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In ordinary life, we hardly realize
that we receive a great deal more
than we give, and that it is only
with gratitude that life becomes
rich.

Dietrich Bonhoeffer

The acknowledgement section, in my humble opinion, is the most crucial part
of any thesis, and I’m very happy to start mine with it, highlighting the invalu-
able support that has made it possible. Throughout my PhD journey, I have
grown tremendously in many ways, and I am grateful for the opportunities
that I was provided with and the people who surrounded me during this
chapter of my life, giving me their support, energy, presence, and love. As I
reflect on the years spent working on this thesis, I realize that the experience
would have been incomplete without the contributions of these awesome
people.While I could easilywrite an entire thesis on these amazing experiences
and individuals, I will keep it brief for the sake of brevity.
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forever grateful for this opportunity and the impact it has had on my life. I’ve
always admired you as a great scientist, and I have learned so much from you.
Your support and guidance have been instrumental in shaping me into the
researcher I am today. It may sound like a cliché, but it’s true: I owe you a lot.
Your influence onmewill continue to inspire and guideme in every stage ofmy
future career. Thank you, Lies, for being such an amazing mentor and support.
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Fernando, or as they say, “Dear Fernando”, you truly are a man for all seasons!
Before coming to Belgium, I was fortunate enough to have some amazing close
friendswithwhom I could sharemy life. But I never could have imagined that I
would find such a remarkable friend in someone with such a different cultural
background. And yet, it happened! Our friendship has been a source of relief
and mindfulness for me, and I am so proud to call you my friend. You have
been a constant source of support and encouragement, always there when I
needed someone to talk to or simply hang out with. I am grateful to you for all
the wonderful moments we have shared together. And let’s not forget about
our long discussions on technical and scientific matters, which I always find
so stimulating. Although we may disagree on certain things (like the eternal
debate of shared vs. static libraries or Ubuntu vs. Debian), I know that our
friendship will always remain strong. Marz and I are both so lucky to have
you in our lives, Fernando. Thank you for being such an incredible buddy.

کشف رو همدیΎه دیر ͳخیل ما لوون. بامعرفت مرد بزرگ و الاساتید، استاد السلاطین، سلطان ماهور،
من ͳزندگ بزرگ شانسهای از تو با آشنایی که ندارم Έش این در خب ͳول ،ͳشانس ͳخیل شاید کردیم،

بسیار. دلچسب خاطرەهای ساختن به کردیم شروع بعد و شد، ما ͳدوست باعث تو و ماه و من بوده.
تو صبح 4 ساعت بحثهای بروکسل، مولوی محله تو فیدبینگ ستار، پارک یمشو؟ بΎم میخوای

بیسیست تمرین پیتزایی، ماشین مرتضوی، رابرت اومد، ... این آخ گود؟"، واز پیتزا "ماهور، کوچه،
کریم، بند، روحیه پسند، لویی آهنگ های ببینم"، بΎیر ماژور لا یه ͳمج" شمش، رو اجرا قبل شب بند

صفر ساعت بیسم، کامیون پن; دری، با جنگل نجات باراسا، استاد با محتوا تولید ماهˆوی، فعل های
بابت ممنونم ازت ابد تا من اینا، همه کنار در دیΎه. گل واژه) واق΄ در شاید (و کلیدواژه ͳکل و تاریخ

بابت کلا و ،ͳنوازندگ تو دادی اعتمادبنفس بهم ͳکل اینکه بابت بندت، توی دادی راه رو من اینکه
روز یه فقط ͳحت اگر که بΎم اینم پسر. گرم ͳخیل دمت .ͳموسیق توی دادی یاد بهم که چیزهایی همه

میΎیرم. ازت تخته تو رو انتقامم و برمیΎردم مطمئنا باشه، مونده عمرم از

Laura, the little math girl, you truly are a booster that makes our office a more
lovely place! Your warmth and kindness brought somuch joy to our office, and
I am lucky to know you. You have always been an endless source of support
and positive energy for me, and by “endless”, I truly mean it. I cannot thank
you enough for all that you have done for me. Working with you has always
been a pleasure, especially during those high-pressure projects that require
crisis management skills like the kindergarten project. And, I have learned a
lot from you too, and this is not an exaggeration. But most importantly, I’m
grateful to have you as a friend. Thank you, the little math girl, for being such
an awesome friend.



iv ACKNOWLEDGMENT

Ales, you truly are a cardmagicianwith amind full of DB hacks! Is this enough
to describe you? Of course not. You have a kind soul and a great sense of
humor that can make me laugh at any kind of shit I say. It’s been an amazing
experience getting to know you and realizing just how similar we are when
it comes to jokes and making fun of everything. I was lucky enough to be on
the same team as you in the reception party, which led to us becoming great
friends. I’ll never forget the evening we first got to know each other, as well
as all the other fun times we’ve had together. Even though I’m not interested
in alcohol (Marz: +10 points), those evenings will always be unforgettable for
me. I hope that life has more mutual funny stories in store for us to share. And
by the way, you should feel honored to be a friend of the healthiest man in
Leuven! Thanks for being an amazing friend, Ales.

Jurgen, my favorite Belgian, my favorite European driver, and the best person
to make an alliance with when it comes to beating Fernando in board games.
You are one of the most creative people I have ever met in my life, and your
boundless imagination andmental fantasy canmake everythingmuch funnier.
I can’t thank you enough for all the support and positive energy you have given
me. As a famous Persian quote says, "if you want to get to know someone,
travel with them", and our trip to Norway was a perfect example of this.
Spending time with you was an unforgettable experience, and beside all the
good memories we made, it allowed me to see just how wonderful of a person
you truly are. Thank you for being my friend, Mr. Kersschot.

Satanik, you were my first friend when I arrived in this foreign land. I can’t
express how grateful I am for the warmth and kindness you showed me
during those difficult initial months. I’ll always cherish the memories of our
conversations during those lunch breaks at Alma 3, where we were talking
about everything from the power of the mind to the histories and languages
of our respective countries. Your insights helped me understand our continent
better, and I’ll always remember the funny storieswe shared about our cultures.
Our lunch breaks eventually turned into quick 5-minute coffee breaks, for
which you were the most accurate time control person I’ve ever met in my life.
Thank you for being such an important part of my life in this new place.

و حمایتگرت و خوب شخصیت بخاطر تنها نه موند، ͳخواه ویژه من برای ͳخیل همیشه تا تو فهیمه،
این توی که بودی نفری اولین که دلیل این به بله سالها، این ͳط در ͳداشت بهم که لطف هایی همه

میرسه. بنظر دور الان چقدر و بود عجیب دیدار اولین اون چقدر و گرفت، قرار من راه سر ͳطولان سفر
و .ͳبزرگ اون به دانشΎاه اون تو بخش یه میریم داریم دقیقا اینکه از جفتمون تعجب و ،Έبلژی سفارت
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ایران بازی شب اون از امروز. همین تا هم پشت حماسەهای و خاطرەها و اتفاقات رگباری اون از بعد
تمام لذت و داریم. چهارتایی که جذابی مشترک خاطره دەها تا بیایم بΎیریم اومد تو ویزای که اسپانیا

توی میردیم تجربه داشتیم مشترکا که ͳلاتمش مورد در داشتیم هم با همیشه که صحبت هایی اون
به راج΄ نفهمن بقیه که میردیم استفاده که ͳتکنی اون و اول، سال مخصوصا ،Έانیبیوم بخش

،ͳلΎگل شادی، فلفل، بره؟ یادم روزی یه رو اینا میشه مΎه رمزها، اسم و میزنیم، حرف داریم ͳچ
ازت حمایتگری این و ͳدوست این بابت همیشه تا من نارگیل. فندق، موقشنگ، پدرخوانده، مله،

همشیره. بود خواهم ممنون

Pieter, it was truly a pleasure working with you during my time at KU Leuven.
I never would have thought that the person who initially missed the first
two introductory sessions of their master’s thesis project would become one
of my closest friends, but that’s exactly what happened. Your brilliance as a
researcher, musician, and friend is truly remarkable, and it didn’t take long
for me to realize that. I will always cherish our conversations about music,
especially when we discovered that we both shared a love for a less-popular
sub-genre ofmetalmusic. Although Iwas a bit disappointedwhen you showed
interest in John Mayer later on, it didn’t change how much I valued your
friendship. Playing in the same band with you was an experience that I will
never forget, from our wonderful jam sessions to the thrill of playing on
stage together. I hope we can stay in touch and continue to make more great
memories.

که باری اولین همون از لیز. گروه مردان مرد و میشناسم، که آدمهایی ترین حسابی از ͳی احسان،
پخته، آدم ،ͳهست جذابی شخصیت چه که بود مشخص لیژ، تو بود وارون ͳخداحافظ شام که دیدمت،

اینو هم زمان گذر و میده. خوب حس آدم به همیشه بودن باهاشون که اینهایی از ،ͳمشت و حمایتگر،
و کلیدواژشه ͳزعفرون میس چای که ͳهمون رفتیم، هم با که سفری اولین اون از کرد. اثبات بشدت
چتر خونتون که شب هایی اون تموم تا ببازه، دو ده تیمتون شد باعث تاکتیΈ هاتون از من ترجمەهای
با صدالبته و تو، با ͳدوست شیرینه. خاطره ͳکل من برای همش و همه خونمون، بریم ͳنمیذاشت و بودیم
بسیار بسیار از هستین الΎوهایی نسترن و تو مینم. افتخار بهش که دوستͳ هاییه دست اون از نسترن،

رو بودنشون آدم حسابی خوی هنوز ͳول کردن ͳزندگ ایران از خارج زیادی سالهای که آدمهایی کمیاب
بزنیم مثال رو شما میخوایم ͳوقت موردتون در میΎیم مرضیه و من همیشه که چیزیه این و کردن. حفظ

گرم. ͳخیل دمتون نمیشناسنتون. که آدمهایی برای

Michel, a German hip-hop lover, my favorite metalhead in the world, and
my favorite concert buddy. You are truly a one-of-a-kind person, and I feel
lucky to have had the chance to get to know you. When I first joined BMe,
it was immediately clear to me that you were a special member of the team.
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Your inclusive and fun-loving personality made you stand out in the best
way possible. You never failed to make me laugh, even during the most
stressful times. I have so many great memories of the trips and concerts we
went to together, and I will always cherish the moments we spent chatting
and laughing at BMe. Even though the pandemic kept us apart, I know our
friendship will continue to thrive. Thank you for being such an amazing friend
and for all the wonderful memories you have given me.

میشد که ͳکس تنها شاید بΎم بΎم؟ بخشت کدوم از موردت؟ در بΎم ͳچ ،ͳصالح استاد مجید،
ͳکس بΎم میشه. نردی ͳخیل نه زد؟ حرف ساعت ها کامپیوتر ͳفن موضوعات جزئͳ ترین مورد در باهاش

پس کاریه. چه بابا نه داشتم؟ رقابت هستیم سلامتͳ ها مادر بیشتر کدوممون اینکه سر باهاش که
اتفاقا هم خوبی موق΄ چه که ،ͳزندگ تو برخوردم بهشون که آدمهایی پایەترین از ͳی میΎم: اینطوری

و بود. که من برای خیلیامون. برای بود سنگین غربت و تنهایی سال که اول سال گرفت. قرار راهم سر
میدونͳ؟ ͳول گذروندیم. خوش چقدر و داریم خاطره چقدر پسر، هم. پشت بعدی سالهای هم بعدش

انتخاب رو عصری اون همیشه، برای ازت باشم داشته که کنم انتخاب رو خاطره یه فقط بخوام اگر من
ͳول دراووردیم. بروکسل از سر بودیم، دنبالش که ͳعشرت به رسیدن برای وقت، ضیق اوج در که مینم
رو ͳباخت که شرطهایی یورو دویست حدود اون و بیای رفاقت، سال چندین این احترام به کاش خدایی،

نشم. سبز راهت سر جزا روز که ͳکن صاف باهام

Myrna, I want to start by apologizing for how often I showed up at your place
in Leuven. Looking back, I realize that I must have been quite annoying with
my frequent visits, and I am sorry for that. However, I hope you know that I
always enjoyed spending time with you, Mahoor, and now Mehr. Your warm
hospitality and welcoming personality always made me feel at home, even
when I was far from my own. I appreciate all the times you let me crash at
your place, and I will always cherish the countless dinners you prepared for
us with your wonderful cooking skills. Thank you for everything, Myrna.

برای میبره لیست خودش با همیشه که مردی من. تحلیل خوش و آواز خوش مرد ،ͳصباح استاد ایمان،
روی بشه نوشته ͳخانوادگ نام که داره تاکید و آشناست. براش ͳموسیق بندهای بیشتر اسم و خرید.

خوشمزەترین و .ͳعلم پیچیده مفاهیم توضیح برای مینه استفاده مرغ تخم و برن; از و امضا.
اون از چون بردم، لذت باهات ͳهمنشین و کردن صحبت از همیشه من ایمان، میپزه. رو تاریخ ماهͳ های

باشه. نیاز ͳخاص تلاش اینکه بدون عمق، به رفت باهات میشه راحت ͳخیل که ͳهست آدمهایی دست
که بودی افرادی معدود از تو و کردنه، بحث و زدن حرف من تفریحات شاید و نیازها بزرگترین از ͳی

بدون میشد شروع حرفامون ͳوقت که بود همین بخاطر و کردی، ارضا عمیقا من در رو نیاز این همیشه
ͳخیل میدیدیم یهو و میرفت در دستمون از زمان راحت ͳخیل همیشه تقریبا باشیم متوجه خودمون اینکه

تکمیل ،ͳهیچ دیΎه که هم من وماەوتو داستان های و چرخیدیم. بیلز ͳهورل دور بار چندین اختیار بی
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مرضیه و محسن از باشم ممنون باید زمینه این در البته صد که پسر، گرم دمت رو. همش قشنگ کرد
شدن. آشنایی این باعث که هم،

Jorge, I’ll never forget the time we played a gig together in Gent and after the
show, as we were descending the staircase on the back of the stage, you said
that co-authoring a paper together was one thing, but playing on the same
stage was a whole other level. That moment really captured our journey as
friends. I’m grateful for all the amazing experiences we’ve had together, from
our trips to playing music and even playing chess (especially the games we
played in Mahoor’s car before and after the Gent gig). Your warm support for
me and TuxRiders on social media also means the world to me. Thank you so
much buddy.

قطعا بیفتم لوون اول سال یاد اگر هم عمرم آخر تا نگفت؟ تو از و زد حرف لوون از میشه مΎه آرزو،
خنک ͳیخچال بخش اون از لوون، کشف به کردیم شروع هم با ما تویی. ذهنم تو میاد که چیزی اولین

از زیادی بخش و پیتزاش. رو میشوند مرغ تخم که ͳاودهورل پیتزایی بهترین اون تا بΎیر کولرویت
که همینطور، هم دوم سال البته و شوندیم. و کردیم تحمل هم با رو اول سال غربت و غم و تنهایی

از که داستانایی دوران، این از ذهنم تو هست خاطره Έی و هزار کرونا. از قبل تا بود شده بهتر شرایط
که شما" "خانوم، جمله اون به میرسه سال دو ͳط از بعد و میشه شروع کردن باز ͳبانک حساب ماجرای
تو میدونیم خودمون قشنگ و .Έبلژی از خروج برای دوم تلاش تو گفت کرونا تب تست تونل مسئول

این همه بابت رئیس، گرم ͳخیل دمت داره. وجود آفتابەمآب نوع از بخصوص داستان، چقدر فاصله این
مشترک. خاطرات و داستانها

Hao, my friend from Japan, our collaborative work was one of the most enjoy-
able and straightforward experiences I’ve had inmyPhD. Iwas impressedwith
your initiative in starting our collaboration, and it made me proud to be a part
of it. I learned a lot from you, and I have no doubt that I’ll have more questions
for you in the future. I’m grateful for everything you did forme, including your
assistancewithwriting part ofmy thesis. It’s unfortunate thatwe never had the
opportunity to meet in person, but I’m looking forward to it happening soon.
I’m excited to see what other interesting projects your creative mind will come
up with, and I hope that we can continue to collaborate in the future.

عرصه مرد بزرگ و راهنما، و سید استاد، ،ͳناظم مجید که میΎم داریم مجید دوتا چون و مجید،
همین بخاطر دقیقا که بودن، آدم حسابی فوق عین در بزن) حدس رو واژه اصل خود (شما بداهەگویی

ͳخیل اگرچه همو میدیدیم زیاد که دورەای میدیدمت. که وقتهایی نمیشدم سیر ازت هیچوقت خصیصه
گذروندم کشور از خارج که ͳسال چند این دوره بهترین هم شخصیم ͳزندگ نظر از شاید و بود، کوتاه
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سالهایی از بیشتر ͳخیل حداقل (یا زیاد رو تو چون بود خوبی دوره بΎم اگر نگفتم چرت بازم ͳول نبود،
باهات. مینم عشق چقدر که مفصل حدیث بخوان خود شما میردم. ملاقات اومد) بعدش که

گرم دمت بΎذرونم. وقت سمیه صدالبته و تو با بیشتر بتونم که بهم بده رو ͳفرصت ͳزندگ بازم امیدوارم
سلطان.

