b_branch2c/moving_mean:0 | (512,) | -1.0827 | +0.6886 | +0.2301 |
bn3b_branch2c/moving_variance:0 | (512,) | +0.0002 | +0.2121 | +0.0303 |
res3c_branch2a/kernel:0 | (1, 1, 512, 128) | -0.2663 | +0.2643 | +0.0284 |
bn3c_branch2a/gamma:0 | (128,) | +0.5964 | +1.5047 | +0.1916 |
bn3c_branch2a/beta:0 | (128,) | -2.8335 | +0.7305 | +0.5454 |
bn3c_branch2a/moving_mean:0 | (128,) | -3.0245 | +1.7478 | +0.8335 |
bn3c_branch2a/moving_variance:0 | (128,) | +0.2705 | +3.8971 | +0.7585 |
res3c_branch2b/kernel:0 | (3, 3, 128, 128) | -0.2296 | +0.1968 | +0.0233 |
bn3c_branch2b/gamma:0 | (128,) | +0.4471 | +1.5901 | +0.2878 |
bn3c_branch2b/beta:0 | (128,) | -1.4295 | +1.3293 | +0.5597 |
bn3c_branch2b/moving_mean:0 | (128,) | -1.0368 | +0.7158 | +0.2785 |
bn3c_branch2b/moving_variance:0 | (128,) | +0.1252 | +0.9441 | +0.1439 |
res3c_branch2c/kernel:0 | (1, 1, 128, 512) | -0.3068 | +0.3730 | +0.0263 |
bn3c_branch2c/gamma:0 | (512,) | -0.0337 | +1.9127 | +0.3803 |
bn3c_branch2c/beta:0 | (512,) | -1.5568 | +0.8346 | +0.3645 |
bn3c_branch2c/moving_mean:0 | (512,) | -0.8692 | +0.7091 | +0.1843 |
bn3c_branch2c/moving_variance:0 | (512,) | +0.0002 | +0.1747 | +0.0270 |
res3d_branch2a/kernel:0 | (1, 1, 512, 128) | -0.2611 | +0.2868 | +0.0307 |
bn3d_branch2a/gamma:0 | (128,) | +0.6513 | +1.4620 | +0.1939 |
bn3d_branch2a/beta:0 | (128,) | -3.0044 | +0.6187 | +0.6454 |
bn3d_branch2a/moving_mean:0 | (128,) | -3.7891 | +2.2792 | +0.9724 |
bn3d_branch2a/moving_variance:0 | (128,) | +0.0035 | +3.3270 | +0.5634 |
res3d_branch2b/kernel:0 | (3, 3, 128, 128) | -0.1610 | +0.2406 | +0.0237 |
bn3d_branch2b/gamma:0 | (128,) | +0.6456 | +3.2960 | +0.2932 |
bn3d_branch2b/beta:0 | (128,) | -1.6672 | +1.5725 | +0.5648 |
bn3d_branch2b/moving_mean:0 | (128,) | -1.0483 | +0.3162 | +0.2877 |
bn3d_branch2b/moving_variance:0 | (128,) | +0.2354 | +1.6038 | +0.2114 |
res3d_branch2c/kernel:0 | (1, 1, 128, 512) | -0.2424 | +0.3360 | +0.0271 |
bn3d_branch2c/gamma:0 | (512,) | -0.0229 | +1.9388 | +0.5210 |
bn3d_branch2c/beta:0 | (512,) | -1.0656 | +0.9844 | +0.2739 |
bn3d_branch2c/moving_mean:0 | (512,) | -1.1224 | +0.4736 | +0.2424 |
bn3d_branch2c/moving_variance:0 | (512,) | +0.0002 | +0.4452 | +0.0605 |
res4a_branch2a/kernel:0 | (1, 1, 512, 256) | -0.2850 | +0.2532 | +0.0148 |
bn4a_branch2a/gamma:0 | (256,) | +0.4807 | +1.4740 | +0.1509 |
bn4a_branch2a/beta:0 | (256,) | -1.9598 | +1.1296 | +0.3918 |
bn4a_branch2a/moving_mean:0 | (256,) | -3.6537 | +1.2955 | +0.6511 |
bn4a_branch2a/moving_variance:0 | (256,) | +0.0614 | +2.4605 | +0.3051 |
res4a_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1724 | +0.1962 | +0.0106 |
bn4a_branch2b/gamma:0 | (256,) | +0.4749 | +1.5932 | +0.2005 |
bn4a_branch2b/beta:0 | (256,) | -2.6223 | +1.1253 | +0.4850 |
bn4a_branch2b/moving_mean:0 | (256,) | -2.6573 | +3.4857 | +0.5984 |
bn4a_branch2b/moving_variance:0 | (256,) | +0.1394 | +1.4291 | +0.2191 |
res4a_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.2826 | +0.1895 | +0.0140 |
res4a_branch1/kernel:0 | (1, 1, 512, 1024) | -0.3567 | +0.3337 | +0.0158 |
bn4a_branch2c/gamma:0 | (1024,) | -0.0100 | +2.8427 | +0.4587 |
bn4a_branch2c/beta:0 | (1024,) | -0.5290 | +2.0636 | +0.2888 |
bn4a_branch2c/moving_mean:0 | (1024,) | -0.4885 | +0.2798 | +0.0831 |
bn4a_branch2c/moving_variance:0 | (1024,) | +0.0000 | +0.1206 | +0.0119 |
bn4a_branch1/gamma:0 | (1024,) | +0.1721 | +4.0220 | +0.7190 |
bn4a_branch1/beta:0 | (1024,) | -0.5290 | +2.0638 | +0.2888 |
bn4a_branch1/moving_mean:0 | (1024,) | -5.8239 | +3.2843 | +0.9039 |
bn4a_branch1/moving_variance:0 | (1024,) | +0.0546 | +8.5205 | +0.6964 |
res4b_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1260 | +0.1778 | +0.0081 |
bn4b_branch2a/gamma:0 | (256,) | +0.4198 | +1.6067 | +0.1885 |
bn4b_branch2a/beta:0 | (256,) | -2.2254 | +2.0613 | +0.4898 |
bn4b_branch2a/moving_mean:0 | (256,) | -4.6812 | +2.7681 | +1.1843 |
bn4b_branch2a/moving_variance:0 | (256,) | +0.1327 | +11.9923 | +1.3851 |
res4b_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0965 | +0.1632 | +0.0072 |
bn4b_branch2b/gamma:0 | (256,) | +0.5049 | +1.4772 | +0.1899 |
bn4b_branch2b/beta:0 | (256,) | -1.6971 | +0.5928 | +0.4359 |
bn4b_branch2b/moving_mean:0 | (256,) | -5.7095 | +1.9171 | +0.8444 |
bn4b_branch2b/moving_variance:0 | (256,) | +0.0203 | +1.3132 | +0.2172 |
res4b_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1962 | +0.2793 | +0.0103 |
bn4b_branch2c/gamma:0 | (1024,) | -0.0006 | +3.1835 | +0.3656 |
