This is the notebook I was typing into in class 4, with some notes.
First we explored different data types.
my_float = 1.0
my_float
1.0
We can see what type of thing a variable refers to with the type
function. We will see more of functions later.
type(my_float)
float
Notice the lack of a decimal point in the following statement.
my_other_thing = 1
This gives us an int
:
my_other_thing
1
type(my_other_thing)
int
We are about to make a string. Here I am trying to make the string "I love Python", but I get an error - why?
my_string = I love python
File "<ipython-input-7-273633364422>", line 1 my_string = I love python ^ SyntaxError: invalid syntax
It looked there was a problem with the spaces, so I replace the spaces with underscores:
my_string = I_love_python
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-8-0f708e6c0151> in <module> ----> 1 my_string = I_love_python NameError: name 'I_love_python' is not defined
Now it becomes clear that Python thought that I was trying to refer to a variable name that does not exist.
Here's a string - it needs quotes:
my_string = "I love python"
my_string
'I love python'
type(my_string)
str
Notice that Python displays strings with quotes, by default (at least in the Notebook):
'I love python'
'I love python'
If you use the print
function, it does not add the quotes.
print(my_string)
I love python
Here I go through the class exercise:
a = 1.0
b = 1
c = 'Hello'
Here I add a float to itself:
a + a
2.0
The addition produces a float
:
type(a + a)
float
Adding two int
s gives an int
:
b + b
2
Adding two strings concatenates the strings:
c + c
'HelloHello'
Adding a float
to an int
gives a float
:
a + b
2.0
Python won't let you add float
s (or int
s) to a string:
a + c
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-20-e81e582b6fa9> in <module> ----> 1 a + c TypeError: unsupported operand type(s) for +: 'float' and 'str'
Remember assignment - a name, followed by =
, followed by an expression:
a = 1
It sets the value of a
(in this case):
a
1
Here is a comparison expression. <
is a comparison operator, and returns the result of the comparison less than.
a < 10
True
Here we look at the value returned from this expression:
my_logical = a < 10
my_logical
True
It's a bool
type (Boolean).
type(my_logical)
bool
Booleans can be either True
or False
:
a > 10
False
Remember assignment (again). It has the single =
between the name (on the left) and the expression (on the right).
a = 1
Here is something very different - an equality comparison operator. This is two equals signs: ==
. It's an expression. It tests whether the thing on the left is equal to the thing on the right, returning True
or False
.
a == 1
True
Now we consider call expressions.
a = 2 / 3
a
0.6666666666666666
Here we call the function round
, with the argument a
- the number we want it to round.
round(a)
1
We can pass round
two arguments. The second argument is the number of decimal points we want it to round to.
round(a, 2)
0.67
We can also give this argument a name. In that case, it is called a keyword argument.
round(a, ndigits=2)
0.67
To find what the names of the arguments are, look at the help:
round?
We have to get the name of the argument right, otherwise Python complains.
round(a, number_of_digits=2)
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-36-c89cc06512a3> in <module> ----> 1 round(a, number_of_digits=2) TypeError: 'number_of_digits' is an invalid keyword argument for this function
Check the names, from the help:
round?
Now we get on to arrays.
import numpy as np
Here I am calling a function with no arguments. It's a call expression, but in this case, the function needs no arguments. It returns a single random number:
np.random.uniform()
0.7558424036608197
Once we have checked the help, we find there is a size
argument, that we can specify. This allows us to ask for 100 random numbers.