Marc, your friendliness and kindness made me feel welcomed from the
moment I joined our research group. I will always cherish the memories of our
conversations in the cozy GIGA center during my first year, discussing every-
thing from life to politics to science and technology. Your unique personality
and perspective on the world never failed to captivate me, and I only wish we
could have spent more time together. It’s a shame that we were separated by
different locations, but still, I am so grateful to you for being such a wonderful
friend and colleague.

Tim, the biology wizard, and the supportive man of our research group, I
was lucky enough to work with you during my PhD. Your hard work and
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ABSTRACT

Degradable metallic materials are gaining popularity in a wide variety of
applications. In the biomedical field, biocompatibility, biodegradability and
positive impact on biological processes are the critical properties that nominate
a metal as an applicable option. Taking this into account, magnesium (Mg),
iron (Fe), and zinc (Zn) are usually considered as biodegradable metallic
(bio)materials. Due to their mechanical properties, metallic biomaterials are
appropriate candidates for load-bearing conditions in various bone healing
and cardiovascular applications. Biodegradable metals meet the (often tem-
porary) need for mechanical support while avoiding stress-shielding (in
orthopaedic applications) in the long term and omitting the need for revision
surgery as required for permanent materials. Despite the advantages of
using biodegradable metals in implant design, their fast degradation and
uncontrolled ion release remain a challenge in practical applications. Beside ex-
perimental approaches to investigate the properties of biodegradable metallic
implants and scaffolds, computationalmodeling of the biodegradation process
and behavior can act as an efficient tool to design the next generation ofmedical
devices and implants. A validated computational model of the degradation
process can facilitate tuning of biodegradation properties and optimizing the
design for specific applications.
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In this study, we have developed a mathematical and computational model
to predict the biodegradation behavior of biodegradable metallic biomaterials,
focusing on Mg. Our developed model captures the release of metallic ions,
changes in pH, the formation of a protective film, the effect of different ions
in the environment, and the effect of perfusion of the surrounding fluid,
when applicable. This has been accomplished by deriving a system of time-
dependent reaction-diffusion-convection partial differential equations from
the underlying oxidation-reduction reactions and solving them using the
finite element method. The level-set formalism was employed to track the
biodegradation interface between the biomaterial and its surroundings. The
model was validated by comparing the predicted and experimentally obtained
values of global and local pH changes in corrosion tests, for which a good
agreement was observed.

Tracking the moving front at the diffusion interface requires high numerical
accuracy of the diffusive state variables. Improving the accuracy requires a
refined computational mesh, leading to a more computation-intensive sim-
ulation. To overcome this challenge and yield interactable simulations in
more feasible turnaround times, scalable parallelization techniques were im-
plemented, making the model capable of being run on massively parallel
systems to reduce the simulation time. Subsequently, the scaling behavior of
the models was evaluated on hundreds to thousands of CPU cores in high-
performance computing environments. Additionally, the core biodegradation
model was coupled with fluid flow models to enable capturing the effect of
hydrodynamics and perfusion conditions. Finally, the model was employed
in a couple of multi-physics use-cases as the biodegradation compartment
to demonstrate the ability of the model to be integrated in other modeling
workflows in biomedical engineering.

Taken together, this PhD work has developed a broad range of mathematical
and computational tools in the field of degradable biomaterials, demonstrating
the potential of integrating in silico technologies in the design and optimization
of novel biomaterial-based implants.
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SAMENVATTING

Degradeerbare metalen worden bij een brede set toepassingen steeds po-
pulairder. Voor toepassingen in het biomedisch veld, zijn biocompatibiliteit,
biologische afbreekbaarheid en het bevorderden van biologische processen
kritische eigenschappen die bepalen of een materiaal toepasbaar kan zijn.
Enkele metalen die aan deze criteria aan voldoen, en hierdoor tot de bioaf-
breekbare metallische biomaterialen behoren, zijn magnesium (Mg), ijzer (Fe)
en zink (Zn). Dankzij hun mechanische eigenschappen zijn deze metallische
biomaterialen geschikt voor toepassingen waarin hogere belastingen kunnen
worden verwacht. Dit is onder andere het geval in botgenezing en cardiovas-
culaire toepassingen. Bij zulke toepassingen kunnen biologisch afbreekbare
metalen een tijdelijke behoefte aan mechanische ondersteuning bieden, terwijl
spanningsafscherming (bij orthopedische toepassingen) op de lange termijn
wordt vermeden en daarmee ook de noodzaak voor een revisiechirurgie, zoals
vaak nodig is bij gebruik van niet degradeerbare materialen. Ondanks de
voordelen van biologische afbreekbare metalen, zijn er ook enkele nadelen
zoals hun snelle degradatie en ongecontroleerde ionenafgifte welke tot uit-
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dagingen kunnen leiden bij praktische toepassingen. Naast de mogelijkheid
om experimenteel de eigenschappen van biologisch afbreekbare (poreuze)
metalen te onderzoeken, kan het degradatieproces ookmet computermodellen
worden gesimuleerd hetgeen een efficiënte en kost effectieve manier is om
de volgende generatie medische apparaten en implantaten te ontwerpen. Een
gevalideerd computermodel van het degradatieproces kan, onder andere, het
afstellen van de degradatieparameters en het optimaliseren van het ontwerp
voor specifieke toepassingen vergemakkelijken.

In deze studie is zowel een wiskundig als computationeel model ontwikkeld
dat in staat is het biodegradatiegedrag van biologisch afbreekbare metallische
biomaterialen te voorspelen. Dit model focust zich op het gedrag van Mg en
houdt rekening met het vrijkomen van metaalionen, de veranderingen in pH,
de vorming van een beschermende film, het effect van verschillende ionen
in de omgeving en het effect van de perfusie van het omringende vloeistof,
indien van toepassing. Het model bestaat uit een stelsel van tijdsafhankelijke
reactie-diffusie-convectie partiële differentiaalvergelijkingen af te leiden uit
de onderliggende oxidatie-reductiereacties en dit op te lossen met behulp
van de eindige-elementen methode. Het level-set formalisme is gebruikt
om de interface tussen het degraderende biomateriaal en zijn omgeving
te volgen tijdens het degradatie proces. Het model is gevalideerd door de
in silico voorspelde globale en lokale pH-veranderingen te vergelijken met
experimenteel verkregen resultaten van corrosietesten.

Het volgen van het bewegend front op de diffusie interface vereist dat de
diffusie toestandsvariabelenmet een hoge numerieke nauwkeurigheidworden
bepaald. Voor het bepalen van deze variabelenmet de nodige nauwkeurigheid
is een fijne mesh nodig, wat leidt tot rekenintensieve simulaties. Om ondanks
de rekenintensiteit in staat te zijn interactieve simulaties te leveren die in
een redelijke tijd opgelost kunnen worden, zijn schaalbare parallellisatie
technieken geïmplementeerd die hetmogelijkmaken omhetmodel opmassaal
parallelle systemen op te lossen, hetgeen de simulatietijd aanzienlijk verkort.
Vervolgens, is het schaalgedrag van de modellen geëvalueerd met honderden
tot duizenden CPU-kernen in een hoog-performante computeromgeving. Ook
is het degradatiemodel gekoppeld aan vloeistofstroommodellen zodat het
effect van de hydrodynamica en perfusiecondities kon worden vastgelegd. Tot
slot is het model gebruikt in verschillende multi-fysische scenario’s om de
mogelijkheden omtrent het integreren van het model in andere workflows
binnen de biomedische ingenieurswetenschappen aan te tonen.



BEKNOPTE SAMENVATTING xix

Alles bij elkaar genomen heeft dit doctoraatswerk een brede waaier aan
wiskundige en computationele hulpmiddelen ontwikkeld in het domein van
degradeerbare biomaterialen, een heeft het daarbij het potentieel aangetoond
van het gebruik van in silico technologieën in het ontwerpen en optimaliseren
van nieuwe biomateriaal-gebaseerde implantaten.
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CHAPTER

1

GENERAL INTRODUCTION

Biodegradable (bioabsorbable) implants provide temporary support for tis-
sues, where the implants completely dissolve and are absorbed by the body
during or after tissue healing, avoiding several drawbacks of permanent
implants [1]. The application of biodegradable metallic biomaterials [2–4],
including magnesium [5–7], zinc [8, 9], and iron [10], has become more
prominent for over a decade in various biomedical engineering and tissue
engineering disciplines. Among the mentioned materials, magnesium (Mg)
is the most studied metal [11], the reason for which is its suitable mechanical
and chemical properties for biomedical applications. Although poor corrosion
resistance of Mg is a limiting factor for its application as light structural mate-
rial, like in the transportation industry, it becomes an interesting characteristic
when it comes to the biodegradable materials field for cardiovascular and
orthopedic applications [12–14]. The first clinical usage of Mg was reported in
1878, but a renewed interest in it has grown significantly in the last 15-20 years
[11]. From the clinical and biomedical perspective, two major concerns about
using Mg in clinics are the release of hydrogen gas and surface alkalization
due to Mg dissolution [15]. These issues are commonly addressed by alloying,
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4 GENERAL INTRODUCTION

biocompatible coating and surface modification [11]. This chapter includes
an overview of biodegradable materials with a focus on Mg, the history of
their usage in medical applications, a description of the chemistry of Mg
biodegradation, and various computational models aiming to capture this
chemistry.

1.1 Biodegradable metals

It has been a very long time since metals have started being employed as
implant materials to support, reinforce, repair, or replace damaged tissues
and organs. Historically speaking, iron dental implants were discovered in the
remains of a European who perished at the end of the first century AD or the
start of the second century [16]. Moreover, gold has been used for the same
application in China since ancient times. With more development in materials
science and engineering, inert materials such as titanium alloys, cobalt alloys,
and stainless steel are widely used nowadays in biomedical implants and
devices. However, there are certain drawbacks to these materials in medical
applications:

• The release ofmetallic ions from implants fabricatedwith thesematerials
can lead to various side effects in the surrounding tissues such as
inflammation.

• In some cases, such as for temporary fixation in cardiovascular and ortho-
pedics applications, implant presence is unnecessary after the healing
process. Moreover, removing the implant via a secondary surgery may
not be a practical solution, causing suffering and pain to the patient again.

• The difference between the elastic modulus of these materials and the
surrounding tissues can lead to various mechanical integrity issues. For
instance, in the case of bone, this difference causes stress shielding
effect, where the implant acts as a shield preventing the bone from
receiving enough mechanical load needed for bone remodeling and
growth. Additionally, thismay cause furthermechanical loosening of the
implant and secondary bone fracture.

Biodegradable implants would be a great solution to the issues mentioned
above. Implants fabricated from biodegradable materials gradually disappear
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and get absorbed by the body. With more attention to employing these materi-
als in clinical applications,more research studieswere conducted to investigate
their various aspects. Initially, degradable polymers (such as polylactic acid)
were used for this purpose, but later studies showed that they might stimulate
the aseptic inflammation of surrounding tissues [1]. Besides, the mechanical
properties of polymermaterials are not acceptable in load-bearing applications.
As a result, biodegradable metals gained more attention in orthopedics where
Mg is the most suitable candidate due to its elastic modulus (41-45 GPa) being
closest to that of natural bone (2-30 GPa) [17]. In addition to this, especially for
bone healing applications, the released metallic ions during the degradation
process contribute to the metabolism of the underlying biological process. For
example, Mg is one of the most abundant ions found in the bone, and Mg
cations have a beneficial impact on the metabolism of enzymes in the bone
regeneration process. Similarly, iron (Fe) plays a key role in oxygen transport
in the body, and zinc (Zn) positively influences the physiological functions of
bone healing and the formation of different transcriptional factors [18–22].

1.2 Magnesium as a biodegradable material

From the corrosion science perspective, Mg is an active material with a
relatively low standard electrode potential of −2.37V, meaning that Mg and
its alloys have high corrosion/degradation rate [1]. This property makes Mg
andMg-based alloys a biodegradable metal in biomedical applications, where
thematerials undergo corrosion in biological and physiological conditions and
disappear during or after the damaged tissue is repaired.

From the biological perspective, Mg can contribute positively to the human
body’s metabolism to improve health. A normal adult body contains 20 − 28g
of Mg, from which 27% is distributed in muscles, 65% in bone, and the rest
in blood and other tissues [23]. Additionally, Mg contributes to more than
300 enzyme reactions in the body [24]. Extra Mg not needed by the body
metabolism is transported via the circulatory system and excreted through the
bladder, without causing any major side effect [17].

The first application of Mg for biomedical purposes was recorded in 1878
by Hues, who made artificial radial arteries from Mg and suggested that
Mg can be beneficial for the treatment of ovariectomy and hemorrhoids [1].
Payr performed successful animal experiments using Mg tubular vascular
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connectors in 1900, after which the vessels were reformed, and vascular
thickness returned to its normal range after 16 days of implantation [25]. This
started a wide range of usage of Mg for cardiovascular applications, a recent
example of which is the work by Ikeo et al. for designing V-shaped vascular
clips made of Mg-Zn-Ca alloy [26]. In this work, the ductility of Mg was
reported to be an added advantage for bearing large plastic deformations that
these clips experience. In a relevant study, Erbel et al. implanted 71 stents
made of Mg alloys in the coronary arteries of 63 patients. The results showed
a similar efficiency and safety for Mg stents to that of other metallic stents [27].
Moreover, Mg stents degraded without any problem after four months. This
type of study resulted in acquiring the CE mark for the next generation of Mg
stents in Europe [28,29].

The history of usage ofMg in orthopedics applications started very similarly to
its vascular applications. In the study by Payr mentioned above, he also stated
thatMg can improve the bone healing rate [25]. Six years later, in 1906, the first
Mg-based implant was used by Lambotte for fixation of a fracture case [30,31].
This studywas followed bymany other studies in the last century, the results of
which confirmed that Mg could facilitate the bone healing process. However,
these studies also demonstrated that the hydrogen gas released during the
biodegradation of Mg could lead to inflammation. Furthermore, since Mg’s
rate of degradation is high, the tissues may not receive enough support before
the implants vanish [25]. These issues made the Mg-based implants less
common compared to inert metals for orthopedics applications. But, in recent
decades, these implants gained more attention thanks to enormous research
studies on the biodegradation of Mg to control its side effects and degradation
behavior. In 2005, the possibility of using Mg for orthopedics implants was
proposed by Witte et al. [32], a suggestion supported by the results of animal
studies on femoral implants manufactured from Mg alloys (AZ31, AZ91,
WE43, and LAE442). After this study, a wide variety of research works were
conducted to investigate the efficiency of Mg-based implants for orthopedics
applications [5,33,34]. Fig. 1.1 shows the current usage of Mg-based implants
andmedical devices divided into three categories: commercially approved, on
clinical trials, and potential applications [4].
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Figure 1.1: Various potential applications of Mg as a biodegradable metallic
biomaterial for cardiovascular and orthopedic implants and devices [4].

1.3 Chemistry of biodegradation of magnesium

The biodegradation behavior of Mg is investigated in corrosion tests, in which
the selection of the corrosive media plays an important role since it affects
the underlying chemical reactions [35]. By considering the main application
of the biomaterial, which can be tissue engineering scaffolds, vascular stents,
or orthopedic fixation devices, the corrosive media can be selected to be a
representative of the service environment. The most basic form of the medium
is a saline (NaCl) solution, in which the degradation rate is the highest
possible [35]. More complex solutions can be used to mimic the behavior of
the body environment by taking into accountmore body fluid components, the
most popular of which are Ringer’s solution, PBS (phosphate buffered saline),
SBFs (simulated body fluids), HBSS (Hank’s balanced salt solution), and
Earle’s balanced salt solution (EBSS) [35]. Adding more organic components
to the solution will prepare it to simulate cell culture conditions. The common
media for this purpose are MEM (Minimum Essential medium) and DMEM
(Dulbecco’s modified Eagle’s medium) [35]. Fig. 1.2 summarizes various
commonly used corrosive media for testing biodegradable metals along with
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Figure 1.2: A schematic representation of commonly used corrosive media for
testing biodegradable metals, sorted by their complexity from the chemical
perspective from bottom to top [35].

their main components [35].

Various studies have already investigated the effect of different components
in the aforementioned corrosive media on the degradation behavior of Mg
materials [36–40]. In addition to the presented chemical components, it has
been shown that synthetic pH buffers (such as Tris and HEPES) contribute
to the biodegradation rate of Mg [36]. The investigations on the effect of
different inorganic components, including carbonate, phosphate, sulfate and
calcium, show these components’ effective contribution to the degradation
rate. However, the corrosion protection resulting from the mutual effect of
carbonate, phosphate and calcium has been emphasized more [36,39].

The most common solution for performing corrosion tests on Mg is saline
(NaCl) solution, in which the material undergoes aggressive corrosion due
to higher electrochemical activities [41, 42]. In a typical aqueous solution, the
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major corrosion reactions occurring can be written as detailed below [43,44].

Main, hydrogen evolution reaction (HER):

Mg + 2H2O → Mg(OH)2 + H2. (1.1)

Secondary, oxygen reduction reaction (ORR):

2Mg + 2H2O + O2 → 2Mg(OH)2. (1.2)

In this situation, the corrosion products forming on the corroded surface of
Mg consist mainly of Mg(OH)2 and MgO, and the pH in regions close to
this surface remains alkaline. In the presence of chloride ions in the saline
medium, the formed corrosion product may be broken or bypassed, leading
to an increased degradation rate.