bn4b_branch2c/beta:0 | (1024,) | -1.0684 | +0.9525 | +0.1818 |
bn4b_branch2c/moving_mean:0 | (1024,) | -0.4443 | +0.4752 | +0.0943 |
bn4b_branch2c/moving_variance:0 | (1024,) | +0.0000 | +0.1888 | +0.0161 |
res4c_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.0990 | +0.1245 | +0.0082 |
bn4c_branch2a/gamma:0 | (256,) | +0.5761 | +1.7694 | +0.1421 |
bn4c_branch2a/beta:0 | (256,) | -0.9332 | +1.3302 | +0.3766 |
bn4c_branch2a/moving_mean:0 | (256,) | -4.0562 | +2.6203 | +1.2418 |
bn4c_branch2a/moving_variance:0 | (256,) | +0.3526 | +5.5460 | +0.6766 |
res4c_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0971 | +0.1085 | +0.0074 |
bn4c_branch2b/gamma:0 | (256,) | +0.5058 | +1.2290 | +0.1501 |
bn4c_branch2b/beta:0 | (256,) | -1.4553 | +0.5811 | +0.3399 |
bn4c_branch2b/moving_mean:0 | (256,) | -3.4174 | +1.7898 | +0.5966 |
bn4c_branch2b/moving_variance:0 | (256,) | +0.0730 | +1.5945 | +0.1712 |
res4c_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1343 | +0.1620 | +0.0107 |
bn4c_branch2c/gamma:0 | (1024,) | +0.0047 | +2.2900 | +0.2671 |
bn4c_branch2c/beta:0 | (1024,) | -1.1121 | +0.7399 | +0.1807 |
bn4c_branch2c/moving_mean:0 | (1024,) | -0.3355 | +0.1449 | +0.0609 |
bn4c_branch2c/moving_variance:0 | (1024,) | +0.0003 | +0.0969 | +0.0076 |
res4d_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1154 | +0.1464 | +0.0103 |
bn4d_branch2a/gamma:0 | (256,) | +0.5715 | +1.4526 | +0.1505 |
bn4d_branch2a/beta:0 | (256,) | -1.3573 | +0.4802 | +0.3064 |
bn4d_branch2a/moving_mean:0 | (256,) | -3.2371 | +2.2156 | +0.9378 |
bn4d_branch2a/moving_variance:0 | (256,) | +0.3515 | +5.9965 | +0.7573 |
res4d_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0995 | +0.0993 | +0.0087 |
bn4d_branch2b/gamma:0 | (256,) | +0.4295 | +1.5526 | +0.1616 |
bn4d_branch2b/beta:0 | (256,) | -1.4477 | +0.3874 | +0.2842 |
bn4d_branch2b/moving_mean:0 | (256,) | -1.4094 | +0.7436 | +0.2812 |
bn4d_branch2b/moving_variance:0 | (256,) | +0.0523 | +0.4509 | +0.0769 |
res4d_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.2408 | +0.1240 | +0.0118 |
bn4d_branch2c/gamma:0 | (1024,) | +0.0455 | +2.8707 | +0.3316 |
bn4d_branch2c/beta:0 | (1024,) | -1.3654 | +0.5976 | +0.2313 |
bn4d_branch2c/moving_mean:0 | (1024,) | -0.3255 | +0.1030 | +0.0535 |
bn4d_branch2c/moving_variance:0 | (1024,) | +0.0017 | +0.1031 | +0.0077 |
res4e_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1464 | +0.1125 | +0.0101 |
bn4e_branch2a/gamma:0 | (256,) | +0.6457 | +1.3797 | +0.1243 |
bn4e_branch2a/beta:0 | (256,) | -1.0967 | +0.3581 | +0.2712 |
bn4e_branch2a/moving_mean:0 | (256,) | -4.3375 | +1.8791 | +1.1414 |
bn4e_branch2a/moving_variance:0 | (256,) | +0.3798 | +4.6768 | +0.6343 |
res4e_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0862 | +0.0903 | +0.0090 |
bn4e_branch2b/gamma:0 | (256,) | +0.5497 | +1.2982 | +0.1328 |
bn4e_branch2b/beta:0 | (256,) | -1.2916 | +0.2223 | +0.2549 |
bn4e_branch2b/moving_mean:0 | (256,) | -1.6195 | +0.8106 | +0.3150 |
bn4e_branch2b/moving_variance:0 | (256,) | +0.0594 | +0.9789 | +0.1007 |
res4e_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.2030 | +0.1746 | +0.0119 |
bn4e_branch2c/gamma:0 | (1024,) | +0.0241 | +1.7471 | +0.1844 |
bn4e_branch2c/beta:0 | (1024,) | -1.0605 | +0.4113 | +0.1782 |
bn4e_branch2c/moving_mean:0 | (1024,) | -0.2640 | +0.1132 | +0.0421 |
bn4e_branch2c/moving_variance:0 | (1024,) | +0.0009 | +0.0492 | +0.0041 |
res4f_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.0842 | +0.1227 | +0.0105 |
bn4f_branch2a/gamma:0 | (256,) | +0.7024 | +1.3934 | +0.1006 |
bn4f_branch2a/beta:0 | (256,) | -1.1660 | +0.3933 | +0.2485 |
bn4f_branch2a/moving_mean:0 | (256,) | -4.4642 | +2.1927 | +1.1421 |
bn4f_branch2a/moving_variance:0 | (256,) | +0.4538 | +4.7501 | +0.7294 |
res4f_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1032 | +0.0997 | +0.0095 |
bn4f_branch2b/gamma:0 | (256,) | +0.4258 | +1.2521 | +0.1110 |
bn4f_branch2b/beta:0 | (256,) | -1.4425 | +0.5213 | +0.2464 |
bn4f_branch2b/moving_mean:0 | (256,) | -1.8044 | +1.5505 | +0.3778 |
bn4f_branch2b/moving_variance:0 | (256,) | +0.0635 | +0.6795 | +0.0933 |
res4f_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1423 | +0.1278 | +0.0119 |
bn4f_branch2c/gamma:0 | (1024,) | +0.1776 | +1.6305 | +0.1749 |
bn4f_branch2c/beta:0 | (1024,) | -0.9891 | +0.3002 | +0.1423 |
bn4f_branch2c/moving_mean:0 | (1024,) | -0.1586 | +0.0747 | +0.0354 |
