Announcements:
Today's Music:
import sympy
import matplotlib
x = 10
x + 2 = 10
Input In [4] x + 2 = 10 ^ SyntaxError: cannot assign to expression here. Maybe you meant '==' instead of '='?
x + 2 == 10
False
x = sympy.symbols('x')
x
[a,b,c] = sympy.symbols('a b c')
a
a + b
a + 30
a ** 4
2 * x == x + x
True
x + a == a + x
True
2 x == 10
Input In [15] 2 x == 10 ^ SyntaxError: invalid syntax
2 * x == 10
False
sympy.solve(2 * x == 10)
[]
sympy.solve(sympy.Eq(2 * x,10))
[5]
sympy.solve(sympy.Eq(x ** 2,5))
[-sqrt(5), sqrt(5)]
sin(x)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Input In [20], in <cell line: 1>() ----> 1 sin(x) NameError: name 'sin' is not defined
sympy.sin(x)
sympy.solve(sympy.Eq(sympy.sin(x),1.2))
[1.5707963267949 - 0.622362503714779*I, 1.5707963267949 + 0.622362503714779*I]
y = sympy.S('y')
sympy.solve(sympy.Eq(sympy.sin(y)*sympy.sin(x),sympy.cos(y)))
[{x: pi - asin(1/tan(y))}, {x: asin(1/tan(y))}]
print(sympy.Eq.__doc__)
An equal relation between two objects. Explanation =========== Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the ``simplify`` function on this object for more nontrivial evaluation of the equality relation. As usual, the keyword argument ``evaluate=False`` can be used to prevent any evaluation. Examples ======== >>> from sympy import Eq, simplify, exp, cos >>> from sympy.abc import x, y >>> Eq(y, x + x**2) Eq(y, x**2 + x) >>> Eq(2, 5) False >>> Eq(2, 5, evaluate=False) Eq(2, 5) >>> _.doit() False >>> Eq(exp(x), exp(x).rewrite(cos)) Eq(exp(x), sinh(x) + cosh(x)) >>> simplify(_) True See Also ======== sympy.logic.boolalg.Equivalent : for representing equality between two boolean expressions Notes ===== Python treats 1 and True (and 0 and False) as being equal; SymPy does not. And integer will always compare as unequal to a Boolean: >>> Eq(True, 1), True == 1 (False, True) This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically. If either object defines an ``_eval_Eq`` method, it can be used in place of the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)`` returns anything other than None, that return value will be substituted for the Equality. If None is returned by ``_eval_Eq``, an Equality object will be created as usual. Since this object is already an expression, it does not respond to the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``. This can be done with the ``rewrite(Add)`` method. .. deprecated:: 1.5 ``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``, but this behavior is deprecated and will be removed in a future version of SymPy.
type(x)
sympy.core.symbol.Symbol
type(y)
sympy.core.symbol.Symbol
e1 = sympy.S('x + y / 3')
type(e1)
sympy.core.add.Add
e1
sympy.solve(sympy.Eq(e1,10))
[{x: 10 - y/3}]
f1 = sympy.S('x / 20')
f2 = sympy.S('1 / 10')
f1 + f2
sympy.together(f1 + f2)
sympy.simplify(f1 + f2)
x + x
sympy.factor(x ** 2 + a * x + a,a)
sympy.factor(x ** 2 + a * x + a,x)
sympy.factor(x ** 2 + a * x + a)
sympy.plot(sympy.sin(x))
<sympy.plotting.plot.Plot at 0x7f22336e0490>
sympy.plot(sympy.sin(x) + sympy.cos(x))
<sympy.plotting.plot.Plot at 0x7f2222999e40>
import sympy as sp
sp.sin(x)
sympy.solve( [ sympy.Eq(2 * x + 3 * y, 10), sympy.Eq(4 * x - 8 * y , 10)])
{x: 55/14, y: 5/7}
def howManyZeros(eqn):
return len(sp.solve(sp.S(eqn)))
sympy.solve(sympy.S('x * 3 + 4'))
[-4/3]
sympy.solve(sympy.S('x ** 2 + 10 * x + 5'))
[-5 - 2*sqrt(5), -5 + 2*sqrt(5)]
howManyZeros('x ** 2 + 10 * x + 5')
2