Mg(OH)2 + 2Cl− → Mg2+ + 2Cl− + 2OH− (1.3)

MgO + Cl− + H2O → Mg2+ + Cl− + 2OH− (1.4)

The main advantage of using a saline solution for corrosion tests compared
to more complex media is that the absence of inorganic ions like carbonate,
phosphate, sulfate and calcium allows for investigating the corrosion behavior
without concerning possible effect caused by the interaction of these chemical
components. On the other hand, the main weakness of saline solution is
that it cannot represent the complexity of real body fluid, and as a result, a
more complex medium is required to investigate such conditions. To address
this issue, more complex saline solutions, such as PBS, are widely used for
assessing the applicability of Mg alloys in more complex conditions from the
chemical perspective [45, 46]. Despite the mentioned limitations, corrosion
tests in saline solution are still contributing to understanding intrinsic degra-
dation properties of Mg.

The term "simulated body fluid" is generally used to refer to solutions contain-
ing inorganic ions of human serum and interstitial fluid [35]. The commonly
used corrosive media in this regard are SBF, HBSS, and EBSS, which all
include the same inorganic components yet with a slight difference in their
concentrations. A typical composition of these media is chloride, carbonate,
phosphates, sulfate and calcium. The individual effect of these components
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Figure 1.3: A schematic representation of Mg biodegradation behavior in
commonly used solutions for corrosion tests of biodegradable metals [35].

on the rate of degradation of Mg has been extensively studied, where it has
been observed that carbonate and phosphate slow down the rate whereas the
effect of sulfate is negligible [38, 40]. The concentration of HCO−

3 affects the
pH buffering capacity and the degradation rate of Mg simultaneously [47].
The effect of calcium ions is more complex because it does not contribute toMg
corrosion directly. Fig. 1.3 briefly summarizes the various reactions and formed
precipitation compositions of thementionedmedia for testing the degradation
behavior of Mg [35].

There are various evaluation techniques for measuring the degradation rate
of Mg, among which the weight loss, hydrogen evolution, potentiodynamic
polarization, and electrochemical impedance spectroscopy are the commonly
used ones. Generally speaking, the method used for evaluating the degrada-
tion rate can affect the reported behavior. For example, it has been shown that
in HBSS, the measured corrosion rate of Mg is lower (slower) when evaluated
using hydrogen evolution in comparison to the rate found by direct weight
loss measurements [48, 49], which can be due to the secondary dissolution
of evolved hydrogen. Moreover, oxygen consumption due to secondary ORR
can affect the volume of evolved gas, which is more significant for media with
slower degradation rates such as HBSS and MEM [33]. Table 1.1 summarizes
the advantages and shortcomings of widely used techniques for measuring
degradation rate [35].

Discussing the degradation rate of Mg-based materials can be tricky because
asmentioned before, themeasurementmethod and the employed solution can
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influence the measured degradation rate [50]. However, certain studies have
performed this quantitativemeasurement using different representativemedia
for in vivo conditions, resulting in different reported values. The corrosion rate
for pure Mg in EBSS was reported to be 0.39 mm.year−1 [51], but in SBF and
HBSS, the reported values are 1.39 [52] and 2.05 mm.year−1 [53], respectively.
Alloying Mg and adding Ca-P coating seems to decrease the degradation rate
to 0.25 mm.year−1 in HBSS [54] and 1.88 mm.year−1 in SBF [55], although no
direct correlation between alloying compounds and the degradation rate has
been found yet [56].

Table 1.1: Summary of various commonmethods to assess the degradation rate
of Mg [35]

Test method Advantages Shortcomings

Weight loss
High reliability
Direct measurement
Easily controlled test environment

Non-continuous. Does not reveal
varying corrosion rate throughout
the immersion
Low sensitivity at the initial stages

Hydrogen evolution

Continuous
Can be automated
Can be performed in closed eu-
diometers

Performed in open environment in
most cases
Might showunderestimated values
of corrosion rate due to secondary
ORR and solubility of H2 in aque-
ous media

Potentiodynamic polar-
ization

Fast measurement

Non-continuous
Open environment measurement
in most cases
Very often low correlation with
long-term weight loss measure-
ments

Electrochemical
impedance
spectroscopy

Continuous
In situ investigation of protective
properties of forming corrosion
products

Performed in open environments in
most cases

1.4 Computational modeling of biodegradation1

Besides experimental approaches to investigate the properties of biodegrad-
able metallic implants and scaffolds, computational modeling of the biodegra-
dation process and behavior can be used as an efficient tool to design the

1This section is partially based on a manuscript prepared to be submitted:
S. Mukherjee, S. Mandal, M. Barzegari, F. Perez-Boerema, B. Liang, E. Sadeghian Dekhord,
L. Groeneveldt, L. Geris, “In silico design and optimization of mesoscopic and macroscopic
properties of additively manufactured scaffolds: applications in skeletal tissue engineering.”
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next generation of medical devices and implants [57]. In addition to tradi-
tional modeling approaches for mechanics of materials, it is possible to take
advantage ofwell-developedprinciples ofmodeling transport phenomena and
numerical simulations to investigate the biodegradation process computation-
ally [58].

Computational models of the biodegradation process vary from a basic
implementation of the process to comprehensive mathematical models that
capture multiple aspects of the degradation phenomenon. In the category
of simplified corrosion models, Gao et al. performed a quantitative study
on the change of mechanics during the biodegradation of Mg alloys for
cardiovascular applications [59]. Liu et al. developed a fluid dynamics model
to characterize the effect of the induced wall shear stress (WSS) on the
biodegradation mechanism of Mg stents [60]. They investigated the effect
of blood flow velocity and dynamic environment on the degradation of
cardiovascular stents. Boland et al. studied the mechanical performance of
Mg stents for the treatment of coronary artery diseases using a computational
model [61]. Gartzke et al. proposed a degradation model for the corrosion
of Mg alloys coupled with mechanical analysis, allowing them to study the
change of mechanical properties during the biodegradation process [62].
Another common category of studies in this regard is continuous damage
(CD) simulations, in which geometrical discontinuities get translated into the
reduction of materials. Despite the limitation of this technique for modeling
biodegradation, such as more focus on the mechanical integrity rather than
on the fundamental phenomena, it has been used for various relevant studies,
such as Gastaldi et al. [63] and Shi et al. [64].

Among the relevant studies, mass transfer-related models were more suc-
cessful in representing the biodegradation process mathematically. Indeed,
the approach of constructing models based on the well-formulated trans-
port phenomena equations and then solving the derived equations using
appropriate numerical schemes has been followed in recent years to study
biodegradation. Ahmed et al. derived a set of mathematical equations to
capture the chemical reactions occurring in Mg degradation [65], in which the
detailed mathematical equations provided a proper insight into the effect of
different chemical components on the biodegradation of Mg in vitro. Grogan
et al. developed a model to correlate the mass flux of the metallic ions in the
biodegradation interface to the velocity of the interface, used to simulate the
degradation of complex geometries of Mg-based stents [66]. Similarly, Shen et
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al. developed a theoretical model to predict the degradation behavior of Mg
alloys in orthopedic implants [67]. Their 3Dmodel had a high agreement with
in vitro corrosion test results.

One of the important applications of biodegradation models is to investigate
the change of shape andmorphology of the implants andmedical devices over
time. To this end, appropriate interface capturing methods should be used to
track the corrosion interface during the biodegradation process. Bajger et al.
developed a mathematical model to study the degradation of Mg implants
by reaction-diffusion equations and level-set method (LSM), which enabled
them to track the geometrical changes of the implant during degradation
[68]. Similarly, Sanz-Herrera et al. developed a comprehensive computational
model as a tool forMg implant design [69]. They combinedmultiple diffusion-
reaction equations to study the change of concentration of the chemical
components that play an essential role in in vitro biodegradation of Mg
implants. A summary of the studies mentioned above is represented in Table
1.2. The reader is encouraged to refer to [70] for a more complete list of recent
published mechanistic and phenomenological models of the biodegradation
process of Mg-based implants.

The approach taken by Bajger et al. was followed in the current thesis, in which
an improvedmodel was developed by consideringmore chemical components
and phenomena, allowing us to perform a more accurate validation using
in vitro data. Although the biodegradation models are getting more mature
and more promising for simulating experimental situations, their integration
into other models, such as mechanical stability analysis or neotissue growth,
to construct fully-coupled models has remained a challenge. Solving this
challenge will enable future models to replicate complex in vivo conditions
more accurately in silico.
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Table 1.2: Summary of the recently-developed computational models of
the degradation process of Mg-based biomaterials and some of their key
characteristics. FEM: Finite Element Method; CFD: Computational Fluid
Dynamics; FVM: Finite Volume Method; MOL: Method of Lines; FSI: Fluid-
Structure Interaction; ALE: Arbitrary Lagrangian-Eulerian.

Biological
system

Modeled
device

Material Basis of
degradation

Software
used

Modeling
method

Ref

Artery Vascular
stent

Mg Alloy
AZ31B

Surface
corrosion

ABAQUS FEM,
UMAT [59]

Artery Vascular
stent

Mg Alloy
WE43

Surface
corrosion

ANSYS Flu-
ent

CFD, FSI,
FVM [60]

Remodeling
artery

Vascular
stent

Mg Alloy
AZ31

Uniform and
pitting corro-
sion

ABAQUS FEM, USD-
FLD [61]

Artery Coronary
stents

Mg alloys
AZ31,
AZ61,
AZ80,
ZK60 and
ZM21

Surface
and stress
corrosion

ABAQUS CD, FEM
[63]

Bone Orthopedic
implants

Pure Mg Surface
corrosion by
considering
biphasic
layers

MATLAB Mass trans-
fer, MOL [65]

Artery Vascular
stent

Mg Alloy
AZ31

Surface
corrosion

ABAQUS Diffusion
model,
ALE, FEM

[66]

Bone Orthopedic
pins

Mg alloys
Mg-1Ca
and Mg-
3Ge

Surface
corrosion

ABAQUS Diffusion
model,
FEM

[67]

Hip bone Orthopedic
implant

Pure Mg Surface
corrosion

In-house,
FreeFEM

Reaction-
diffusion
model,
LSM, FEM

[68]

Bone Orthopedic
screws

Mg alloy Surface
corrosion

In-house Reaction-
diffusion
model,
FEM

[69]

Bone Porous scaf-
folds

Mg Alloy
LAE442

Surface
corrosion

ABAQUS FEM,
UMAT [62]

Artery Vascular
stent

Mg Alloy
AZ31

Surface
corrosion

ABAQUS CD, FEM,
UMAT [64]



CHAPTER

2

AIMS AND OBJECTIVES

This chapter is dedicated to the elaboration of the objectives of the current
thesis. It starts with the general definition of the doctoral project aims. Here-
after, the specific objectives of the doctoral project are demonstrated. Then, the
chapter illustrates the thesis’s outline and structure.

2.1 General aim

The use of biodegradable metals has been gaining attention for various
kinds of biomedical applications in recent decades, however, controlling
their functionality and behavior inside the body has remained a challenge.
Computational modeling of the materials interaction with the body can help
avoid part of the expensive experimental works required to characterize the
degradation properties and can provide an integrated spatiotemporal view of
the whole process.

15
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One of the most challenging parts of performing such a modeling study is to
capture the chemical interactions and the dynamics and kinetics of the reac-
tions occurring on the material-environment interface. Taking advantage of
mechanistic modeling principles of mass transfer coupled with free boundary
and moving interface formulations seems to be a promising solution to this
complex problem. By doing so, one canmodel the degradation process by a set
of equations capturing the interaction of various chemical components while
tracking the moving corrosion front, which changes the location where the
dynamic is taking place.

In this study, we have developed a mathematical and computational model
to predict the biodegradation behavior of biodegradable metallic biomaterials,
focusing on Mg. This model enables us to investigate the chemical and,
later on, biological phenomena occurring on the corrosion interface of these
biomaterials. Additionally, coupling the model with other existing cell and
tissue growth models leads to a multiphysics model combining the chemistry
of biodegradation, the physics of the electrolytes and body fluids flow, and the
biology of tissue growth/regeneration. Building such amodel requires dealing
with several challenges, one of which is to couple various functions used
to track the moving boundary of different sub-problems. Moreover, adding
the effect of convection imposed by the fluid flow increases the system’s
complexity. Elaborating these challenges from a mathematical point of view
will facilitate future contributions to constructing such models.

2.2 Specific objectives

Despite the advantages of using biodegradable metals in implant design, their
fast degradation and uncontrolled release remain a challenge in practical
applications. A validated computational model of the degradation process can
facilitate the tuning of biodegradation properties. In this doctoral project, a
physicochemical model was developed by deriving a mathematical model of
the chemistry of biodegradation ofMg and implementing its 3D computational
model using the finite element method. To accomplish this, the project was
divided into five main objectives, illustrated schematically in Fig. 2.1.

Objective 1 was with the development of the core biodegradation model.
For this purpose, a physicochemical model of the biodegradation process of
commercially-pure Mg was developed by constructing a mathematical model
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Figure 2.1: Schematic representation of the structure and outline of the current
project, divided into five objectives.

formulating the mass transfer phenomena and tracking the location of the
implant’s surface during degradation. For the mass transfer model, a set
of time-dependent reaction-diffusion-convection partial differential equations
were derived from the chemistry of biodegradation of the Mg in saline (NaCl)
and buffered (SBF) solutions, which usually includes the oxidation of the
metallic part, reduction of water and oxygen, changes in local and global
pH, and formation of a protective film on the surface of the scaffold which
contributes to a slower rate of degradation. Besides these aspects, it was also
crucial to consider the effect of different ions in themediumon the degradation
rate. Additionally, investigating the structural changes of the scaffolds and
implants in practical applications like the resorption of temporary fixation
devices, requires tracking the movement of the corrosion surface. This was
done by constructing an equation based on the level-set principle, which
captured the movement of the medium-metal interface by defining an implicit
surface. The derived equations were coupled and solved using the finite
element method. The degradation data to validate the models were collected
from immersion tests. The model parameters were calibrated using a Bayesian
optimization algorithm, and the obtained parameters were used to simulate
the pH changes in NaCl and SBF solutions.

Objective 2was the coupling of corresponding equations of fluid flow (Navier-
Stokes and Stokes equations) in the solution domain with the biodegradation
model to capture the effect of convection on the degradation process. This was
crucial in order to consider the conditions in perfusion bioreactors and hydro-
dynamics experiments. The main challenge for this step was the complexity
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of dealing with the finite element formulation of fluid flow equations and the
difficulty of defining proper fluid boundary conditions on an implicit interface
(the corrosion front).

The third objective was to couple the degradation model with the tissue
growth models to simulate the response of the surrounding tissue during the
biodegradation process. For doing this, a detailed tissue growth model was
developed using two different interface tracking techniques, the phase-field
and level-set methods, and the results and efficiency of both methods were
compared. The mathematical coupling of the degradation and tissue growth
models and validating their predictions remained a challenge in this objective.

The fourth objective was related to the optimization of the computational
aspects of the thesis with all the codes developed in-house using open-source
tools and libraries. Detailed work on the parallelization of the computational
models of the three previous objectives was carried out to make the developed
models run faster. As the required high accuracy on the moving interface
increases computation time, parallelization was crucial for the computational
models to decrease the execution time of the simulations. The parallel al-
gorithm was implemented using a domain decomposition method. Besides
this, the formed linear system of equations in each partition of the mesh was
solved using Krylov methods by taking advantage of available highly efficient
preconditioners and iterative solvers, and the scaling behavior with respect to
the available computational resources was measured for different components
of the models.

The fifth objective was the demonstration of the versatility of the developed
model by using it as the biodegradation compartment in several multiphysics
use-cases to demonstrate the ability of the model to be integrated into other
modelingworkflows for biomedical applications. In the performed studies, the
biodegradation model was combined with structural mechanics and topology
optimization codes to deliver a more comprehensive model of the underlying
phenomena. The case studies presented in this thesis include mechanical
loosening of mandibular bone plates, degradation of an optimized acetabular
cup implant, and mechanical integrity of infilled structures.
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2.3 Thesis outline

The objectivesmentioned in Section 2.2 are tackled in the chapters ahead in the
following order and structure:

Chapters 3 and 5 describe the development of the core biodegradation model
ofObjective 1. In Chapter 3, a basic biodegradationmodel is described, which
is the base for combining the model with more physics in different applica-
tions. Chapter 5 further develops the base model to include more advanced
chemistry from the biodegradation of Mg in more complex electrolytes and
conditions.

Chapter 4 describes the development of the fluid flow model used for the
simulation of hydrodynamics conditions, which is related to Objective 2 for
coupling the biodegradation model with flow problems. The output coupled
model is later used in Chapter 5 for validating the biodegradation model in
hydrodynamics conditions.

The work presented in Chapter 6 is related to Objective 3, in which a tissue
growth model is developed to be coupled with the biodegradation model.
A simplified tissue growth model is also developed and used in Chapter
12, where the rate of bone healing is modeled during the degradation of a
mandibular plate, leading to loss of mechanical strength.