bn4f_branch2c/moving_variance:0 | (1024,) | +0.0012 | +0.0210 | +0.0024 |
res4g_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1148 | +0.2416 | +0.0107 |
bn4g_branch2a/gamma:0 | (256,) | +0.6074 | +1.2107 | +0.1073 |
bn4g_branch2a/beta:0 | (256,) | -1.2790 | +0.2364 | +0.2842 |
bn4g_branch2a/moving_mean:0 | (256,) | -4.3445 | +1.4500 | +1.0834 |
bn4g_branch2a/moving_variance:0 | (256,) | +0.3768 | +3.8029 | +0.7079 |
res4g_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1280 | +0.1199 | +0.0097 |
bn4g_branch2b/gamma:0 | (256,) | +0.4760 | +1.7497 | +0.1351 |
bn4g_branch2b/beta:0 | (256,) | -1.2725 | +0.1908 | +0.2716 |
bn4g_branch2b/moving_mean:0 | (256,) | -1.1725 | +1.0331 | +0.2961 |
bn4g_branch2b/moving_variance:0 | (256,) | +0.0579 | +0.7416 | +0.0856 |
res4g_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1498 | +0.2285 | +0.0118 |
bn4g_branch2c/gamma:0 | (1024,) | +0.0908 | +1.8260 | +0.1987 |
bn4g_branch2c/beta:0 | (1024,) | -0.9102 | +0.2949 | +0.1424 |
bn4g_branch2c/moving_mean:0 | (1024,) | -0.1887 | +0.0784 | +0.0394 |
bn4g_branch2c/moving_variance:0 | (1024,) | +0.0013 | +0.0316 | +0.0033 |
res4h_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1305 | +0.1624 | +0.0116 |
bn4h_branch2a/gamma:0 | (256,) | +0.6257 | +1.2189 | +0.0991 |
bn4h_branch2a/beta:0 | (256,) | -1.4250 | +0.0732 | +0.2633 |
bn4h_branch2a/moving_mean:0 | (256,) | -3.7871 | +2.4121 | +0.9370 |
bn4h_branch2a/moving_variance:0 | (256,) | +0.5296 | +3.3483 | +0.5827 |
res4h_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0986 | +0.1224 | +0.0102 |
bn4h_branch2b/gamma:0 | (256,) | +0.4840 | +1.4915 | +0.1486 |
bn4h_branch2b/beta:0 | (256,) | -1.5969 | +0.4351 | +0.2542 |
bn4h_branch2b/moving_mean:0 | (256,) | -1.0446 | +1.1061 | +0.2066 |
bn4h_branch2b/moving_variance:0 | (256,) | +0.0492 | +0.5152 | +0.0675 |
res4h_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1463 | +0.2364 | +0.0120 |
bn4h_branch2c/gamma:0 | (1024,) | +0.0535 | +2.4894 | +0.2982 |
bn4h_branch2c/beta:0 | (1024,) | -0.8032 | +0.3345 | +0.1533 |
bn4h_branch2c/moving_mean:0 | (1024,) | -0.2073 | +0.1215 | +0.0407 |
bn4h_branch2c/moving_variance:0 | (1024,) | +0.0012 | +0.0485 | +0.0043 |
res4i_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1310 | +0.2966 | +0.0130 |
bn4i_branch2a/gamma:0 | (256,) | +0.3535 | +1.0589 | +0.1278 |
bn4i_branch2a/beta:0 | (256,) | -1.4845 | +0.4568 | +0.2795 |
bn4i_branch2a/moving_mean:0 | (256,) | -4.1849 | +2.5485 | +1.1041 |
bn4i_branch2a/moving_variance:0 | (256,) | +0.7884 | +7.4350 | +0.6603 |
res4i_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1289 | +0.1534 | +0.0092 |
bn4i_branch2b/gamma:0 | (256,) | +0.5686 | +1.6406 | +0.1422 |
bn4i_branch2b/beta:0 | (256,) | -1.4987 | +0.4807 | +0.2660 |
bn4i_branch2b/moving_mean:0 | (256,) | -0.5127 | +0.1199 | +0.0935 |
bn4i_branch2b/moving_variance:0 | (256,) | +0.0143 | +0.1193 | +0.0159 |
res4i_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1553 | +0.1522 | +0.0118 |
bn4i_branch2c/gamma:0 | (1024,) | +0.0405 | +2.1795 | +0.1866 |
bn4i_branch2c/beta:0 | (1024,) | -0.5968 | +0.7084 | +0.1265 |
bn4i_branch2c/moving_mean:0 | (1024,) | -0.4519 | +0.1328 | +0.0659 |
bn4i_branch2c/moving_variance:0 | (1024,) | +0.0008 | +0.0992 | +0.0064 |
res4j_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1212 | +0.1714 | +0.0124 |
bn4j_branch2a/gamma:0 | (256,) | +0.5074 | +1.2941 | +0.1164 |
bn4j_branch2a/beta:0 | (256,) | -1.9232 | +0.2171 | +0.2896 |
bn4j_branch2a/moving_mean:0 | (256,) | -4.7605 | +1.3667 | +0.9790 |
bn4j_branch2a/moving_variance:0 | (256,) | +0.8111 | +8.3345 | +0.7015 |
res4j_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1000 | +0.2422 | +0.0102 |
bn4j_branch2b/gamma:0 | (256,) | +0.4069 | +1.4642 | +0.1343 |
bn4j_branch2b/beta:0 | (256,) | -1.9635 | +0.4987 | +0.3003 |
bn4j_branch2b/moving_mean:0 | (256,) | -1.0420 | +0.6202 | +0.2047 |
bn4j_branch2b/moving_variance:0 | (256,) | +0.0464 | +0.5519 | +0.0491 |
res4j_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1389 | +0.1597 | +0.0118 |
bn4j_branch2c/gamma:0 | (1024,) | +0.0293 | +2.1061 | +0.1991 |
bn4j_branch2c/beta:0 | (1024,) | -0.8361 | +0.1735 | +0.1254 |
bn4j_branch2c/moving_mean:0 | (1024,) | -0.2061 | +0.0772 | +0.0375 |
bn4j_branch2c/moving_variance:0 | (1024,) | +0.0003 | +0.0274 | +0.0028 |
res4k_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1359 | +0.1878 | +0.0112 |