np.random.uniform(size=100)
array([ 0.36693208, 0.87758662, 0.81019582, 0.82214536, 0.36394251, 0.07969345, 0.35343822, 0.97806641, 0.9532617 , 0.59773898, 0.58081863, 0.62741994, 0.95847418, 0.03567867, 0.05212555, 0.71711456, 0.17662301, 0.11707422, 0.41300096, 0.06000016, 0.7726217 , 0.43842319, 0.14607717, 0.01461987, 0.45210905, 0.11072198, 0.82793531, 0.01498911, 0.30554031, 0.24935128, 0.15916459, 0.54524344, 0.03558632, 0.48099707, 0.43274497, 0.82487948, 0.3796686 , 0.60998452, 0.28689629, 0.59365581, 0.31763947, 0.92812618, 0.44717822, 0.05692277, 0.97550456, 0.76643058, 0.19427462, 0.65746642, 0.02530174, 0.42710621, 0.16244242, 0.41119599, 0.16460324, 0.03615299, 0.5873492 , 0.04265181, 0.09245906, 0.56257469, 0.64322541, 0.62147685, 0.75644138, 0.27570146, 0.11715281, 0.48179549, 0.44877749, 0.88395977, 0.33036868, 0.19958962, 0.37841863, 0.58654954, 0.87654479, 0.86413769, 0.3123292 , 0.20707659, 0.24201805, 0.74959689, 0.06625441, 0.02026559, 0.97464529, 0.63600724, 0.06385651, 0.34978269, 0.37378996, 0.06817189, 0.67991121, 0.17659475, 0.19225224, 0.30393928, 0.32401367, 0.57006609, 0.36204343, 0.1393311 , 0.03584481, 0.93263328, 0.73635803, 0.92246816, 0.72562353, 0.00144158, 0.80831398, 0.05020239])
Here I put these into a variable:
randoms = np.random.uniform(size=100)
It's a new type - array
:
type(randoms)
numpy.ndarray
One of the things that array
s have, is a length. We can get that with the len
function:
len(randoms)
100
randoms
array([ 0.99759455, 0.18332171, 0.48756725, 0.26591066, 0.15436288, 0.95128538, 0.66077124, 0.55775149, 0.03508935, 0.5412619 , 0.64847867, 0.34489874, 0.69598301, 0.06871524, 0.25808015, 0.58960472, 0.72211686, 0.27325624, 0.67260077, 0.83995721, 0.79970784, 0.95336243, 0.964208 , 0.83936253, 0.05656299, 0.90039992, 0.1338113 , 0.13691248, 0.14159298, 0.34965063, 0.61237528, 0.16934558, 0.96038391, 0.42721043, 0.98938284, 0.95646816, 0.18415332, 0.81226052, 0.73249926, 0.30732336, 0.87148763, 0.81042182, 0.73458396, 0.00581783, 0.96601248, 0.21221345, 0.92395521, 0.54040162, 0.52355445, 0.02329994, 0.50524813, 0.00135702, 0.44433152, 0.55002481, 0.63741974, 0.95615915, 0.49641958, 0.67045131, 0.21201677, 0.86107248, 0.8180656 , 0.17918569, 0.51762375, 0.7829002 , 0.83993162, 0.75212422, 0.86351651, 0.71620174, 0.16334626, 0.12899758, 0.41677654, 0.72401677, 0.72959161, 0.37035538, 0.65291767, 0.6762217 , 0.10313215, 0.5606955 , 0.03125565, 0.26660795, 0.23112951, 0.59380057, 0.67975397, 0.25033702, 0.83819111, 0.38698292, 0.86193146, 0.90357501, 0.61546889, 0.36227131, 0.75510565, 0.54165405, 0.96419388, 0.65234739, 0.61019126, 0.4283649 , 0.08000637, 0.56819196, 0.86529496, 0.0179533 ])
Here we do a comparison on a single random number:
a_random = np.random.uniform()
a_random
0.12583938290027896
For our simulation, we want to check whether the random number is less than 0.26. If so, we label this as a black juror.
a_random < 0.26
True
We want to do this 100 times. We can do this with arrays, in one shot:
black_yn = randoms < 0.26
black_yn
array([False, True, False, False, True, False, False, False, True, False, False, False, False, True, True, False, False, False, False, False, False, False, False, False, True, False, True, True, True, False, False, True, False, False, False, False, True, False, False, False, False, False, False, True, False, True, False, False, False, True, False, True, False, False, False, False, False, False, True, False, False, True, False, False, False, False, False, False, True, True, False, False, False, False, False, False, True, False, True, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, True], dtype=bool)
Now we can use the np.count_nonzero
function to count how many True
values there are. This is our first simulation of a jury pool, of 100 jurors.
np.count_nonzero(black_yn)
25