Works related to Objective 4 are presented in Chapters 7, 8, and 9, in which
the details of software development and model parallelization are elaborated.
Chapter 7 discusses the steps and details of parallelization of the implemented
biodegradation model, which can be generalized as a free boundary problem
coupled with reaction-diffusion systems. As part of this objective, the devel-
oped biodegradation model was transformed into a multifunctional 3D code
called BioDeg, the details of which are described in Chapter 8. Additionally,
the workflow and routines used to calibrate the models and estimate the
unknown parameters are presented in Chapter 9, which were also published
as educational materials. Furthermore, some parallel scaling behavior results
and discussion of the biodegradation model are presented in Chapter 10.

In the end, Chapters 10, 11, and 12 are related to Objective 5, dedicated
to demonstrating some of the applications of the developed biodegradation
model. Chapter 10 presents the work done to combine the degradation model
with the output of a surrogate model, in which the degradation behavior
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of a patient-specific porous acetabular implant was investigated. Chapter 11
describes the coupling of the degradationmodel with a topology optimization
code, in which the change of stiffness of some infilled structures was modeled
during the degradation process. Lastly, in Chapter 12, the biodegradation
model was used to predict the rate of mass loss for a mandibular plate,
which was subsequently converted to a mechanical strength analysis model
to examine how the plate characteristics react to degradation.

To facilitate the structure of the thesis, the chapters related to Objectives one
to three are grouped in Part 2 “Model Development”, the chapters related
to Objective 4 are presented in Part 3 “Code Implementation and Software
Development”, and the chapters related toObjective 5 are presented in Part 4
“Model Applications”.



Part II

Model Development
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CHAPTER

3

DEVELOPING THE CORE
COMPUTATIONAL MODEL

This chapter is based on previously published content in Corrosion
Science:
M. Barzegari, D. Mei, S. V. Lamaka, and L. Geris, “Computational
modeling of degradation process of biodegradable magnesium bioma-
terials,” Corrosion Science, vol. 190, p. 109674, 2021.

Despite the advantages of using biodegradable metals in implant design,
their uncontrolled degradation and release remain a challenge in practical
applications. A validated computational model of the degradation process can
facilitate tuning implant biodegradation properties. In this study, a mathemat-
ical model of the chemistry of magnesium biodegradation was developed and
implemented in a 3D computational model. The parameters were calibrated
by Bayesian optimization using dedicated experimental data. The model
was validated by comparing the predicted and experimentally obtained pH
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change in saline and buffered solutions, showing maximum 5% of difference,
demonstrating the model’s validity to be used for practical cases.

3.1 Introduction

3.1.1 Magnesium biodegradation

Due to their bio-friendly properties, biodegradable metallic biomaterials,
including magnesium (Mg), iron (Fe), and zinc (Zn), are regaining atten-
tion in recent years [2]. These biomaterials find important applications in
the design and manufacturing of supportive implants such as temporary
devices in orthopedics and the cardiovascular field [5,71]. In orthopedics, the
biodegradable metallic biomaterials are used as fixation devices, providing
adequate support in the early stages while being absorbed gradually during
the bone healing process [72]. Implants fabricated using Mg and its alloys are
being used for such a purpose [73] due to the similarity of the stiffness between
natural bone andMg,which helps to reduce the stress shielding induced by the
implanteddevice.Additionally,Mg is reported to have a non-toxic contribution
to the human body’s metabolism and the bone healing process, which makes
the release and absorption of metallic ions safe and biocompatible [74].

Accumulation of mechanistic understanding of Mg degradation achieved by
experimental approaches over the years gradually provided a mechanistic
understanding of the biodegradation process. Combining these insights with
in silicomodeling approaches enables researchers to study the biodegradation
properties and behavior of the implant in a virtual environment prior to
conducting any in vitro or in vivo tests. When fully validated, computational
modeling can (in part) replace certain stages of costly and time-consuming
experiments verifying the expected degradation behavior of the designed
implants. Additionally, the developedmodels can be efficiently combinedwith
existing computational models to examine other related phenomena such as
tissue growth or mechanical integrity.
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3.1.2 Computational modeling of Mg degradation

Previous contributions to the computational modeling of the degradation
process include a wide range of different approaches, from the basic phe-
nomenological implementations to comprehensive mechanistic models that
take into account various aspects of the degradation and resorption process.

Continuous damage (CD) modeling has always been a common approach for
corrosion simulation, but from a physicochemical point of view, it focuses on
the mechanical integrity of the degradation and neglects the diffusion process.
As a result, its application in the degradation modeling of biomaterials, which
includes various fundamental phenomena such asmass transfer through diffu-
sion and reaction, is relatively limited. Despite this issue, a CDmodel proposed
by Gastaldi et al. showed a good performance for simulation of bioresorbable
Mg-based medical devices [63], in which geometrical discontinuities were
interpreted as the reduction of material.

Alternatively, mathematical modeling using transport phenomena equations
has shown great flexibility in capturing different mechanisms involved in the
biodegradation process. As an example, in Ahmed et al., a set of mathematical
equations in cylindrical and spherical coordinates was derived to model
the chemical reactions of Mg degradation [65]. Despite the simplicity of
their approach from the computational perspective, their model was able
to demonstrate the contribution of various chemical components to the in
vitro degradation of Mg. Similarly, Grogan et al. developed a mathematical
model based on the Stefan problem formulation in 1D space to correlate the
mass flux of metallic ions into the solution to the velocity of shrinkage of
the material during degradation [66]. This was done by considering the mass
diffusion and change of the concentration of Mg2+ ions, and then, employing
an arbitrary Eulerian-Lagrangian (ALE) approach to extend the model to 3D
on an adaptive mesh. A similar approach was taken by Shen et al. to develop
a theoretical model of the degradation behavior of Mg-based orthopedic
implants showing great consistency with in vitro test results [67].

An ultimate application of the computational modeling of the biodegradation
process of biomaterials can be the prediction of how biodegradation affects
the shape of the bulk material, medical device, or implant over time. One
of the ways to achieve such a prediction is to capture the movement of the
corrosion front mathematically using an appropriate method. The level set
method (LSM) is a widely used example in this regard, which is an implicit



26 DEVELOPING THE CORE COMPUTATIONAL MODEL

mathematical way of representing the moving interfaces. This approach was
used inWilder et al. to study galvanic corrosion of metals [75]. They employed
LSM on an adaptive mesh to track the moving corrosion interface, but their
model lacked a thorough validation using experimental data. Gartzke et al.
also worked on a simplified representation of the interface movement by
developing a mechanochemical model of the biodegradation process, which
helped them to study the effect of degradation on the mechanical properties
[62]. They performed a basic qualitative validation on the predictions made
by the model. Another similar study in this regard is the Sun et al. work
[76], in which a detailed mathematical model was derived and validated to
study the deposition of corrosion products on the surface of materials. This
mathematical approach was also employed in the biomedical field by Bajger
et al. to study the mass loss of Mg biomaterials during biodegradation [68].
They used LSM as well as a set of reaction-diffusion equations to track the
change of geometry,which can be directly correlated to the loss ofmaterial. The
derived equations were also able to capture the formation of the corrosion film
that decreases the rate of degradation. Another comprehensive mathematical
model was developed by Sanz-Herreraa et al. to investigate the role of multiple
chemical components involved in the in vitro degradation of Mg implants
[69]. One important drawback of this study was its 2D nature. Although
the computational model was capable of studying the effect of multiple
components, due to the high number of derived equations, it would be difficult
to extend and use the same model for real 3D implants. Additionally, a 2D
model cannot capture the full phenomenon of corrosion, and as a result, the
validation of the model will be more qualitative. It was shown in the study
conducted by Gao et al. [59], where they compared the results of a multi-
dimension model of the degradation of cardiovascular stents with those of a
single-dimension model, that the number of considered dimensions had an
important effect on the model predictions. In the end, it is worth mentioning
that no dedicated experiments were performed in the aforementioned studies
to validate the constructed mathematical and computational models.

The current study focuses on developing a physicochemical model of the
biodegradation process of commercially-pure (CP) Mg biomaterials by con-
tinuing the work of Bajger et al. [68]. In this model, a set of partial differen-
tial equations (PDE) was derived according to the underlying chemistry of
biodegradation, described as reaction-diffusion processes taking place at the
interface of the biomaterial and its surrounding environment. The formation
of a protective layer, effects of the ions in the solution, and the change in the pH
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due to the corrosion phenomenonwere taken into account in themathematical
model. The corresponding computational model was implemented in a fully
parallelized manner. Model calibration and validation were executed using
data obtained from the immersion tests performed in saline (NaCl) and
simulated body fluid (SBF) solutions.

3.2 Background theory

3.2.1 Biodegradation as a reaction-diffusion system

The biodegradation process can be considered as a reaction-diffusion system
[77], inwhich the ions are released due to the chemical reactions on the surface,
and the released ions diffuse through the surrounding solution and materials.
These ions can interact with other ions and form new compounds [35]. As
the reaction-diffusion systems have been studied in science and engineering
for a couple of decades, the analogy with a reaction-diffusion system makes it
convenient to construct a mathematical model of the biodegradation process
based on the well-established transport phenomena equations [78]. From the
mathematical perspective, a reaction-diffusion system is expressed by a set of
parabolic PDEs that describe the conservation of contributing chemical species
in the studied system.

3.2.2 Moving boundary - Stefan problems

Moving boundary problems, also called Stefan problems, are the general class
of mathematical problems in which the boundary of the domain should also
be calculated in addition to the solution of the other equations [79]. Coupling
the reaction-diffusion system of biodegradation with a moving boundary
problem constructs a mathematical model in which the change of the domain
geometry due to the material loss can be correlated to the underlying reaction
and diffusion processes of corrosion. As the geometry can be determined
accurately, this approach provides a way to measure the mass loss directly by
computing the change in the volume of the material. In such a system, the
moving boundary is the material-solution interface (corrosion front).
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For a 1D corrosion diffusion system, the position of the diffusion interface can
be determined by [79]:

s(t) = s0 + 2α
√

t, (3.1)

in which the s(t) represents the position at any given time, and s0 is the initial
interface position. α coefficient can be calculated using:

α =
[Mg]0 − [Mg]sat
[Mg]sol − [Mg]sat

√
D
π

exp
(
−α2

D

)
erfc

(
−α√

D

) (3.2)

where [Mg]sol is the concentration in the solid bulk (i.e. materials density) and
[Mg]sat is the concentration at which the material is released to the medium.
[Mg]0 represents the initial concentration of the metallic ions in the medium,
which is usually zero for most corrosion cases.

Eqs. 3.1 and 3.2 can be used to simply track themovement of the corrosion front,
which is the employed method in studies like the Gorgan et al. work [66], but
apparently, the real-world corrosion problems are 3D andmuchmore complex
than the described system.

As will be described later, Eq. 3.1 is used strictly for the first time step of the
simulations in low diffusion regimes for calculating the initial velocity of the
interface. Generally speaking, a more sophisticated approach, such as the level
set method, is required for tracking the interface of complex 3D geometries.

3.2.3 Level-set method

In the current study, the corrosion front is tracked using an implicit function
such that the zero iso-contour of the function represents the metal-solution
interface. As a common practice, this implicit function is expressed as a signed
distance function that defines the distance of each point of space (the domain
of interest) to the interface. Such a definition implies that the zero iso-contour
of the function belongs to the interface. The level set method provides an
equation to declare such an implicit function, ϕ = ϕ(x, t), x ∈ Ω ⊂ R3, which
can be obtained by solving [80]:

∂ϕ

∂t
+
−→
VE · ∇ϕ + VN|∇ϕ| = bκ|∇ϕ| (3.3)
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in which
−→
VE is the external velocity field, and VN is the value of the normal

interface velocity. The last term is related to the curvature-dependent interface
movement and is omitted. As the effect of perfusion is neglected in the current
study, the term containing the external velocity is also eliminated, resulting in
the following simplified form of the level set equation:

∂ϕ

∂t
+ VN|∇ϕ| = 0. (3.4)

By having the normal velocity of the interface (VN) at each point and solving
Eq. 3.4, the interface can be captured at the zero iso-contour of the ϕ function.

3.3 Materials and methods

3.3.1 Underlying chemistry

The chemistry of biodegradation ofMgdepends considerably on the surround-
ing solution and the presence of certain ions [35]. In NaCl solutions, the
anodic and cathodic reactions as well as the formation and elimination of side
corrosion products can be considered as follows [2]:

Mg + 2H2O
k1→ Mg2+ + H2 + 2OH− k1→ Mg(OH)2 + H2 (3.5)

Mg(OH)2 + 2Cl−
k2→ Mg2+ + 2Cl− + 2OH−. (3.6)

Reaction 3.6 is not fully correct from the chemical point of view. In fact, Mg
surface is always covered by MgO layer, and Mg(OH)2 forms on top of that
either at atmospheric conditions or during the immersion. The integrity of this
MgO layer is undermined by Cl− ions, leading to an increase in degradation
rate:

MgO + Cl− + H2O
k2→ Mg2+ + Cl− + 2OH−. (3.7)

Although Cl− formally does not participate in reaction 3.7, it reflects the
dependence of Mg corrosion rate on Cl− concentration. This effect on the
rate of degradation has been widely expressed as the effect of Cl− on the
Mg(OH)2 in the literature [2, 5]. In the developed model, this effect is
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used interchangeably by omitting the MgO component, so the protective
film formed on the corrosion interface is assumed to contain Mg(OH)2
only. Moreover, it has been shown recently that oxygen reduction reaction
also takes place during corrosion of Mg [33, 81, 82]. However, this is a
secondary reaction (complementing water reduction) contributing to 1-20%
of the total cathodic current depending on the conditions. Hence, it is not
taken into consideration in this model. Additionally, the involved chemical
reactions are more complicated in SBF solutions due to the presence of further
inorganic ions and the formation of a layered precipitate structure [35], but
the effect of these ions is currently encapsulated in the reaction rates and the
diffusion coefficients of the developed mathematical model. The summary of
the considered chemistry to develop the mathematical model is depicted in
Fig. 3.1.

Figure 3.1: The chemistry of biodegradation of Mg considered in the current
study: 1) Mg oxidation and water reduction processes accompanied by
releasing Mg2+ and OH− ions as well as H2 gas, 2) formation of a
partially protective precipitation layer, 3) dynamic solubility equilibrium and
contribution of Cl−.

3.3.2 Mathematical modeling

To keep track of the concentration changes of various contributing chemical
components, we define four state variables for the concentration of Mg2+ ions,
protective film (Mg(OH)2), chloride (Cl−) ions, and the hydroxide (OH−)
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ions:
CMg = CMg(x, t), CFilm = CFilm(x, t)

CCl = CCl(x, t), COH = COH(x, t) x ∈ Ω ⊂ R3
, (3.8)

which are indeed 4 scalar functions of space and time. Ω denotes the whole
region of interest, including both the Mg bulk and its surrounding medium.
By doing this, the value of pH at each point of Ω can be calculated as:

pH = 14 + log10 COH, (3.9)

where COH implies the activity of OH−. By having the definition of the state
variables in Eq. 3.8, the biodegradation of Mg described by Eqs. 3.5 and 3.6 can
be represented as a set of reaction-diffusion PDEs:

∂CMg

∂t
= ∇ ·

(
De

Mg∇CMg

)
− k1CMg

(
1 − β

CFilm
[Film]max

)
+ k2CFilmCCl

2 (3.10)

∂CFilm
∂t

= k1CMg

(
1 − β

CFilm
[Film]max

)
− k2CFilmCCl

2 (3.11)

∂CCl
∂t

= ∇ · (De
Cl∇CCl) (3.12)

∂COH

∂t
= ∇ · (De

OH∇COH) + k2CFilmCCl
2 (3.13)

in which the maximum concentration of the protective film can be calculated
according to its porosity (ϵ) [68]:

[Film]max = ρMg(OH)2
× (1 − ϵ). (3.14)

De is the effective diffusion coefficient for each component. Due to the
formation of the protective film, the diffusion coefficient is not constant and
varies from the actual diffusion coefficient of the ions to a certain fraction of it.
This fraction can be defined as ϵ/τ [83, 84], in which ϵ and τ are the porosity
and tortuosity of the protective film, respectively. The effective diffusion
coefficient can be then calculated by interpolating the two aforementioned
values:

De
i = Di

((
1 − β

CFilm
[Film]max

)
+ β

CFilm
[Film]max

ϵ

τ

)
. (3.15)

The β coefficient is called momentum here and controls the effect of the
saturation term (1 − CFilm

[Film]max
).