bn4k_branch2a/gamma:0 | (256,) | +0.5420 | +1.2074 | +0.1235 |
bn4k_branch2a/beta:0 | (256,) | -1.7435 | +0.3985 | +0.3122 |
bn4k_branch2a/moving_mean:0 | (256,) | -6.0315 | +1.7842 | +1.1139 |
bn4k_branch2a/moving_variance:0 | (256,) | +0.3504 | +4.6503 | +0.6216 |
res4k_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0792 | +0.1220 | +0.0093 |
bn4k_branch2b/gamma:0 | (256,) | +0.4983 | +1.2338 | +0.1261 |
bn4k_branch2b/beta:0 | (256,) | -1.2916 | +0.1997 | +0.2615 |
bn4k_branch2b/moving_mean:0 | (256,) | -1.0697 | +1.5169 | +0.3087 |
bn4k_branch2b/moving_variance:0 | (256,) | +0.0201 | +0.4110 | +0.0620 |
res4k_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1248 | +0.2098 | +0.0111 |
bn4k_branch2c/gamma:0 | (1024,) | +0.1164 | +2.0104 | +0.2095 |
bn4k_branch2c/beta:0 | (1024,) | -1.6254 | +0.1871 | +0.1615 |
bn4k_branch2c/moving_mean:0 | (1024,) | -0.1643 | +0.0819 | +0.0371 |
bn4k_branch2c/moving_variance:0 | (1024,) | +0.0018 | +0.0433 | +0.0044 |
res4l_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.2063 | +0.1837 | +0.0132 |
bn4l_branch2a/gamma:0 | (256,) | +0.4153 | +1.5392 | +0.1226 |
bn4l_branch2a/beta:0 | (256,) | -1.8618 | +0.3083 | +0.3002 |
bn4l_branch2a/moving_mean:0 | (256,) | -4.3532 | +1.4638 | +1.0180 |
bn4l_branch2a/moving_variance:0 | (256,) | +0.6372 | +5.7646 | +0.7036 |
res4l_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1077 | +0.1703 | +0.0099 |
bn4l_branch2b/gamma:0 | (256,) | +0.3988 | +1.3548 | +0.1309 |
bn4l_branch2b/beta:0 | (256,) | -1.4917 | +0.4846 | +0.2733 |
bn4l_branch2b/moving_mean:0 | (256,) | -0.4929 | +0.3995 | +0.1252 |
bn4l_branch2b/moving_variance:0 | (256,) | +0.0217 | +0.2759 | +0.0259 |
res4l_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1198 | +0.1658 | +0.0120 |
bn4l_branch2c/gamma:0 | (1024,) | +0.0792 | +1.6846 | +0.1774 |
bn4l_branch2c/beta:0 | (1024,) | -1.0420 | +0.7085 | +0.1541 |
bn4l_branch2c/moving_mean:0 | (1024,) | -0.1533 | +0.0933 | +0.0373 |
bn4l_branch2c/moving_variance:0 | (1024,) | +0.0009 | +0.0339 | +0.0026 |
res4m_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.0796 | +0.1565 | +0.0116 |
bn4m_branch2a/gamma:0 | (256,) | +0.5385 | +1.1934 | +0.0998 |
bn4m_branch2a/beta:0 | (256,) | -1.3115 | +0.3087 | +0.2261 |
bn4m_branch2a/moving_mean:0 | (256,) | -5.8896 | +1.3802 | +1.0426 |
bn4m_branch2a/moving_variance:0 | (256,) | +0.5695 | +7.6590 | +0.7444 |
res4m_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1025 | +0.1319 | +0.0090 |
bn4m_branch2b/gamma:0 | (256,) | +0.5824 | +1.2019 | +0.1020 |
bn4m_branch2b/beta:0 | (256,) | -1.3820 | +0.1980 | +0.2375 |
bn4m_branch2b/moving_mean:0 | (256,) | -0.7877 | +0.6563 | +0.1876 |
bn4m_branch2b/moving_variance:0 | (256,) | +0.0295 | +0.3663 | +0.0473 |
res4m_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1435 | +0.1559 | +0.0111 |
bn4m_branch2c/gamma:0 | (1024,) | +0.1877 | +1.8117 | +0.1711 |
bn4m_branch2c/beta:0 | (1024,) | -0.7704 | +0.5870 | +0.1488 |
bn4m_branch2c/moving_mean:0 | (1024,) | -0.2008 | +0.0926 | +0.0429 |
bn4m_branch2c/moving_variance:0 | (1024,) | +0.0013 | +0.0343 | +0.0039 |
res4n_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1173 | +0.1577 | +0.0126 |
bn4n_branch2a/gamma:0 | (256,) | +0.4684 | +1.0960 | +0.1128 |
bn4n_branch2a/beta:0 | (256,) | -1.2844 | +0.0426 | +0.2344 |
bn4n_branch2a/moving_mean:0 | (256,) | -3.2392 | +1.7882 | +0.8253 |
bn4n_branch2a/moving_variance:0 | (256,) | +0.6329 | +3.4732 | +0.4616 |
res4n_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1209 | +0.1524 | +0.0087 |
bn4n_branch2b/gamma:0 | (256,) | +0.4896 | +1.2047 | +0.1105 |
bn4n_branch2b/beta:0 | (256,) | -1.0426 | +0.6021 | +0.2205 |
bn4n_branch2b/moving_mean:0 | (256,) | -0.3883 | +0.1123 | +0.0881 |
bn4n_branch2b/moving_variance:0 | (256,) | +0.0143 | +0.2724 | +0.0217 |
res4n_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.0969 | +0.1517 | +0.0107 |
bn4n_branch2c/gamma:0 | (1024,) | +0.1913 | +1.6900 | +0.1242 |
bn4n_branch2c/beta:0 | (1024,) | -0.7635 | +0.6491 | +0.1329 |
bn4n_branch2c/moving_mean:0 | (1024,) | -0.2299 | +0.1080 | +0.0471 |
bn4n_branch2c/moving_variance:0 | (1024,) | +0.0021 | +0.0429 | +0.0041 |
res4o_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.0868 | +0.1276 | +0.0122 |
bn4o_branch2a/gamma:0 | (256,) | +0.4140 | +1.0878 | +0.1046 |
bn4o_branch2a/beta:0 | (256,) | -1.5212 | +0.1588 | +0.2378 |
bn4o_branch2a/moving_mean:0 | (256,) | -6.5676 | +1.6475 | +1.1866 |