32 DEVELOPING THE CORE COMPUTATIONAL MODEL

3.3.3 Interface movement formulation

In order to take advantage of the level set method for tracking the corrosion
front, the velocity of the interface at each point should be determined. Then,
by solving Eq. 3.4, the interface is obtained at the points with a zero value
of the ϕ function. The interface velocity in mass transfer problems can be
calculated using the RankineHugoniot equation [85], and by considering the
transportation of Mg2+ ions, it can be written as:

{J(x, t)− ([Mg]sol − [Mg]sat)V(x, t)} · n = 0 (3.16)

where J is the mass flux at the interface. Rearranging Eq. 3.16 and inserting the
value of the normal interface velocity into Eq. 3.4 yields:

∂ϕ

∂t
−

De
Mg∇nCMg

[Mg]sol − [Mg]sat
|∇ϕ| = 0, (3.17)

which is the final form of the level set equation to be solved. In the case
of simulations with a low diffusion rate, the interface moves slowly in the
beginning, which results in a linear degradation, whereas based on the
experimental results, the degradation rate is fast at the beginning and slows
down eventually [36]. So, to mimic the same behavior in the low diffusion
regimes, we took advantage of the theoretical Stefan formulation (Eqs. 3.1 and
3.2) to push the interface in the first time step. According to Eq. 3.1, the velocity
of the interface can be calculated as (2α/

√
t), but as we are dealing with a 3D

model and not a 1D one, we pick a fraction (denoted by γ) of this ideal value to
be used as the driving force of the interface at the beginning of the simulation.
So, the normal velocity of the interface can be written in the general form as:

VN(x, t) =

 γ 2α√
t

t = 0
De

Mg∇nCMg

[Mg]sol−[Mg]sat
t > 0

(3.18)

in which the α value should be calculated from Eq. 3.2. By selecting γ equal to
zero, the Stefan formulation can be eliminated, and a value of 1 for γ restores
the ideal 1D velocity definition.
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3.3.4 Boundary conditions

The implementation of boundary conditions is relatively challenging and
complex for the developedmodel as they should be imposed inside the domain
of interest on virtual interfaces defined by mathematical expressions (i.e. on
the moving interface defined by the zero iso-contour of the level set equation).
The penalty method was used to overcome this issue and define the desired
boundary conditions on the moving corrosion front.

Fig. 3.2 demonstrates a schematic presentation of the boundary conditions
and general considerations of each PDE of the biodegradation mathematical
model. This figure is divided into 5 different parts, presenting the 5 PDEs of
the model. The Mg block is depicted in the center, and the interface separates
it from the surrounding medium. There is no specific boundary condition for
the level set and film formation equations, but in comparison to the other 3
transport equations, it should be noted that diffusivity is not considered for
Mg(OH)2, which is also reflected in Eq. 3.11. The level set function ϕ is defined
in a way that is positive inside and negative outside the solid region. For the
Mg2+ ions transport equation, a Dirichlet boundary condition is applied on
the mathematical interface to make the concentration equal to the saturation
concentration of Mg2+ ions, a value that was already used in Eq. 3.17. For
the Cl− and OH− ions transport equations, a no-flux boundary condition is
applied to the interface bymaking the diffusion coefficient equal to zero inside
the Mg block, preventing ions to diffuse inside the solid material.

3.3.5 Implementation

To simulate the developed mathematical model, which is comprised of Eqs.
3.10, 3.11, 3.12, 3.13, and 3.17, a combination of finite difference and finite
elementmethodswas used, leading to discrete forms of these equations, which
were subsequently solved using appropriate linear solvers.

To discretize the temporal terms of the aforementioned parabolic PDEs, a
first-order backward Euler finite difference scheme was used, whereas the
spatial terms were converted to a weak form using a standard first-order finite
element scheme. Then, the open-source PDE solver FreeFEM [86] was used
to implement the weak form and obtain a linear system of equations for each
PDE. The obtained linear systems were solved in parallel using the HYPRE
preconditioner [87] and the GMRES solver [88] via the open-source high-



34 DEVELOPING THE CORE COMPUTATIONAL MODEL

Figure 3.2: A schematic overview of the exposed boundary conditions and
constraints required for the simulation of each equation of the developed
mathematical model for Mg biodegradation.

performance computing (HPC) toolkit PETSc [89]. Additionally, to increase
the efficiency of the computation and decrease the simulation execution time,
the computational mesh was decomposed and distributed among available
computing resources using the interface of HPDDM package in FreeFEM
[90]. The details of this implementation are presented in Chapter 7. A simple
iterative solver based on the Newton method was also developed to solve Eq.
3.2 to obtain the value of α parameter if it was required in the simulations.

The computational mesh was generated using a set of first-order tetrahedral
elements andwas adaptively refined on themetal-solution interface to increase
the numerical accuracy of the simulation of the level set equation (Eq. 3.17).
The Netgen mesh engine [91] in the SALOME platform [92] was used to
generate the mesh.

Similar to the technique employed by Bajger et al. [68], the gradient of
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concentration of Mg2+ in Eq. 3.17 was calculated at a distance h in the normal
direction from the interface, with h being the smallest element size of themesh:

∇nC =
C (x + h.n)− C (x + 2h.n)

h
x ∈ Ω ⊂ R3. (3.19)

Considering the adaptively refined mesh, the h value is very small, so the
gradient is computed at the regions close enough to the interface. In addition to
this technique, the mass lumping feature of FreeFEM was used to prevent the
oscillation of concentration values on the diffusive metal-medium interface.

3.3.6 Experimental setup

The degradation rate of CP Mg was evaluated based on the hydrogen evolu-
tion tests performed either in NaCl or SBF solutions with eudiometers. The
composition of the electrolytes is shown in the following table (Table 3.1). 0.5
g metallic chips (with a surface area of 47.7 ± 5.0cm2/g and chip thickness
ca. 200 microns) of CP Mg were put in 500 ml electrolyte for 22-24 hours
for monitoring the amount of evolved hydrogen. The method of measuring
evolved hydrogen was chosen for monitoring the degradation rate because
although such ameasurement is prone to experimental errors such as relatively
high solubility of hydrogen in water and volume change due to temperature
and pressure variations, it provides a continuous assessment of the process,
resulting in a continuous and smooth curve. Additionally, as small metallic
chips were used for the tests, it was not possible to clean these pieces in
chromic acid without losing them to measure the mass loss directly. The
drawback of choosing the evolved hydrogen as the monitoring method is
that it is not the only occurring reaction since oxygen reduction also takes
place during the process [33, 81, 82]. As a result, measuring only hydrogen
does not capture the totality of the degradation reactions. However, for CP
Mg, the contribution of oxygen reduction is low (in contrast to high-purity
Mg [33]) and can simply be ignored, meaning that the evolved hydrogen is
an accurate equivalent for the mass loss. The bulk pH of electrolytes before
and after corrosion wasmeasured by a pHmeter (Metrohm-691, Switzerland).
Local pH was measured by positioning pH microprobes (Unisense, Denmark,
pH-sensitive tip size 10x50 micron) 50 micron above the surface of Mg and
monitoring the pH values either in one spot or by horizontal or vertical line-
scans or mapping by following a horizontal grid. The electrolytes were not
pH buffered additionally since SBF contains carbonates and phosphates that
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stabilize the pHat the approximate value of 8.5 instead of the 10.5 characteristic
for pure NaCl solutions where pH is stabilized by precipitation of Mg(OH)2.
Meanwhile, synthetic pH buffers, such as TRIS and HEPES were proven to
affect the degradation mechanism rather significantly and should not be used
for this purpose [35]. Themeasurementswere performed at room temperature
of 22± 2◦Cmaintained by the laboratory climate control system.More detailed
information about experimental set up and procedures can be found elsewhere
[36,40].

Table 3.1: Chemical composition of NaCl and SBF electrolytes used to perform
hydrogen evolution tests, weight loss, local and bulk pH measurements.

Concentration/ mM
0.85 wt. % NaCl SBF

Na+ 145.4 142.0
K+ - 5.0

Mg2+ - 1.5
Ca2+ - 2.5
Cl− 145.4 147.8

HCO−
3 - 4.2

HPO2−
4 /H2PO−

4 - 1.0
SO2−

4 - 4.2
Synthetic pH buffer

(i.e. Tris/HCl, HEPES) No No

Initial pH value 5.6-5.9 7.35-7.45

3.3.7 Parameter estimation

The constructed mathematical model contains some parameters that need to
be calibrated prior to final validation of the model: diffusion coefficient of
Mg2+ and Cl− ions (DMg and DCl to be inserted into Eq. 3.15 to get effective
diffusion coefficients), the reaction rates of Eqs. 3.5 and 3.6 (k1 and k2), the
momentum parameter, β, for controlling the saturation term behavior (in Eqs.
3.10, 3.11, and 3.15), and the γ parameter for the initial interface velocity (Eq.
3.18). An inverse problem setup was required to estimate the proper value of
these parameters.

Performing a parameter estimation requires running the computational mod-
els several times. Considering the computationally-intensive model of the
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current study, a sensitivity analysis was performed prior to the parameter
estimation to exclude non-essential parameters and reduce the time required to
complete the inverse problem run. This sensitivity analysis was accomplished
separately in the low diffusion (similar to the SBF solution) and high diffusion
(similar to NaCl solution) regimes.

After determining the essential parameters to include, a Bayesian optimization
approach [93] was used to construct the inverse problem and calibrate the
parameters. The reason for choosing a Bayesian approach was to minimize
the number of optimization iterations, in each of which the simulation should
run once. The Bayesian optimization is a more efficient option for such com-
putational intensive cases in comparison to gradient-based or fully-stochastic
methods as it takes into account all the preceding iterations in a probability
tree [94].

The objective function of the optimization problemwas the difference between
the predicted and experimentally obtained values of evolved hydrogen. In the
computational model, the evolved hydrogen can be computed directly at any
time through the mass loss as each mole of corroded Mg is correlated to one
mole of released hydrogen (Eq. 3.5). The mass loss can be obtained using the
following volume integral:

Mglost =
∫

Ω+(t)
[Mg]soldV −

∫
Ω+(0)

[Mg]soldV, (3.20)

where Ω+(t) = {x : ϕ(x, t) ≥ 0}, and then, the amount of produced hydrogen
is calculated using the ideal gas law:

H f =
Mglost
Mgmol

RT
P

(3.21)

in which R, P, T, Mgmol are the universal gas constant, the pressure, the
medium temperature, and the molar mass of Mg, respectively.

3.3.8 Simulation setup

In order to simulate the developed mathematical model, the experimental
setup was reconstructed in silico with some minor differences. As there is
no perfusion in the solution chamber, the mixing effect was neglected, so,
as can also be seen in the mathematical model, the advection terms were
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not considered. Furthermore, the experiments were conducted using small
metallic chips, yet, as the biodegradation behavior heavily depends on the
exposed surfaces, we represented these chips by a cuboid with the same
surface-to-mass ratio. By considering the approximate surface-to-mass of
50cm2/g and the total mass of 0.5g, the chips were replaced by a cuboid with
the size of 60mm × 21mm × 0.2mm, which approximately has the same ratio,
surface area, volume, and mass. Also, the solution chamber with a capacity of
500ml was represented by a cubic container with an edge size of 80mm. Fig. 3.3
depicts the constructed geometry aswell as the computationalmesh generated
to represent it. The mesh is refined on the interface and contains 18,049,471
elements, resulting in 3,077,227 degrees of freedom (DOF) for each PDE.

Figure 3.3: Computational representation of the experimental set-up, used
to perform parameter estimation and numerical validation of the developed
model. a) A cuboid of Mg (60mm × 21mm × 0.2mm) inside a solution, b)
a cross-section of the computational mesh, refined on the corrosion front to
increase the required level set accuracy.

Simulations were carried out on the VSC (Flemish Supercomputer Center)
supercomputer. Taking advantage of HPC techniques to parallelize the simula-
tion is an inevitable aspect of such a computational-intensive model, so based
on what described in the implementation section, the mesh was decomposed
among 170 computing cores, i.e. 24,137 DOF per core (which includes the
ghost nodes to satisfy the boundary condition in each sub-mesh). On the VSC
supercomputer, we made use of 5 nodes, 36 cores each, each node holding
CPUswith a clock speed of 2.6 GHz, with 960 GB of the total availablememory.

The OH− transport equation (Eq. 3.13) was not solved during the parameter
calibration process. Afterwards, two full simulations (for the NaCl and SBF
solutions) were conducted to calculate the pH changes based on the change
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of the concentration of OH− ions in the medium. This acted as the validation
of the numerical model because no calibration was performed on the output
of this equation. The pH was calculated using Eq. 3.9, based on the solution
of Eq. 3.13 and a reported value of 7.00e × 10−5cm2/s (25.2mm2/hour) for
the diffusion coefficient of OH− ions (DOH to be used in Eq. 3.15) in aqueous
solutions [95].

According to the experimental setup, the initial concentration of the Mg2+,
Cl−, and OH− ions were set to 0 (no Mg2+ ions at the beginning), 146mM
(5.175 × 10−6g/mm3), and 1 × 10−7g/mm3, respectively. The porosity (ϵ)
and tortuosity (τ) of the protective film were considered to be 0.55 and 1,
respectively [76]. The saturation concentration [Mg]sat was set to the solubility
of magnesium chloride in water, which is 134 × 10−6g/mm3 at 25◦C [96].
The density of Mg ([Mg]sol) and Mg(OH)2 were set to 1735 × 10−6g/mm3

and 2344× 10−6g/mm3, respectively [68]. A time step convergence study was
performed to determine the implicit time step size. Based on the results, a time
step with a size of 0.025 hours was chosen. The overall simulated time is 22
hours in accordance with the experimental design of performed immersion
tests.

3.3.9 Case study

To further investigate the predictions of the current model on more complex
shapes, the biodegradation of a simple screw was studied in the SBF solution
using the parameters obtained for the low diffusion regimes. Similar to
the simulation of Mg cuboid, the mesh was refined on the metal-medium
interface, and it consisted of 1,440,439 elements with 246,580 DOFs for each
PDE. All the simulation parameters and materials properties were identical
to the simulation of biodegradation in the SBF solution, and the target was to
simulate 42 days (1008 hours) of the process. This was selected as a sufficiently
long simulated time to observe the effects of biodegradation on larger time
scales. The goal of this case study is to demonstrate the applicability of the
developed model for any desired 3D shape with no geometrical limitations.
As a result, although it was possible to consider a more complicated geometry
for the screw (for example by considering threads around the cylindrical part
of the screw or having a realistic geometry for the head), the screw geometry
consists of basic 3D primitives, which are adequate for the mentioned purpose.
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Table 3.2: The effective parameters as the result of the sensitivity analysis and
their corresponding range to be considered in the Bayesian optimization for
parameter calibration

Parameter Optimization range

Low diffusion
(SBF solution)

DMg [0.0001, 0.01]
k2 1010, 1015, 1020

β [0.1, 10]
γ [0, 1]

High diffusion
(NaCl solution)

DMg [0.003, 0.1]
k2 1010, 1015, 1020

β [0.1, 10]

3.4 Results

3.4.1 Optimization results

Based on the performed sensitivity analysis, two parameter sets were obtained
for the high diffusion (in NaCl solution) and low diffusion (in SBF solution)
simulations, respectively. These parameters are listed in Table 3.2. According
to the results, the reaction rate of Eq. 3.5 (k1), which demonstrates the rate of
oxidation-reduction, has less contribution to the process in comparison to the
rate of the weakening of the protective film (k2). Because of this, the parameter
k1 was not selected for the parameter estimation. Also, themodel was sensitive
to the effect of parameter k2 in different ranges of values and not on a specific
point, and as a result, three constant values were chosen as the delegates of
these ranges in the optimization process. The model was not sensitive to the
diffusion rate of Cl− ions, which was also expected because although Cl−

has an important role in the weakening of the partially protective MgO film,
its transport equation (Eq. 3.12) is purely diffusive and does not include any
reaction term.

The parameter optimization process was performed on the specified range
of selected parameters, while the rest of the parameter values were obtained
from the literature [68, 95]. Table 3.3 shows the output of this process, which
was used to simulate the full model. For two estimation processes, 120
optimization iterations were taken cumulatively, which took 276 hours of
simulation execution time using 170 computing nodes for each simulation.
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Table 3.3: Values used to evaluate the model performance, obtained from the
output of the optimization process and the literature.

Parameter DMg DCl DOH k1 k2 β γ

Unit mm2

hour
mm2

hour
mm2

hour
1

hour
mm6

g2hour - -
SBF solution 0.000338 0.05 25.2 7 1015 0.125 0.65
NaCl solution 0.06273 0.05 25.2 7 1020 0.2 0

3.4.2 Degradation prediction

Fig. 3.4 shows the model output for the predicted produced hydrogen, protec-
tive film formation, and the pH changes. The graph of the evolved hydrogen
is used as input during the parameter optimization process, but the pH
results are produced by the simulations using the optimized parameters to
demonstrate the validation of the developedmathematical and computational
models. The predicted pH result (Fig. 3.4-d) shows a difference of 5.35% for
the simulation in NaCl and 1.03% for SBF simulation. Each simulation took
about 3 hours to complete.

In Fig. 3.4, a post-processed view of the final shape of the Mg cuboid in the
NaCl solution is presented, in which the degraded geometry is plotted on the
Mg2+ ions (Fig. 3.4-b) and protective film concentration (Fig. 3.4-c) contours.
A transparent contour of the pH values in the solution is depicted for both
the NaCl (Fig. 3.4-e) and SBF (Fig. 3.4-f) solutions. The range of colors is kept
equal for both contours to make it easy to compare the change of pH in both
solutions.

The concentration values of the state variables of the derived transport PDEs
(Mg2+, Cl−, OH−, and Mg(OH)2) are plotted along a diagonal line in the
solution container in Fig. 3.5, showing how they change in the zones close to
the corrosion surface and far from it.

3.4.3 Example application

The simulation of 42 days (19,200 time steps) of the degradation of the simple
screw took 9 hours to run using 170 computing cores. Fig. 3.6 depicts the post-
processed interface and Mg2+ ions release (similar to Fig. 3.4-b) as well as the
mass loss during the degradation of the screw in the SBF solution. It is worth
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Figure 3.4: Comparing the quantitative output of the model for the rate
of degradation and the pH changes in NaCl and SBF solutions with
experimentally measured values as well as the simulation results for ion
release, mass loss, protective film formation, and pH changes after 22 hours
of simulated time: a) calibrated output of the formed hydrogen gas during
the degradation (the SBF curves are overlapped), b) the simulation results of
Mg2+ ions release, c) the simulation results of protective film concentration at
the end of the simulation (the color contour shows the concentration of species,
and the gray surface is the zero iso-contour of the level set function, which
indicates the surface of the Mg block), d) de novo prediction of the global pH
changes in themedium, showing a good agreement between themodel output
and the experimental results, e) pH changes in different regions of themedium
in NaCl solution, f) pH changes in SBF solution.

mentioning that the roughness observed on the surface of the screw geometry
is related to the node-based visualization of the level-set function evolution
and is not caused by either non-uniform corrosion or numerical error in the
simulations.

3.5 Discussion

In this study, a physicochemical model of the biodegradation process of
commercially-pure Mg was developed by constructing a mathematical model
formulating the mass transfer phenomena as well as tracking the location of
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Figure 3.5: The change of concentration for the involved chemical components,
Mg2+, Cl−, OH− ions, and the protective precipitation structure (which can be
correlated to the thickness of the layer) plotted over a diagonal line as shown
in the right.

Figure 3.6: A cross-section of the computational mesh and simulation results
of the degradation process of the use-case screw in SBF solution as well as the
mass loss graph over time. The contours display the concentration of Mg2+

ions on a cross-section view of the medium beside the moving surface of the
screw at 1) 1st day (initial state), 2) 6th day, 3) 12th day, and 4) 18th day.

the surface of the implant during degradation. For the mass transfer model,
the equations were derived from the chemistry of biodegradation of the Mg
in saline (NaCl) and buffered (SBF) solutions, which includes the oxidation
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of the metallic part, reduction of water, changes in pH, and formation of a
protective film on the surface of the scaffold which contributes to a slower
rate of degradation. Beside these aspects, it was also crucial to consider the
effect of different ions in the medium on the rate of degradation. Additionally,
investigating the structural changes of the scaffolds and implants in practical
applications, like resorption of temporary fixation devices, requires tracking
the movement of the corrosion surface. This was done by constructing an
equation based on the level set principle, which captured the movement of the
medium-metal interface by defining an implicit surface. The derived equations
were coupled and solved using a combination of finite difference and finite
element methods. The degradation data to validate the models was collected
from immersion tests of smallMg chips, reconstructed as a single cuboid in the
computational studywith a similar surface over volume properties. Themodel
parameters were calibrated using a Bayesian optimization algorithm, and the
obtained parameters were used to simulate the pH changes in NaCl and SBF
solutions.

The developedmodel falls in the categories of physical models of the corrosion
process, which provide more insights of the process in comparison to the
phenomenological models. The reason is that the phenomenological models
focus on the elimination of elements to capture the loss of materials, which
makes it impossible to model the formation of new chemical compounds or
interaction of species [97]. The physical models, like the one developed in this
study, are capable of capturing the underlying chemical interactions. By doing
this, processes like the effect of coating, the formation of a protective layer,
and pH changes can be modeled. Adding an appropriate interface tracking
method enables the physical models to act like the phenomenological models
in capturing the corrosion interface movement. In the current study, this
has been accomplished using a level set function. Technically speaking, this
approach has certain benefits over the ALEmethod, which is the method used
by several similar studies, including Grogan et al. [66]. In comparison to the
ALEmethod, the level set function tracks the interface instead of a Lagrangian
mesh, and elements can freely be marked as solid or liquid. Additionally,
employing the ALE method for degradation simulation requires remeshing
the geometry as the interface moves, which is not efficient for 3D models and
is limited to the available features of the employed numerical solver.

One of the challenging aspects of validating physical models is getting the
correct value for the parameters of said models, requiring dedicated exper-
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imental input. To overcome this challenge, an efficient inverse problem was
constructed based on the Bayesian optimization approach to estimate the
unknown parameters. To save time and resources, the parameter estimation
process was performed on the most effective parameters, which were selected
based on a sensitivity analysis. This selection process implied the importance
of parameters in high and low diffusion rates. This included the diffusion
coefficients (except the diffusion rate of the hydroxide ion), which were
subsequently used in Eq. 3.15 to get the effective coefficient employed in the
derived PDEs. The objective function of the optimization process was the
difference in the mass loss predicted by the computational model and the
experiments, but instead of direct mass loss measurement, we measured the
volume of formed hydrogen gas inMg corrosion, which then was converted to
mass loss by considering the stoichiometry of the reactions.

The degradation rate is fast at the beginning, but then it slows down due to
the formation of a partially protective film and also because of the saturation
concentration. This phenomenon is well captured by the model at high
diffusion rates, but in low diffusion rates (in SBF solution), this effect can be
reproduced by pushing the corrosion front according to the Stefan formulation
of the moving interface problems. This was controlled by the parameter γ

(Eq. 3.18). The sensitivity test demonstrated that this parameter doesn’t have a
significant effect in the high diffusion rates, but for the low diffusion regimes, it
was considered in the parameter estimation process. It should be noted that the
inclusion of the γ parameter is crucial for short-term simulations only, helping
themodelmimic the chemical behavior correctly. In otherwords, the long-term
degradation behavior can be successfully simulated without considering the
parameter γ. For example, the sensitivity test (Table 3.2) has marked γ as an
effective parameter because it plays an important role in the first 22 hours of
degradation model behavior. But, for the case study, the result (the graph in
Fig. 3.6) would be almost the same with γ set to zero since 40,320 time steps
(1008 hours) passed after applying the parameter in the first time step.

For the high diffusion regime simulation, the results show adifference between
the experimental and computational data in the early stages of the degradation
process (Fig. 3.4-a). The reason for this behavior lies within Eqs. 3.17 and 3.19,
in which the interface velocity was correlated to the gradient of released ions.
In high diffusion rates, the material release occurs very fast, so the calculated
gradient (Eq. 3.19) vanishes for a short period until the diffusion becomes
more uniform. As a result, the interface does not move, and according to Eq.
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3.20, no mass loss gets calculated. This effect was automatically ignored in the
parameter estimation process since the objective function considers the overall
degradation behavior.

The degradation of the CP Mg was assumed to be mostly diffusion-based.
As a result, the value of DMg plays an important role in the behavior of
the model. Although it was possible to get the diffusion coefficient of Mg2+

from the previously conducted experiments in the literature (similar to what
was done for DOH), we decided to not do so because of two reasons: 1) the
values reported in the literature are mostly valid for saline solutions only,
and 2) the reported values were not in a good agreement with one another
[66, 76]. Thus, the diffusion coefficient was obtained using the parameter
estimation process for both the NaCl and SBF solutions. The obtained value
of DMg (0.06273mm2/hour) was in line with the values that Grogan et al.
have already suggested (0.010575− 0.50575mm2/hour) [66], showing that the
constructed inverse problem was successful in reproducing previous results
of similar studies. The obtained value of DMg in the Bajger et al. work [68] is
0.00066mm2/hour, which is mostly related to the simplicity of the employed
parameter estimation method as well as having a 2D model instead of a 3D
one.

In the in vitro biodegradation of Mg-based biomaterials, the local pH of the
surrounding solution increases less than that in NaCl solution. This is because
the Mg(OH)2 formed in NaCl stabilizes pH at 10.4 [98], while Mg-Ca-P-C
containing products stabilize the pH at 7.8-8.5 since OH- is consumed for the
formation of this product [36,39]. This phenomenon was captured in Eqs. 3.13
and 3.9 to calculate pH based on the concentration of OH− ions, showing the
local pH changes at any location (Fig. 3.4-e,f). In the current study, the global
pH is considered as the validation criterion, which means that the average
value of the solution pH is calculated using a volume integral and is compared
with the ones obtained from the experiments. Fig. 3.4-d shows that such a
prediction has a good agreement with the experimental data.

One of the biggest simplifications of the current study was made by ignoring
the contribution of pH changes to the biodegradation mechanism of Mg.
Although doing that is relatively simple and straightforward in the approach
taken by this study, it results in non-linear terms in the derived PDEs. This non-
linearity inserts another level of complexity to the computational model as the
order of the state variables are in the range of 10−6 to 10−10, which makes it
difficult to yield convergence in the iterative non-linear solvers. By developing
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a robust non-linear solver, this effect can be added simply by including more
relevant terms as the effect of Eq. 3.13 into Eq. 3.10.

Additionally, buffered solutions and the physiological fluids inside the human
and animal bodies containmore ions interactingwithmore complex chemistry
[35]. In this study, this effect was encapsulated in a limited number of
parameters (such as k1 and k2 in Eqs. 3.10, 3.11, and 3.13), but while the
results show its success to reproduce experimental observations, it still needs
additional elaboration to be able to capture more chemical interactions. For
example, SBF solutions contain phosphates, carbonates, and calcium that form
hydroxyapatite-like compounds on the surface of Mg, acting as rather strongly
blocking corrosion products. In the current state of the developed model,
such an effect on the corrosion rate was captured by a low effective diffusion
coefficient (Eq. 3.15) for the Mg transport. In future model developments, the
effect of presented inorganic ions such as HCO−

3 , HPO2−
4 /H2PO−

4 , and Ca2+

can be added similar to the way the effect of Cl− was considered. Additionally,
formulating the effect of HPO2−

4 that exists in the physiological environments
will make the model capable of making more accurate predictions for in vivo
studies.

A common approach inmechanistic studies is to start with a purematerial and
gradually increasing complexity by adding impurities and alloying elements.
This approach was followed in the current study by beginning with a model
for pure Mg that captures the major reactions. The developed model can be
further extended to Mg alloys by considering the effect of alloying elements
on the reaction rates as well as adding more terms to the transport equations
to capture the electrochemical potential changes, converting the PDEs into
the NernstPlanck equation [99]. By doing so, more complex forms of the
corrosion process, such as galvanic corrosion, can be predicted by the model.
Thiswill increase the applicability of themodel for biomedical cases since pure
Mg is not commonly used for medical-graded applications. As an additional
future development, the corrosion layer can be considered to be heterogeneous,
making it possible to simulate the cathodic reactions by randomly distributing
more active spots on the surface. Alternatively, a similar effect can be achieved
by adapting the degradation rates using polarization curves and introducing
an active spot for inhomogeneous anodic dissolution [100]. Applying this will
enable the model to take into account additional corrosion products formed
due to additional alloying elements such as Zn, Ca, Ag, rare-earth elements,
and detrimental cathodic impurities such as Fe.



48 DEVELOPING THE CORE COMPUTATIONAL MODEL

Although the pH simulations are not enough experimental input to call the
model fully validated, the obtained validation results show that the derived
mathematical model and the corresponding parallelized computationalmodel
give a correct in silico representation of the studied process. The performed
predictive simulations, including the case study, demonstrate the potential of
the developed computational model and software to study the biodegradation
behavior of implants. This can be further combined with other computational
models to provide amultidisciplinary environment to investigate the mechani-
cal integrity of implants or induced neotissue growth for different applications
in orthopedics and tissue engineering.

3.6 Conclusions

The use of biodegradable metals for designing medical devices and implants
has the challenge of controlling the release and rate of degradation, which
is usually investigated by conducting in vitro and in vivo tests requiring
conducting multiple experiments for different scenarios and situations. In this
study, we have developed amathematical model to predict the biodegradation
behavior of commercially pure Mg-based biomaterials, which makes it possi-
ble to study the corrosion of implants and scaffolds in a simulated environment.
Despite the assumed simplifications, the model can serve as an important tool
to find the biodegradable metals properties and predict the biodegradation
behavior of Mg-based implants that improves current design workflows.



CHAPTER

4

EXTENDING THE MODEL:
ADDING FLUID FLOW AND

CONVECTION

This chapter is partially based on a manuscript prepared to be
submitted:
M. Barzegari, C. Wang, S.V. Lamaka, G. Zavodszky, and L. Geris,
“Interface-coupled multiphysics computational modeling of local pH
changes during the biodegradation of magnesium biomaterials.”

Similar to the importance of perfusion in tissue engineering bioreactors,
fluid flow plays an important role in biodegradation tests in hydrodynamics
conditions. In this chapter, the development of a parallel fluid flow model
is detailed, which is further coupled with the biodegradation model for
simulating immersion tests in hydrodynamics setup.

49
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4.1 Introduction

Considering fluid flow in the developed biodegradation model is crucial
in light of the final application of the model, which is to be coupled with
cell differentiation and tissue growth models to predict the rate of neotissue
formation on biodegradable implants and scaffolds. In tissue engineering, cell
expansion and differentiation experiments usually take place inside perfusion
bioreactors, meaning that the flow of a biological fluid provides sufficient
nutrients needed for the growth process and removes unnecessary and unde-
sirable waste [101–103]. Moreover, the induced shear stress resulting from this
perfusion plays a prominent role in the cell differentiation process [104–107],
making the fluid flow inside the bioreactor even more critical. Consequently,
the effect of the fluid flow should be considered in the biodegradation model
to enable it to make predictions in a perfusion setup, which is interchangeably
called hydrodynamics conditions in chemistry.

Fluid flow in the context of a hydrodynamic condition has a similar application
in corrosion and biodegradation experiments [108]. In a typical setup, the
electrolyte moves and is refreshed over time to remove the corrosion prod-
ucts and provide needed mechanical stimuli if applicable. In biodegradation
experiments, the flow velocity and induced shear stress affect the corrosion
behavior of degradable scaffolds and implants due to increased mechanical
forces and mass transfer [108]. Studies show that hydrodynamics conditions
play a significant role in Mg degradation [109] where the corrosion rate
increases in comparison to static conditions in immersion tests, in the presence
of flowing [110], rotating [111], circulating [112], and in vivo perfusion [113].
Additionally, the fluid flow helps remove the corrosion products and avoid
their accumulation [114].

The effect of hydrodynamics condition on the rate and pattern of biodegrada-
tion is rooted in the distribution and diffusion of fluids [115], which can be
related to increment of mechanical stimuli like wall shear stress or increment
in ions transport. It is reported that the presence of fluid flow leading to
accelerated movement of the corrosive medium increases the rate of uniform
and localized corrosion ofMg alloys [108]. The increase in corrosion rate is due
to the increase of mass transfer of ions [115], affecting the chemical reactions
occurring in the interface of Mg and the electrolyte [114, 116]. Moreover,
the increment in mass transfer removes more corrosion products from the
surface, which is another contribution of the fluid flow to increasing the
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biodegradation rate [115]. Wang et al. [108] reported that the degradation rate
was 0.37 ± 0.007 and 1.21 ± 0.27mm.year−1 for the corrosion of stents made of
Mg AZ31 alloys in static and hydrodynamics conditions, respectively. After
considering the volume loss with CTmeasurements, they have concluded that
the corrosion rate of these alloys is three times more in the presence of fluid
flow, increasing from ∼ 0.6mm.year−1 in static condition to ∼ 1.5mm.year−1

in a hydrodynamics setup [108]. This shows the significance of adding fluid
flow to the developed biodegradation model.

Computational Fluid Dynamics (CFD) is the field of studying the dynamics
of fluid flow using mathematical and computational methods [117, 118]. The
fluid flow is usually expressed in the formofNavier-Stokes or Stokes equations,
on which appropriate numerical schemes are applied and the derived system
of equations is solved using computers, resulting in the prediction of flow
patterns and secondary entities like the shear stress. CFD modeling has been
used in tissue engineering to study fluid flow systems such as dynamic cell
culture conditions in perfusion bioreactors [119–121].

In this chapter, a parallel computational model for fluid flow simulations
was developed and coupled with the biodegradation model. The model was
developed by solving the derived equations, i.e., Navier-Stokes equations
coupledwith the Darcy effect for the degrading object, using the finite element
method. To ensure proper verification of the simulation results, the model
output was compared with an OpenFOAM simulation on the same geometry
and setup.

4.2 Methods

4.2.1 Navier-Stokes equations

In its general form, the Navier-Stokes equations describing the flow of an
incompressible fluid with constant density ρ in the domain Ω ⊂ Rd (with
d being the dimension, so 2 or 3) can be written as [122]:

∂u
∂t

−∇·[ν(∇u +∇uT)] + (u.∇)u +∇p = f, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,
(4.1)
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in which u is the fluid velocity, p is the pressure (which is actually pressure
divided by the density), ν = µ

ρ is the kinematic viscosity (with µ being the
dynamic viscosity), and f is a force term. The equations are conservation of
linear momentum and conservation of mass (also called continuity equation),
respectively. When ν is constant, the diffusion term in Eq. 4.1 can be simplified
as [123]:

div[ν(∇u +∇uT)] = ν(∆u +∇divu) = ν∆u, (4.2)

which turns Eq. 4.1 into the following form:
∂u
∂t

− ν∆u + (u · ∇) u +∇p = f, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,
(4.3)

Eq. 4.3 satisfies the incompressibility condition ∇ · u = 0 and needs proper
initial and boundary conditions to be well-posed. The initial condition can be
defined as:

u(x, 0) = u0(x) ∀x ϵ Ω, (4.4)

where u0 is a divergence-free velocity field. Various types of boundary condi-
tions can be applied, but the ones we deal with in this chapter are described
here. If ∂Ω is the boundary of Ω, it can be split into 3 distinct boundaries
∂Ω = Γ1 ∪ Γ2 ∪ Γ3 each of which with a different type. On Γ1, the inlet can be
defined as a Dirichlet boundary condition for the velocity for a given velocity
profile g:

u = g on Γ1 (4.5)

On Γ2, a wall boundary no-slip condition can be considered:

u = 0 on Γ2 (4.6)

On Γ3, for the outlet condition, a homogeneousNeumann condition on velocity
and a zero pressure condition can be defined like:

∂u
∂n

= 0, p = 0, on Γ3 (4.7)

with n being the normal direction on the boundary ∂Ω. Broadly speaking,
these boundaries can be grouped into 2 sets: ΓD = Γ1 ∪ Γ2 and ΓN = Γ3 for
boundaries with Dirichlet and Neumann conditions, respectively.
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The Navier-Stokes equations can be written componentwise for individual
components of the flow vector field in the Cartesian coordinates. Denoting
ui, i = 1, . . . , d (with d = 2 in 2D and d = 3 in 3D), Eq. 4.3 can be presented as:


∂ui
∂t

− ν∆ui +
d

∑
j=1

uj
∂ui
∂xj

+
∂p
∂xi

= fi, i = 1, . . . , d,

d

∑
j=1

∂uj

∂xj
= 0.