bn4o_branch2a/moving_variance:0 | (256,) | +0.6190 | +5.9674 | +0.6751 |
res4o_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0956 | +0.1297 | +0.0088 |
bn4o_branch2b/gamma:0 | (256,) | +0.5295 | +1.2251 | +0.1097 |
bn4o_branch2b/beta:0 | (256,) | -1.2628 | +0.4158 | +0.2264 |
bn4o_branch2b/moving_mean:0 | (256,) | -0.4420 | +0.3259 | +0.1114 |
bn4o_branch2b/moving_variance:0 | (256,) | +0.0193 | +0.1740 | +0.0210 |
res4o_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1526 | +0.1561 | +0.0108 |
bn4o_branch2c/gamma:0 | (1024,) | +0.2372 | +1.9252 | +0.1541 |
bn4o_branch2c/beta:0 | (1024,) | -0.8091 | +0.5670 | +0.1401 |
bn4o_branch2c/moving_mean:0 | (1024,) | -0.2384 | +0.1076 | +0.0495 |
bn4o_branch2c/moving_variance:0 | (1024,) | +0.0016 | +0.0486 | +0.0047 |
res4p_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1428 | +0.1984 | +0.0135 |
bn4p_branch2a/gamma:0 | (256,) | +0.5017 | +1.0527 | +0.0912 |
bn4p_branch2a/beta:0 | (256,) | -1.4882 | +0.0455 | +0.2393 |
bn4p_branch2a/moving_mean:0 | (256,) | -3.1050 | +2.3637 | +0.9707 |
bn4p_branch2a/moving_variance:0 | (256,) | +0.7623 | +3.6884 | +0.5522 |
res4p_branch2b/kernel:0 | (3, 3, 256, 256) | -0.0858 | +0.1100 | +0.0100 |
bn4p_branch2b/gamma:0 | (256,) | +0.4397 | +1.4020 | +0.1318 |
bn4p_branch2b/beta:0 | (256,) | -1.4270 | +0.4049 | +0.2497 |
bn4p_branch2b/moving_mean:0 | (256,) | -0.4054 | +0.3653 | +0.1037 |
bn4p_branch2b/moving_variance:0 | (256,) | +0.0251 | +0.1553 | +0.0220 |
res4p_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1097 | +0.1687 | +0.0119 |
bn4p_branch2c/gamma:0 | (1024,) | +0.1811 | +1.7263 | +0.1962 |
bn4p_branch2c/beta:0 | (1024,) | -1.0450 | +0.3895 | +0.1635 |
bn4p_branch2c/moving_mean:0 | (1024,) | -0.2053 | +0.1271 | +0.0407 |
bn4p_branch2c/moving_variance:0 | (1024,) | +0.0015 | +0.0479 | +0.0040 |
res4q_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1232 | +0.2498 | +0.0136 |
bn4q_branch2a/gamma:0 | (256,) | +0.3415 | +1.0128 | +0.1070 |
bn4q_branch2a/beta:0 | (256,) | -1.5989 | +0.3609 | +0.2903 |
bn4q_branch2a/moving_mean:0 | (256,) | -5.2214 | +2.3356 | +1.1035 |
bn4q_branch2a/moving_variance:0 | (256,) | +0.6609 | +11.6783 | +0.9515 |
res4q_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1798 | +0.1955 | +0.0088 |
bn4q_branch2b/gamma:0 | (256,) | +0.6543 | +1.4769 | +0.1200 |
bn4q_branch2b/beta:0 | (256,) | -1.1978 | +0.3759 | +0.2500 |
bn4q_branch2b/moving_mean:0 | (256,) | -0.3519 | +0.1123 | +0.0780 |
bn4q_branch2b/moving_variance:0 | (256,) | +0.0133 | +0.1143 | +0.0136 |
res4q_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1707 | +0.1696 | +0.0116 |
bn4q_branch2c/gamma:0 | (1024,) | +0.0371 | +2.1323 | +0.2144 |
bn4q_branch2c/beta:0 | (1024,) | -0.7875 | +0.3563 | +0.1508 |
bn4q_branch2c/moving_mean:0 | (1024,) | -0.3719 | +0.2027 | +0.0712 |
bn4q_branch2c/moving_variance:0 | (1024,) | +0.0013 | +0.0541 | +0.0063 |
res4r_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1752 | +0.2489 | +0.0135 |
bn4r_branch2a/gamma:0 | (256,) | +0.2799 | +0.9274 | +0.1076 |
bn4r_branch2a/beta:0 | (256,) | -1.3579 | +0.2758 | +0.2674 |
bn4r_branch2a/moving_mean:0 | (256,) | -2.7110 | +3.0688 | +0.9259 |
bn4r_branch2a/moving_variance:0 | (256,) | +0.8098 | +9.7240 | +0.7793 |
res4r_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1313 | +0.1872 | +0.0085 |
bn4r_branch2b/gamma:0 | (256,) | +0.5145 | +1.4675 | +0.1384 |
bn4r_branch2b/beta:0 | (256,) | -0.9184 | +0.6886 | +0.2130 |
bn4r_branch2b/moving_mean:0 | (256,) | -0.2939 | +0.1038 | +0.0677 |
bn4r_branch2b/moving_variance:0 | (256,) | +0.0066 | +0.0804 | +0.0106 |
res4r_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.0867 | +0.1725 | +0.0110 |
bn4r_branch2c/gamma:0 | (1024,) | +0.1375 | +1.7613 | +0.1524 |
bn4r_branch2c/beta:0 | (1024,) | -0.7547 | +0.3295 | +0.1355 |
bn4r_branch2c/moving_mean:0 | (1024,) | -0.2626 | +0.1839 | +0.0649 |
bn4r_branch2c/moving_variance:0 | (1024,) | +0.0028 | +0.0670 | +0.0051 |
res4s_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1282 | +0.1822 | +0.0127 |
bn4s_branch2a/gamma:0 | (256,) | +0.3420 | +0.9798 | +0.1074 |
bn4s_branch2a/beta:0 | (256,) | -1.2975 | +0.5379 | +0.2706 |
bn4s_branch2a/moving_mean:0 | (256,) | -8.8698 | +2.0926 | +1.2141 |
bn4s_branch2a/moving_variance:0 | (256,) | +0.6463 | +17.2415 | +1.1652 |
res4s_branch2b/kernel:0 | (3, 3, 256, 256) | -0.2004 | +0.1857 | +0.0084 |