(4.8)

4.2.2 Weak formulation of the Navier-Stokes equations

For deriving the weak formulation, the first equation of 4.3 is multiplied by
a test function v defined on a proper function space V (with H1 being the
Sobolev space defined in domain Ω) in which the test functions vanish on the
Dirichlet boundary:

V = [H1
ΓD

(Ω)]d = {V ∈ [H1(Ω)]d : v|ΓD = 0}. (4.9)

yielding to:∫
Ω

∂u
∂t

.v dω −
∫
Ω

ν4u.vdω +
∫
Ω

[(u.∇)u].vdω +
∫
Ω

∇p.vdω =
∫
Ω

f.vdω. (4.10)

Applying Green’s divergence theory results in:

−
∫

Ω
ν∆u · vdω =

∫
Ω

ν∇u · ∇vdω −
∫

∂Ω
ν

∂u
∂n

· vdγ (4.11)

and ∫
Ω
∇p · vdω = −

∫
Ω

p∇ · vdω +
∫

∂Ω
pv · ndγ (4.12)

Substituting Eqs. 4.11 and 4.12 into Eq, 4.10 yields to:∫
Ω

∂u
∂t

· vdω +
∫

Ω
ν∇u · ∇vdω +

∫
Ω
[(u · ∇)u] · vdω −

∫
Ω

p∇ · vdω

=
∫

Ω
f · vdω +

∫
∂Ω

(
ν

∂u
∂n

− pn
)
· vdγ ∀v ∈ V.

(4.13)
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The last term of Eq. 4.13 is expressed in accordance to the defined Neumann
boundary condition, which vanishes on Γ3 due to the defined condition in
the current study (Eq. 4.7). Moreover, this term vanishes on the Dirichlet
boundaries due to the properties of the function space V (Eq. 4.9).

Similarly, the second equation of 4.3 ismultiplied by a test function q belonging
to the function space Q (with L2 being a Hilbert space defined in domain Ω),
called the pressure space:

Q = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p dω = 0}, (4.14)

resulting in: ∫
Ω

q∇ · u dω = 0 ∀q ∈ Q. (4.15)

Eqs. 4.13 and 4.15 are so called weak forms of the Navier-Stokes equations.

4.2.3 Stokes equations

For viscous flow, where the Reynolds number is less than 1 (Re = |U|L
ν , with

L and U being the representative length and velocity of the domain), the
convection term of the Navier-Stokes equations can be neglected, simplifying
Eq. 4.3 to [123]: {

αu − ν∆u +∇p = f in Ω,
∇ · u = 0 in Ω,

(4.16)

with α being a positive coefficient. Eq. 4.16 can be used tomodel laminar flow in
lowReynolds regimes and is simpler to handle than Eq. 4.3 from the numerical
computing perspective. The weak formulation of the Stokes equation can be
derived by following the approach taken for the Navier-Stokes equations in
Section 4.2.2. The final form of the weak formulation is:

∫
Ω

(αu.v + ν∇u.∇v) dω −
∫
Ω

p∇ · v dω =
∫
Ω

f.v dω ∀v ∈ V,∫
Ω

q∇ · u dω = 0 ∀q ∈ Q,
(4.17)
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Eq. 4.17 can be written in the standard finite element variational form by
defining 2 bilinear terms a : V × V 7→ R and b : V × Q 7→ R:

a(u, v) =
∫
Ω

(αu.v + ν∇u.∇v) dω,

b(u, q) = −
∫
Ω

q∇ · u dω,
(4.18)

which simplifies the notation of the variational problem of the Stokes equation
to: {

a(u, v) + b(v, p) = (f, v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

(4.19)

in which

(f, v) =
d

∑
i=1

∫
Ω

fividω. (4.20)

4.2.4 Implementation

Numerical implementation of the Stokes (Eq. 4.16) and Navier-Stokes (Eq.
4.16) equations can be tricky due to the presence of specific sources of
instability, which highly depends on the type of studied fluid regime [124,
125]. Various numerical models have been presented for dealing with these
equations, some of which are commonly used in CFD applications, such as the
Newton-Raphson approximation of Navier-Stokes equations and the Chorin’s
projection method.

In order to increase the stability and avoid problems in the mathematical
analysis of the numerical models (e.g., V-ellipticity property), a pseudo-
compressibility assumption can be added to the continuity equation. The
pseudo-compressible approximation appears as a pressure term εp with ε

being a very small coefficient, resulting in the following equation as the final
form of the Navier-Stokes equations that we consider in this study [126]:

∂u
∂t

− ν∆u + (u · ∇) u +∇p = f,

∇ · u + εp = 0.
(4.21)
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Similarly, the Stokes equation can be written as:{
αu − ν∆u +∇p = f,
∇ · u + εp = 0.

(4.22)

Another challenging part is to approximate the convection terms in the
equations. One of the best approaches to do so is to take advantage of the
method of characteristics, in which the characteristics curves of a PDE are used
to convert it to an ODE, resulting in a simpler solution. By using the method
of characteristics for the convection term and a backward Euler discretization
for the temporal term, the weak form of the Navier-Stokes and continuity
equations (Eq. 4.21) can be rewritten as:

∫
Ω

un+1 − un ◦ Xn

∆t
· vdω + ν

∫
Ω
∇un+1 · ∇vdω −

∫
Ω

pn+1∇ · vdω =
∫

Ω
f · vdω

∫
Ω
∇ · un+1qdω + ε

∫
Ω

pn+1qdω = 0

(4.23)
in which (un+1, pn+1) are the unknowns to be computed from the known
state un coming from the previous time step or the initial condition. In Eq.
4.23, the term un+1 − un ◦ Xn is corresponding to the convection term being
approximated using the method of characteristics.

The weak form of the Stokes equations stays almost the same as Eq. 4.17
(because it does not contain transient and convection terms) but needs a slight
modification to add the pseudo-compressible terms from Eq. 4.22:∫

Ω

(αu.v + ν∇u.∇v) dω −
∫
Ω

p∇ · v dω =
∫
Ω

f.v dω,∫
Ω

q∇ · u dω + ε
∫

Ω
pqdω = 0.

(4.24)

The model was implemented in the open-source PDE solver FreeFEM [86]
using P1 elements for the pressure and P2 elements for the velocity state
variables. Eqs. 4.23 and 4.24 can be easily implemented in FreeFEM thanks to
the built-in support of the method of characteristics via the convect function.
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4.2.5 Preconditioning and parallelizing the computation

The solution of the Stokes andNavier-Stokes equations using the finite element
method in 3D is a computationally intensive process, and as a result, taking
advantage of high-performance techniques to reduce the simulation time
becomes crucial in real-world applications. Preconditioning the system and
parallelizing the simulation by partitioning the mesh and distributing the
partitions among available computing nodes in a parallel computing setup are
great solutions to this challenge.

In the current implementation, theMETIS graphpartitioner [127] andHPDDM
package [90] were used to partition the computational mesh and distribute the
load over the available resources. For preconditioning and improving the solu-
tion time of the derived equations, various (combinations of) preconditioners
and iterative or direct solvers available in the PETSc toolkit [89] were tested to
find the most suitable combination.

While exact factorization preconditioners (such as LU) are easy to implement
and use for fluid flow applications, they show bad memory scaling profiles
in large-scale problems, meaning that memory usage increases exponentially
with the problem size, making it almost impossible to use them for 3D cases. A
better solution for this class of problems is to take advantage of the FieldSplit
preconditioner in the PETSc toolkit, which allows solving the derived linear
system of equations using the block matrices technique. In this technique,
the matrices are divided into smaller blocks, and separate preconditioners or
solvers can be assigned to each block (each field). These blocks arise naturally
from the underlying physics or numerical discretization of the problem, such
as velocity and pressure in fluid flow applications. For matrices with an arbi-
trary number of blocks, three different “block” algorithms are available in the
PETSc toolkit: block Jacobi (additive), blockGauss-Seidel (multiplicative),
and symmetric block Gauss-Seidel (symmetric_multiplicative), which can
be selected by passing the desired one to the pc_fieldsplit_type flag. For
two blocks, like the one in fluid flow problems with velocity and pressure as
the blocks, another family of solvers based on Schur complements can be used.

In the current study, the FieldSplit preconditioner with Schur complement
approximation was used on two blocks for velocity and pressure. A GMRES
KSP type [88] was employed to solve the preconditioned system with an
iterative solver. AnAlgebraicMultigrid (AMG)preconditioner [128]was used
for the velocity block, and a Jacobi preconditioner was assigned to the pressure
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block. The result of this configuration, as well as the request for appropriate
monitoring tools, can be written as follows:

-ksp_monitor -ksp_converged_reason -ksp_type fgmres
-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_fact_type full
-fieldsplit_velocity_pc_type gamg
-fieldsplit_velocity_ksp_type preonly
-fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_ksp_max_it 5

to pass to PETSc while solving the equations.

4.2.6 Considering the degrading object

In biodegradation simulations, a degrading object exists in the fluid domain,
throughwhich the flow should not pass because it is a solid part. One common
approach to handle this situation is to remove the solid part from the fluid
flow mesh, but since the part shrinks over time, this is not a feasible and
efficient approach, needing tremendous mesh recreation and removal during
simulation. As a result, in the current study, the presence of the solid body as
a barrier is taken into account by adding a Darcy term for the permeability
to the Navier-Stokes and Stokes equations. A penalization technique is then
employed to implement it in the weak formulation. To couple the fluid flow
model with the biodegradation model, a convection term is added to the ions
transport equations, causing the fluid velocity field advect the ions.

Adding the Darcy term to Eq. 4.16 and considering no other acting force yields
to:

−ν∆u +∇p +
ν

K
u = 0, (4.25)

where K is the permeability function. Similar to Eq. 4.25 the effect of the solid
part can be added to the Navier-Stokes equation (Eq. 4.3) by the Darcy term,
leading to the following equation:

∂u
∂t

− ν∆u + (u · ∇) u +∇p +
ν

K
u = 0. (4.26)
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TheDarcy term vanishes in regionswith high permeability, i.e., inside the fluid
domain, resembling the Stokes equation. Still, when K is very small, i.e., inside
the solid part, it dominates the flow and acts like a barrier. To avoid numerical
perturbation for switching between these 2 regions, a Heaviside function is
defined to update K [129]:

H(ϕ) =


0, ϕ < −ε
1
2 + ϕ

2ε +
1

2π sin
(

πϕ
ε

)
, −ε < ϕ < ε

1, ϕ > −ε

(4.27)

in which ϕ is the level-set signed distance function used to separate the solid
and solution parts (Eqs. 3.3 and 3.4), and ε is set to 1.5h, with h being the
minimum mesh element size. Then, K can be accordingly updated to have a
smooth transition between regions with a big difference in permeability:

K(x) = 1030(1 − H) + K0H (4.28)

where K0 is the permeability of metals in fluid regions (∼ 10−6 H/m).

4.2.7 Simulation setup

Test case to compare with OpenFOAM

In order to perform a verification analysis on the developed CFD model, a
case of 3D flow inside a chamber was implemented to compare the simulation
results with those of a well-established and known CFD solver. For this reason,
theOpenFOAMopen-source solverwas used,which has been extensively used
for fluid dynamics simulations over the last decades [130]. The simulation
was carried out using the simpleFOAM solver, which uses the SIMPLE (Semi-
Implicit Method for Pressure Linked Equations) algorithm for coupling and
solving the Navier-Stokes equations.

The geometry was chosen based on the experiments performed for biodegra-
dation in hydrodynamics conditions. The experimental setup is depicted in
Fig. 4.1-A, where the constructed CAD geometry is shown in Fig. 4.1-B. The
computational mesh, comprising linear tetrahedral elements, was generated
using Netgen [91] in the SALOME platform [92]. The final mesh used in both
FreeFEM and OpenFOAM models is shown in Fig. 4.1-C, containing 100,888
elements.
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Figure 4.1: Fluid flow model construction for comparing the CFD results with
the experimental setup: a) a schematic of the experimental setup, b) the CAD
geometry, c) the generated mesh containing tetrahedral elements.

The fluid flow direction is from left to right, meaning that the inlet was set on
the vertical face of the small pipe on the bottom left side of the chamber, and
the outlet was set similarly on the upper right pipe. The rest of the boundaries
were set to no-slip boundary conditions. A zero pressure boundary condition
was set on the outlet. The inlet velocity was set to 1.0mm/s, and the parameter
ν was set to 0.85mm2/s.

Test case to check coupling with degradation model

In addition to the test case for verification of the developedCFDcode, twomore
cases were constructed to evaluate the model’s performance in the presence
of a barrier, i.e., the degrading object in the coupled biodegradation model.
To this end, after coupling the models, a simple 3D geometry of a cylinder
with an embedded sphere as the degrading object inside was simulated. The
simulation parameters were set similarly to the verification case. The inlet
and outlet were assigned to the bases of the cylinder, and the altitude was
assigned as the wall boundary condition. Fig. 4.2 shows a schematic of the
computational setup for this test case as well as a vertical cut of the generated
computational mesh containing 640,249 elements. The mesh was refined on
the interface of the degrading object to increase the numerical accuracy of the
biodegradation model.

Additionally, a simple 2D representation of the full chamber model (Fig.
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Figure 4.2: Model construction for checking the coupling of the fluid flow
and biodegradation models: a) schematic representation of the domain b) the
generated computational mesh.

4.1) was constructed to test the effect of the fluid flow on the degradation
behavior of the metallic parts. In this model, a high inlet velocity and a high
diffusion coefficient were used to have an exaggerated degradation, showing
how the fluid flow would affect the change of morphology of the object.
The degrading metallic part was selected to be a small rectangle on the
bottom of the chamber. The domain setup is depicted schematically in Fig.
4.3. The computational mesh was generated using the SALOME platform and
contained 24,946 elements.

Figure 4.3: Schematic view of themodel used for checking the effect of the fluid
flow on biodegradation behavior.

4.3 Results

To verify the robustness of the model predictions, the results of the CFD code
developed in FreeFEM were compared both quantitatively and qualitatively
with an OpenFOAMmodel of an identical set-up. The qualitative comparison
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was made via the streamlines, showing how the flow develops by plotting
the trajectory lines of the fluid velocity field inside the desired domain, which
is the chamber in this case. Figs. 4.4 and 4.5 show such comparison between
the developed model and OpenFOAM. Fig. 4.4 shows the streamlines for both
models from a side view, in which the flow enters the chamber from the left
inlet pipe and leaves it from the top right outlet. The qualitative comparison
shows a good agreement between the predictions of the models.

Figure 4.4: Comparing the results of the developed CFD model (top) with
OpenFOAM (bottom) via plotting the streamlines of the fluid velocity field,
depicted from the side view. The colors on the trajectory lines show the
magnitude of the velocity vector (in mm/s).

Similarly, Fig. 4.5 depicts a comparison but from the top view, showing good
agreement between the predictions, although the OpenFOAMmodel (bottom)
shows slightly better performance on the boundaries as can be appreciated
from the existence of extra streamlines close to the cylinder boundary in the
FreeFEM code results.

Moreover, a quantitative comparison is possible by comparing the numerical
values predicted by the models in various regions of the desired domain,
including the regions close to the boundaries. Fig. 4.6 shows the comparison
of the fluid velocity field visualization between the developed CFD code and
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Figure 4.5: Streamlines of the fluid velocity field plotted from a top view
to compare the output of the developed CFD model (top) and OpenFOAM
(bottom) with colors showing the magnitude of the velocity vector at each
point (in mm/s).

OpenFOAM on a cross-section in the center of the chamber, showing that both
models produce the same results quantitatively.

A closer look at the center of Fig. 4.6 is depicted in Fig. 4.7, where the color bar
range is adapted to contain only the visible values. This zoomed-in comparison
confirms the good agreement between the CFDmodel andOpenFOAMresults.
The employedmesh is relatively coarse in the center (regions far from the inlet
and outlet), the effect of which can be seen as non-smooth velocity profiles in
Fig. 4.7. Still, both models handle this coarse mesh effect similarly.