bn4s_branch2b/gamma:0 | (256,) | +0.5218 | +1.2066 | +0.1056 |
bn4s_branch2b/beta:0 | (256,) | -1.1360 | +0.3336 | +0.2261 |
bn4s_branch2b/moving_mean:0 | (256,) | -0.4850 | +0.1296 | +0.0932 |
bn4s_branch2b/moving_variance:0 | (256,) | +0.0122 | +0.0847 | +0.0115 |
res4s_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1153 | +0.1679 | +0.0109 |
bn4s_branch2c/gamma:0 | (1024,) | +0.1504 | +1.7503 | +0.1436 |
bn4s_branch2c/beta:0 | (1024,) | -0.7774 | +0.4413 | +0.1241 |
bn4s_branch2c/moving_mean:0 | (1024,) | -0.2327 | +0.1329 | +0.0533 |
bn4s_branch2c/moving_variance:0 | (1024,) | +0.0022 | +0.0453 | +0.0037 |
res4t_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1595 | +0.1765 | +0.0128 |
bn4t_branch2a/gamma:0 | (256,) | +0.4376 | +1.2511 | +0.1069 |
bn4t_branch2a/beta:0 | (256,) | -1.1352 | +0.2663 | +0.2456 |
bn4t_branch2a/moving_mean:0 | (256,) | -6.3550 | +2.2208 | +1.3414 |
bn4t_branch2a/moving_variance:0 | (256,) | +0.7818 | +5.8100 | +0.6672 |
res4t_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1327 | +0.1067 | +0.0091 |
bn4t_branch2b/gamma:0 | (256,) | +0.4616 | +1.2523 | +0.1079 |
bn4t_branch2b/beta:0 | (256,) | -1.1122 | +0.6912 | +0.2212 |
bn4t_branch2b/moving_mean:0 | (256,) | -0.8846 | +0.4358 | +0.1821 |
bn4t_branch2b/moving_variance:0 | (256,) | +0.0364 | +0.3580 | +0.0398 |
res4t_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1665 | +0.1575 | +0.0114 |
bn4t_branch2c/gamma:0 | (1024,) | +0.2199 | +2.0075 | +0.1730 |
bn4t_branch2c/beta:0 | (1024,) | -0.7963 | +0.3039 | +0.1346 |
bn4t_branch2c/moving_mean:0 | (1024,) | -0.2121 | +0.1756 | +0.0493 |
bn4t_branch2c/moving_variance:0 | (1024,) | +0.0014 | +0.0391 | +0.0036 |
res4u_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1065 | +0.1518 | +0.0119 |
bn4u_branch2a/gamma:0 | (256,) | +0.2817 | +1.1194 | +0.1175 |
bn4u_branch2a/beta:0 | (256,) | -1.3112 | +0.5442 | +0.2535 |
bn4u_branch2a/moving_mean:0 | (256,) | -9.9501 | +2.8899 | +1.3347 |
bn4u_branch2a/moving_variance:0 | (256,) | +0.4432 | +12.1801 | +1.2243 |
res4u_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1258 | +0.1178 | +0.0078 |
bn4u_branch2b/gamma:0 | (256,) | +0.6214 | +1.3642 | +0.1069 |
bn4u_branch2b/beta:0 | (256,) | -0.9785 | +0.4391 | +0.2048 |
bn4u_branch2b/moving_mean:0 | (256,) | -0.5389 | +0.4149 | +0.1213 |
bn4u_branch2b/moving_variance:0 | (256,) | +0.0170 | +0.1117 | +0.0160 |
res4u_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1381 | +0.1941 | +0.0103 |
bn4u_branch2c/gamma:0 | (1024,) | +0.0992 | +1.7961 | +0.1407 |
bn4u_branch2c/beta:0 | (1024,) | -0.7827 | +0.7017 | +0.1639 |
bn4u_branch2c/moving_mean:0 | (1024,) | -0.2808 | +0.1409 | +0.0702 |
bn4u_branch2c/moving_variance:0 | (1024,) | +0.0023 | +0.0837 | +0.0066 |
res4v_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1570 | +0.2220 | +0.0123 |
bn4v_branch2a/gamma:0 | (256,) | +0.3942 | +1.0195 | +0.0944 |
bn4v_branch2a/beta:0 | (256,) | -1.2374 | +0.4526 | +0.2716 |
bn4v_branch2a/moving_mean:0 | (256,) | -6.7398 | +2.1281 | +1.2705 |
bn4v_branch2a/moving_variance:0 | (256,) | +0.6142 | +6.2192 | +0.7720 |
res4v_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1412 | +0.1655 | +0.0083 |
bn4v_branch2b/gamma:0 | (256,) | +0.6196 | +1.1648 | +0.0919 |
bn4v_branch2b/beta:0 | (256,) | -1.0248 | +0.8823 | +0.1907 |
bn4v_branch2b/moving_mean:0 | (256,) | -0.5943 | +0.2525 | +0.1225 |
bn4v_branch2b/moving_variance:0 | (256,) | +0.0272 | +0.2850 | +0.0257 |
res4v_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1068 | +0.1662 | +0.0109 |
bn4v_branch2c/gamma:0 | (1024,) | +0.2345 | +1.6791 | +0.1361 |
bn4v_branch2c/beta:0 | (1024,) | -0.9361 | +0.5179 | +0.2008 |
bn4v_branch2c/moving_mean:0 | (1024,) | -0.3138 | +0.2207 | +0.0648 |
bn4v_branch2c/moving_variance:0 | (1024,) | +0.0023 | +0.0550 | +0.0047 |
res4w_branch2a/kernel:0 | (1, 1, 1024, 256) | -0.1353 | +0.2094 | +0.0127 |
bn4w_branch2a/gamma:0 | (256,) | +0.2443 | +1.0933 | +0.1136 |
bn4w_branch2a/beta:0 | (256,) | -1.4777 | +0.3498 | +0.2970 |
bn4w_branch2a/moving_mean:0 | (256,) | -15.1299 | +2.8008 | +2.1165 |
bn4w_branch2a/moving_variance:0 | (256,) | +0.7279 | +19.8808 | +1.5136 |
res4w_branch2b/kernel:0 | (3, 3, 256, 256) | -0.1029 | +0.1717 | +0.0083 |
bn4w_branch2b/gamma:0 | (256,) | +0.7102 | +1.4165 | +0.0997 |
bn4w_branch2b/beta:0 | (256,) | -0.9754 | +0.3929 | +0.2028 |
bn4w_branch2b/moving_mean:0 | (256,) | -0.3679 | +0.2234 | +0.0824 |
bn4w_branch2b/moving_variance:0 | (256,) | +0.0133 | +0.1334 | +0.0153 |
res4w_branch2c/kernel:0 | (1, 1, 256, 1024) | -0.1451 | +0.1874 | +0.0109 |
bn4w_branch2c/gamma:0 | (1024,) | +0.0215 | +1.5528 | +0.1530 |
bn4w_branch2c/beta:0 | (1024,) | -0.8591 | +0.5082 | +0.1832 |
bn4w_branch2c/moving_mean:0 | (1024,) | -0.4728 | +0.1823 | +0.1269 |
bn4w_branch2c/moving_variance:0 | (1024,) | +0.0008 | +0.1209 | +0.0090 |
res5a_branch2a/kernel:0 | (1, 1, 1024, 512) | -0.1747 | +0.2130 | +0.0143 |
bn5a_branch2a/gamma:0 | (512,) | +0.5045 | +1.2405 | +0.1245 |
bn5a_branch2a/beta:0 | (512,) | -1.4638 | +0.5064 | +0.3062 |
bn5a_branch2a/moving_mean:0 | (512,) | -11.4545 | +4.6925 | +1.6878 |
bn5a_branch2a/moving_variance:0 | (512,) | +1.1314 | +15.7920 | +1.4502 |
res5a_branch2b/kernel:0 | (3, 3, 512, 512) | -0.2464 | +0.3249 | +0.0091 |
bn5a_branch2b/gamma:0 | (512,) | +0.2982 | +1.4230 | +0.1373 |
bn5a_branch2b/beta:0 | (512,) | -1.6618 | +0.7232 | +0.3175 |
bn5a_branch2b/moving_mean:0 | (512,) | -2.2210 | +1.7648 | +0.3094 |
bn5a_branch2b/moving_variance:0 | (512,) | +0.1187 | +1.4766 | +0.1865 |
res5a_branch2c/kernel:0 | (1, 1, 512, 2048) | -0.2871 | +0.3263 | +0.0122 |
res5a_branch1/kernel:0 | (1, 1, 1024, 2048) | -0.3741 | +0.4705 | +0.0105 |
bn5a_branch2c/gamma:0 | (2048,) | +0.6692 | +2.7116 | +0.2395 |
bn5a_branch2c/beta:0 | (2048,) | -1.8662 | +1.4781 | +0.2376 |
bn5a_branch2c/moving_mean:0 | (2048,) | -0.5774 | +0.6525 | +0.0644 |
bn5a_branch2c/moving_variance:0 | (2048,) | +0.0024 | +0.1612 | +0.0084 |
bn5a_branch1/gamma:0 | (2048,) | +0.8662 | +4.8957 | +0.5145 |
bn5a_branch1/beta:0 | (2048,) | -1.8661 | +1.4784 | +0.2376 |
bn5a_branch1/moving_mean:0 | (2048,) | -10.0727 | +4.4287 | +1.0954 |
bn5a_branch1/moving_variance:0 | (2048,) | +0.2868 | +7.7099 | +0.5971 |
res5b_branch2a/kernel:0 | (1, 1, 2048, 512) | -0.1615 | +0.2535 | +0.0106 |
bn5b_branch2a/gamma:0 | (512,) | +0.3789 | +1.1436 | +0.0969 |
bn5b_branch2a/beta:0 | (512,) | -1.1929 | +0.6042 | +0.1990 |
bn5b_branch2a/moving_mean:0 | (512,) | -4.4332 | +5.7965 | +0.6776 |
bn5b_branch2a/moving_variance:0 | (512,) | +0.8363 | +7.6290 | +0.8946 |
res5b_branch2b/kernel:0 | (3, 3, 512, 512) | -0.1333 | +0.2426 | +0.0079 |
bn5b_branch2b/gamma:0 | (512,) | +0.5274 | +1.1794 | +0.1060 |
bn5b_branch2b/beta:0 | (512,) | -1.8549 | +0.5551 | +0.2810 |
bn5b_branch2b/moving_mean:0 | (512,) | -1.3069 | +1.7223 | +0.2265 |
bn5b_branch2b/moving_variance:0 | (512,) | +0.0572 | +1.0433 | +0.0724 |
res5b_branch2c/kernel:0 | (1, 1, 512, 2048) | -0.1352 | +0.1977 | +0.0106 |
bn5b_branch2c/gamma:0 | (2048,) | +0.5679 | +2.4291 | +0.2254 |
bn5b_branch2c/beta:0 | (2048,) | -2.3769 | +0.1646 | +0.2141 |
bn5b_branch2c/moving_mean:0 | (2048,) | -0.4428 | +1.0842 | +0.0525 |
bn5b_branch2c/moving_variance:0 | (2048,) | +0.0020 | +0.2272 | +0.0065 |
res5c_branch2a/kernel:0 | (1, 1, 2048, 512) | -0.1994 | +0.3588 | +0.0115 |
bn5c_branch2a/gamma:0 | (512,) | +0.1406 | +1.1445 | +0.0988 |
bn5c_branch2a/beta:0 | (512,) | -1.4070 | +0.8456 | +0.2542 |
bn5c_branch2a/moving_mean:0 | (512,) | -3.1862 | +5.4617 | +0.5412 |
bn5c_branch2a/moving_variance:0 | (512,) | +0.5824 | +9.3422 | +1.1140 |
res5c_branch2b/kernel:0 | (3, 3, 512, 512) | -0.0942 | +0.0989 | +0.0071 |
bn5c_branch2b/gamma:0 | (512,) | +0.4871 | +1.1538 | +0.0927 |
bn5c_branch2b/beta:0 | (512,) | -1.4373 | +0.3356 | +0.2770 |
bn5c_branch2b/moving_mean:0 | (512,) | -0.6456 | +0.1676 | +0.1068 |
bn5c_branch2b/moving_variance:0 | (512,) | +0.0354 | +0.4077 | +0.0522 |
res5c_branch2c/kernel:0 | (1, 1, 512, 2048) | -0.1317 | +0.1323 | +0.0103 |
bn5c_branch2c/gamma:0 | (2048,) | +0.6058 | +2.5600 | +0.2211 |
bn5c_branch2c/beta:0 | (2048,) | -4.0471 | -0.6726 | +0.2231 |
bn5c_branch2c/moving_mean:0 | (2048,) | -0.3058 | +0.1791 | +0.0368 |
bn5c_branch2c/moving_variance:0 | (2048,) | +0.0024 | +0.0645 | +0.0039 |
fpn_c5p5/kernel:0 | (1, 1, 2048, 256) | -0.0507 | +0.0571 | +0.0073 |
fpn_c5p5/bias:0 | (256,) | -0.0140 | +0.0120 | +0.0050 |
fpn_c4p4/kernel:0 | (1, 1, 1024, 256) | -0.1139 | +0.0834 | +0.0094 |
fpn_c4p4/bias:0 | (256,) | -0.0045 | +0.0039 | +0.0014 |
fpn_c3p3/kernel:0 | (1, 1, 512, 256) | -0.0509 | +0.0533 | +0.0073 |
fpn_c3p3/bias:0 | (256,) | -0.0061 | +0.0055 | +0.0020 |
fpn_c2p2/kernel:0 | (1, 1, 256, 256) | -0.0333 | +0.0489 | +0.0057 |
fpn_c2p2/bias:0 | (256,) | -0.0051 | +0.0063 | +0.0020 |
fpn_p5/kernel:0 | (3, 3, 256, 256) | -0.0338 | +0.0384 | +0.0054 |
fpn_p5/bias:0 | (256,) | -0.0080 | +0.0079 | +0.0035 |
fpn_p2/kernel:0 | (3, 3, 256, 256) | -0.0278 | +0.0344 | +0.0051 |
fpn_p2/bias:0 | (256,) | -0.0068 | +0.0058 | +0.0022 |
fpn_p3/kernel:0 | (3, 3, 256, 256) | -0.0246 | +0.0288 | +0.0046 |
fpn_p3/bias:0 | (256,) | -0.0039 | +0.0038 | +0.0015 |
fpn_p4/kernel:0 | (3, 3, 256, 256) | -0.0277 | +0.0321 | +0.0049 |
fpn_p4/bias:0 | (256,) | -0.0038 | +0.0034 | +0.0016 |
rpn_conv_shared/kernel:0 | (3, 3, 256, 512) | -0.0162 | +0.0160 | +0.0011 |
rpn_conv_shared/bias:0 | (512,) | -0.0012 | +0.0030 | +0.0004 |
rpn_class_raw/kernel:0 | (1, 1, 512, 6) | -0.0700 | +0.0700 | +0.0094 |
rpn_class_raw/bias:0 | (6,) | -0.0092 | +0.0092 | +0.0054 |
rpn_bbox_pred/kernel:0 | (1, 1, 512, 12) | -0.0844 | +0.1395 | +0.0139 |
rpn_bbox_pred/bias:0 | (12,) | -0.0167 | +0.0201 | +0.0097 |
mrcnn_class_conv1/kernel:0 | (7, 7, 256, 1024) | -0.0240 | +0.0250 | +0.0032 |
mrcnn_class_conv1/bias:0 | (1024,) | -0.0011 | +0.0003 | +0.0002 |
mrcnn_class_bn1/gamma:0 | (1024,) | +0.9650 | +1.0500 | +0.0079 |
mrcnn_class_bn1/beta:0 | (1024,) | -0.0320 | +0.0050 | +0.0033 |
mrcnn_class_bn1/moving_mean:0 | (1024,) | -20.4790 | +8.7007 | +2.2488 |
mrcnn_class_bn1/moving_variance:0 | (1024,) | +3.2710 | +175.0298 | +10.5956 |
mrcnn_class_conv2/kernel:0 | (1, 1, 1024, 1024) | -0.0632 | +0.0426 | +0.0051 |
mrcnn_class_conv2/bias:0 | (1024,) | -0.0156 | +0.0214 | +0.0039 |
mrcnn_class_bn2/gamma:0 | (1024,) | +0.9801 | +1.0526 | +0.0089 |
mrcnn_class_bn2/beta:0 | (1024,) | -0.0126 | +0.0288 | +0.0043 |
mrcnn_class_bn2/moving_mean:0 | (1024,) | -0.6272 | +0.5237 | +0.1323 |
mrcnn_class_bn2/moving_variance:0 | (1024,) | +0.0072 | +0.6561 | +0.0431 |
mrcnn_class_logits/kernel:0 | (1024, 4) | -0.0815 | +0.0813 | +0.0437 |
mrcnn_class_logits/bias:0 | (4,) | -0.0006 | +0.0008 | +0.0005 |
mrcnn_bbox_fc/kernel:0 | (1024, 16) | -0.0790 | +0.0765 | +0.0440 |
mrcnn_bbox_fc/bias:0 | (16,) | -0.0010 | +0.0007 | +0.0004 |
mrcnn_mask_conv1/kernel:0 | (3, 3, 256, 256) | -0.0520 | +0.0462 | +0.0045 |
mrcnn_mask_conv1/bias:0 | (256,) | -0.0037 | +0.0022 | +0.0009 |
mrcnn_mask_bn1/gamma:0 | (256,) | +0.9804 | +1.0889 | +0.0122 |
mrcnn_mask_bn1/beta:0 | (256,) | -0.0216 | +0.0028 | +0.0036 |
mrcnn_mask_bn1/moving_mean:0 | (256,) | -4.2402 | +1.4667 | +0.7274 |
mrcnn_mask_bn1/moving_variance:0 | (256,) | +0.3057 | +5.8205 | +0.9377 |
mrcnn_mask_conv2/kernel:0 | (3, 3, 256, 256) | -0.0544 | +0.0949 | +0.0045 |
mrcnn_mask_conv2/bias:0 | (256,) | -0.0049 | +0.0035 | +0.0016 |
mrcnn_mask_bn2/gamma:0 | (256,) | +0.9846 | +1.0401 | +0.0092 |
mrcnn_mask_bn2/beta:0 | (256,) | -0.0176 | +0.0024 | +0.0034 |
mrcnn_mask_bn2/moving_mean:0 | (256,) | -0.7085 | +0.2866 | +0.1437 |
mrcnn_mask_bn2/moving_variance:0 | (256,) | +0.0300 | +0.3525 | +0.0369 |
mrcnn_mask_conv3/kernel:0 | (3, 3, 256, 256) | -0.0416 | +0.0459 | +0.0042 |
mrcnn_mask_conv3/bias:0 | (256,) | -0.0107 | +0.0073 | +0.0028 |
mrcnn_mask_bn3/gamma:0 | (256,) | +0.9867 | +1.0359 | +0.0074 |
mrcnn_mask_bn3/beta:0 | (256,) | -0.0312 | +0.0009 | +0.0044 |
mrcnn_mask_bn3/moving_mean:0 | (256,) | -0.5781 | +0.2730 | +0.1416 |
mrcnn_mask_bn3/moving_variance:0 | (256,) | +0.0265 | +0.1663 | +0.0258 |
mrcnn_mask_conv4/kernel:0 | (3, 3, 256, 256) | -0.0326 | +0.0267 | +0.0037 |
mrcnn_mask_conv4/bias:0 | (256,) | -0.0014 | +0.0049 | +0.0009 |
mrcnn_mask_bn4/gamma:0 | (256,) | +0.9985 | +1.0724 | +0.0184 |
mrcnn_mask_bn4/beta:0 | (256,) | +0.0042 | +0.0456 | +0.0111 |
mrcnn_mask_bn4/moving_mean:0 | (256,) | -0.2408 | +0.1736 | +0.0773 |
mrcnn_mask_bn4/moving_variance:0 | (256,) | +0.0150 | +0.0639 | +0.0084 |
mrcnn_mask_deconv/kernel:0 | (2, 2, 256, 256) | -0.0273 | +0.0518 | +0.0047 |
mrcnn_mask_deconv/bias:0 | (256,) | -0.0029 | +0.0718 | +0.0104 |
mrcnn_mask/kernel:0 | (1, 1, 256, 4) | -0.1607 | +0.1528 | +0.0875 |
mrcnn_mask/bias:0 | (4,) | -0.0078 | +0.0000 | +0.0033 |
TODO: cleanup this part
# Pick layer types to display
LAYER_TYPES = ['Conv2D', 'Dense', 'Conv2DTranspose']
# Get layers
layers = model.get_trainable_layers()
layers = list(filter(lambda l: l.__class__.__name__ in LAYER_TYPES,
layers))
# Display Histograms
fig, ax = plt.subplots(len(layers), 2, figsize=(10, 3*len(layers)),
gridspec_kw={"hspace":1})
for l, layer in enumerate(layers):
weights = layer.get_weights()
for w, weight in enumerate(weights):
tensor = layer.weights[w]
ax[l, w].set_title(tensor.name)
_ = ax[l, w].hist(weight[w].flatten(), 50)