Fig. 4.8 shows the result of a proof-of-concept simulation in which the
biodegradationmodel [131] (presented in Chapter 3) is coupledwith the fluid
flow model. This was done by solving Eq. 4.26 (or Eq. 4.25 for simpler cases)
and adding a convection term to the equations of the biodegradation model
to include the directional effect of fluid flow on the degrading object. The
interplay between the fluid flow and the degradation can be seen in Fig. 4.8
with the released ions being advected to the right (the direction of the fluid
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Figure 4.6: comparison between the fluid velocity field predicted by the
developed CFD code (top) and OpenFOAM (bottom), depicted on a vertical
cross-section in the center of the chamber. Fluid enters the chamber from the
left and leaves it from the right. The colors show the magnitude of the velocity
vector at each point (in mm/s). The white dashed-line box shows the zoomed-
in area of Fig. 4.7.

flow) and the degrading object being slightly more degraded on the left.

Fig. 4.9 shows the effect of the degrading object on the fluid velocity field,
depicted as streamlines passing over the solid part at the end of the performed
simulation. The figure demonstrates the fluid flow response to the presence of
the changing morphology of the obstacle, obtained from solving the Navier-
Stokes equations containing the Darcy term (Eq. 4.26).

Fig. 4.10 shows the results of the second test case for the coupled biodegrada-
tion model, in which the release of metallic ions is depicted over time along
with the change of the morphology of the degrading object. The released
metallic ions get convected in the direction of the flow field inside the chamber,
which was obtained by solving the Navier-Stokes equations.
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Figure 4.7: A zoomed-in view of the area depicted as white dashed-line in Fig.
4.6, indicating the fluid velocity field for results predicted by the developed
CFD code (top) andOpenFOAM(bottom)with colors showing themagnitude
of the velocity vector at each point (in mm/s).

4.4 Discussion

In this study, a parallel fluid flow model was developed to be coupled with
the computational biodegradation model enabling the consideration of the
effect of the hydrodynamics conditions in corrosion tests. The most important
form of hydrodynamics in tissue engineering is the perfusion phenomenon
in bioreactors, which makes the development of such coupled degradation-
CFDmodel evenmore crucial considering the final application of the biodegra-
dation model. Similar to perfusion bioreactors, the hydrodynamics set-up
in biodegradation tests helps removing corrosion products and providing
mechanical forces if applicable.

In order to verify the developed CFD model, a test case was prepared to
simulate a similar chamber flowmodel in both the in-house FreeFEM code and
the OpenFOAM code, a well-established open-source CFD solver. Qualitative
(Figs. 4.4 and 4.5) and quantitative (Figs. 4.6 and 4.7) comparison of results
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Figure 4.8: Biodegradation simulation results in the presence of fluid flow over
time, showing the interplay between the fluid flowand biodegradationmodels.
The displayed time is in an arbitrary unit for demonstrating the intervals only.
The flow gets detoured due to the presence of an obstacle, and the released
ions get advected to the direction of fluid flow (left to right). The colors
represent the concentration of Mg ions as they get released to the surrounding
environment and subsequently get diffused/advected. The gray surface shows
the zero iso-contour of the used level-set function to track the degrading
object’s interface, demonstrating the solid part’s change of morphology.

show identical predictions for the flow field in both models, demonstrating
that the derivation of the weak forms of Navier-Stokes equations as well as
their numerical implementation in FreeFEM were performed correctly. This
comparison indicates that the developed code can be used instead of a well-
known and sophisticated CFD solver for the desired flow regime, which is
laminar flow with low Reynolds numbers.

The reason for developing an in-house CFD code instead of using a well-
established CFD solver lies in the lack of availability of proper coupling
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Figure 4.9: Visualization of the fluid velocity field depicted by streamlines
passing over a degrading object. Colors show the magnitude of the velocity
field (in mm/s) projected on the streamlines.

Figure 4.10: Visualization of the results of the biodegradation of an object in-
side the chamber in hydrodynamics conditions. Colors show the concentration
of releasedmetal ions getting convected in the direction of fluid flow. The light
gray part shows the degrading object. The numbers (1) to (4) demonstrate the
evolution of the simulation over time.

software. Although various efficient solver coupling codes exist and arewidely
used in similar scenarios (such as the preCISE coupling library [132]), at
the time of this writing and to the best of the authors’ knowledge, there is



68 EXTENDING THE MODEL: ADDING FLUID FLOW AND CONVECTION

no compatible coupling software for FreeFEM, the language in which the
computational model of the biodegradation process was implemented. In
case of existence, the computational biodegradation model could have been
linked with OpenFOAM, SU2, or Code_Saturne in an efficient in-memory
way. But, with such an approach not available, the only feasible approach
would be coupling the models using disk IO (input-output), meaning that
in each time step, the computational model should write the domain data
on disk (we should notice that the domain evolves since it is a moving
interface problem), and the CFD code reads the data, computes the flow
field, and writes it back to the disk so that the biodegradation would read it
back. Despite the possibility of employing this approach, the computationally
intensive aspects of the models, which is the result of a 3Dmesh refined on the
corrosion interface leading to normally 2M-4M elements, makes the workflow
dramatically inefficient. Working in HPC environments and dealing with a
partitioned mesh can make the situation even more complex. This reasoning
made it inevitable to develop an in-house CFD code so that it can be seamlessly
and efficiently coupled with other models.

In order to couple the flow model with the computational biodegradation
model, both models should be modified to include the effect of the other
one. For the biodegradation model, the effect of fluid flow was considered
as an extra convection term in the set of derived reaction-diffusion equations,
which can be implemented using the method of characteristics in FreeFEM.
On the other side, the inclusion of the effect of a degrading object can be
more tricky in the CFD model. This was done by adding a Darcy term to the
Navier-Stokes and Stokes equation, which considers a high permeability for
the regions inside the degrading object, preventing fluid from penetrating into
those parts. After the degrading part interface shrinks, the Darcy term gets
updated automatically since it is formulated based on the level-set function
used in the biodegradation model to describe the moving corrosion interface.
Figs. 4.8 and 4.9 demonstrate the effect of the presence of the degrading part
on the pattern of flow, while Fig. 4.10 shows the effect of fluid flow on the
biodegradation, which is the ions being convected in the direction of the fluid
velocity field, leading to a minor directional degradation in which the side
facing the flow direction degrades slightly faster.

The performed verification study on the developed CFD code is not enough to
call it a fully validated fluid flow model. However, by considering the desired
flow regime in biodegradation tests, the verification shows that the coupled
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model is capable of predicting acceptable and correct results. Nonetheless,
dedicated validation tests can be further done to fully validate the developed
model as a general CFD code which can be used standalone for simulating
laminar flows with low Reynolds numbers.

4.5 Conclusion

In this chapter, a parallel fluid flow model was developed and linked with
the biodegradation model, making it possible to simulate the degradation
process in hydrodynamics conditions. Proper preconditioners and solvers
were selected to improve the parallel efficiency of the developedmodel in HPC
environments. The results obtained from the fluid flowmodel were compared
with the output of a similar simulation performed usingOpenFOAM, inwhich
a good agreement was observed, verifying the performance of the developed
model for the desired flow regime needed to perform local pH simulations in
Chapter 5.





CHAPTER

5

EXTENDING THE MODEL:
SIMULATING LOCAL PH

EVOLUTION

This chapter is based on a manuscript prepared to be submitted:
M. Barzegari, C. Wang, S.V. Lamaka, G. Zavodszky, and L. Geris,
“Interface-coupled multiphysics computational modeling of local pH
changes during the biodegradation of magnesium biomaterials.”

In this chapter, the basic biodegradation model developed in Chapter 3 is
further developed to capture more advanced chemistry occurring at the
corrosion interface in HBSS solutions, making it possible to simulate more
complex environments and local pH changes during the biodegradation
process.

71
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5.1 Introduction

Mg is the most studied biodegradable metal [2, 3, 71, 133], on which many
research groups have performed valuable biodegradation studies [11, 134–
136]. The biodegradation behavior of Mg is investigated in in vitro corrosion
tests, in which the selection of the corrosive media plays an important role
since it affects the underlying chemical reactions [35]. By considering the
main application of the biomaterial, which can be tissue engineering scaffolds,
vascular stents, or orthopedic fixation implants, the corrosive media can be
selected to be a representative of the service environment. The most basic
form of the medium is a saline (NaCl) solution, in which the degradation
rate is the highest possible [35]. More complex solutions can be used to
mimic the behavior of the body environment by taking into account additional
body fluid components, the most popular of which are Ringer’s solution, PBS
(phosphate buffered saline), SBFs (simulated body fluids), HBSS (Hank’s
balanced salt solution), and Earle’s balanced salt solution (EBSS) [35]. Adding
more organic components to the solution will make it ready to simulate cell
culture conditions. The common media for this purpose are MEM (Minimum
Essential medium) and DMEM (Dulbecco’s modified Eagle’s medium) [35].

Various studies have already investigated the effect of different components
in the aforementioned corrosive media on the degradation behavior of Mg
materials [36–40]. A typical composition of "simulated body fluid" solutions
(such as SBF, HBSS, and EBSS) is chloride, carbonate, phosphates, sulfate, and
calcium. The individual effect of these components on the rate of degradation
of Mg has been extensively studied, in which it has been observed that
carbonate and phosphate slow down the rate while the effect of sulfate
is negligible [38, 40]. The concentration of HCO−

3 affects the pH buffering
capacity and the degradation rate of Mg simultaneously [47].

The effect of calcium ions is more complex because it has been found that
Ca2+ doesn’t contribute to the Mg corrosion directly [7], but a mixed effect
of Ca2+, Mg2+, HCO−

3 , and H2PO−
4 /HPO2−

4 forms a co-precipitation layer on
the corroded surface of Mg, slowing down the corrosion rate of commercially
pure Mg as well as of some Mg alloys [36, 39]. It has also been reported
that although various Mg alloys show different intrinsic degradation behavior
in NaCl solution, they possibly behave similarly in simulated body fluids
[40, 137]. Since the humoral regulations inside the human body control the
changes in pH of body fluids, it is common to use pH buffers tomimic a similar
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condition, but it should be taken into account that buffering solutions may
affect the degradation rate ofMg [138,139] andmay also delay the formation of
the precipitate layer [39]. An alternative solution to address this issue is to use
natural pH buffers such as HCO−

3 /CO2, an option that is commonly used for
immersion tests under cell culture conditions. In this situation, an equilibrium
betweenH2CO3 (CO2),HCO3

−, andCO3
2− keeps the pH constant. As a result,

using simulated body fluids for corrosion tests without additional synthetic
pH buffers is still acceptable [39, 40].

The major reactions occurring in simulated body fluids can be written as:

Mg + 2H2O → Mg(OH)2 + H2 (5.1)

2Mg + 2H2O + O2 → 2Mg(OH)2 (5.2)

5Ca2+ + 3PO3−
4 + OH− → Ca5 (PO4)3 OH (5.3)

Ca2+ + 2OH− → Ca(OH)2 (5.4)

Mg2+ + CO2−
3 → MgCO3 (5.5)

Ca2+ + CO2−
3 → CaCO3 (5.6)

3Mg2+ + 2PO3−
4 → Mg3 (PO4)2 (5.7)

CO2−
3 (aq) + H+(aq) → HCO−

3 (aq) (5.8)

PO3−
4 (aq) + H+(aq) → HPO2−

4 (aq) (5.9)

The protection layer is formed on the corroded surface as a hydroxyapatite-like
precipitation according to the following reaction [44,82, 140, 141]:

mMg2+ + nCa2+ + xH2PO−
4 /HPO2−

4 + yHCO−
3 + zOH−

→ MgmCan (PO4)x (CO3)y
(
OH−)

z

(5.10)

In fact, the similarity in corrosion behavior of various Mg alloys in SBF
solutions is due to the similar composition of this quasi-protective layer, a
mechanism that doesn’t occur in NaCl solution, leading to a more apparent
difference in degradation rate between Mg alloys. The composition of the
formed hydroxyapatite-like precipitation layer is close to the ones found in
vivo [35]. Additionally, local pH measurements in HBSS and SBF show that,
in contrast to saline solutions, the local pH value is not alkaline [39,142]. This
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has been reported for hydrodynamics situations, under which the medium
composition is kept constant by replacing the consumed ions bymeans of fluid
flow.

Building mathematical and computational models of the biodegradation
process in complex buffered solutions can help save the resources required
to perform in vitro tests, but the details of the aforementioned chemistry are
challenging to capture in a mechanistic model. Few attempts have been made
to model the underlying chemical reactions in SBF solutions [100, 143, 144],
but due to the complexity of the resulting mathematical models, it is not
feasible to extend them to 3D and real-world cases, like for simulation of the
degradation of biomedical implants. In the case of data-driven approaches
[145], the applicability is limited to the studied conditions, making it difficult
for developed models to achieve high extensibility and generalizability.

In this chapter, a detailed mathematical model is presented to extend the
work discussed in Chapter 3 and [131], in which a mechanistic model of
the biodegradation process is coupled with a thermodynamics-based code to
predict local interfacial biodegradation of Mg in HBSS solutions. The local pH
changes are the validation criterion to compare the simulation results with
experimental ones. Besides other parameters affecting the Mg biodegradation
mechanism, monitoring the pH changes at the degradation interface has
proved to be significant due to its direct effect on the formation and stability of
the degradation products layer [146].

5.2 Methods

5.2.1 Experimental setup

In this study, the corrosion tests were performed on ultra-high pure (UHP)
and commercially pure (CP) Mg in hydrodynamics conditions. The elemental
composition of the used materials is shown in Table 5.1, measured by Atomic
Absorption Spectrometer (AAS). The samples were prepared as rod shapes
with a diameter of 2mm mounted in epoxy resin with a disc shape. The
electrolyte used for corrosion tests was commercial HBSS (ThermoFisher
Scientific, no. 14025100), the composition of which is presented in Table 5.2.

Local pHmeasurementswere performedusing a glass-type pHmicroelectrode
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Table 5.1: The elemental composition of ultra-high pure and commercial pure
Mg used for performing corrosion experiments (percentages)

Fe Si Mn Al Cu Ni
CP-Mg 0.03420 0.0001 0.00237 0.00402 0.00037 <0.0002
UHP-Mg 0.0012 <0.0001 0.00037 0.00291 <0.0001 <0.0002

Table 5.2: Chemical composition of the HBSS electrolytes used to perform
corrosion tests for local pH measurements.

Components mM
KCl 5.33

KH2PO4 0.44
NaHCO3 4.17

NaCl 137.9
Na2HPO4 0.34

CaCl2 1.26
MgCl2 · 6H2O 0.49
MgSO4 · 7H2O 0.41
D − Glucose 5.56

with a tip diameter of 10µm (Unisense, pH-10). The electrode was positioned
above the sample at a distance of 50 ± 3µm. At this distance, a line scan
mapping routine was performed to obtain the horizontal pH profiles, in which
a specimen-centered area (3000 × 3000µm, which was used as the simulation
domain as well) was mapped with the step length of 100µm. The sampling
interval was 3 s, the result of which was a total duration of approximately
1 hour to scan the area. Similarly, the vertical pH profiles were scanned
starting at the height of 50µm above the midpoint of the specimen up to
500µm in the bulk medium. Fig. 5.1 demonstrates the setup of the experiment
schematically, in which the flow enters the chamber from the left with a rate
of 1.0mL.min−1 (Medorex TL15E peristaltic pump) and leaves it to the right.
The tests were performed independently at room temperature (RT, 22 ± 2 in
an air-conditioned lab) and 37◦C (Thermo Scientific SAHARA S13).

The in vitro cross-section morphology of the specimens was characterized
using a dual beam FIB/SEM platform (LYRA3 TESCAN) equipped with an
EDX system (Oxford Inca with a silicon drift detector), the result of which
was used to compare qualitatively with the simulation predictions.
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Figure 5.1: Experimental setup for validating the coupled biodegradation
model

5.2.2 Computational model construction

The computational model in the current study comprises three coupled
modules:

1. An extended version of the mechanistic biodegradation model based on
our previous work [131] (Chapter 3) to obtain Mg and hydroxide ions
distributions and the initial formation of the protective layer based on
the modeling hypotheses.

2. A thermodynamics-based simulation to estimate the concentration of
various components of the electrolyte in regions close to the surface of
the sample based on the calculated pH of module 1.

3. Amodule to link the former two, calculating the hydroxyapatite-like pre-
cipitation concentration, in which calculated pH values were transferred
from module 1 to module 2 for each node of the computational mesh to
calculate the concentration of ions depending on the computed local pH
and transfer back the calculated precipitation concentration to module 1.

Fig. 5.2 shows a schematic representation of the coupled modules and the way
that simulation data are being transferred between them. It should be noted
that the results obtained from module 2 are calculated in an equilibrium state
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as it is a thermodynamics-based code, but module 1 works based on kinetics
equations and calculations. As a result, it is assumed that the kinetics of the
reactions is affected by the equilibrium state of involved chemical components
in each time step,which can be considered as a small timewindow inwhich the
chemical species are in equilibrium. This fact should be seen as an assumption
made for simplifying the calculation of the stoichiometry of the protective layer
(Eq. 5.10), in which the effect of the underlying kinetics on the change of pH
is neglected.

Figure 5.2: Schematic representation of the coupled modules for modeling of
local pH changes, showinghow they are connected aswell as the programming
languages and tools used for the implementation.

The computational biodegradation model (module 1) was developed by
deriving a set of reaction-diffusion-advection equations from the chemistry
of the corrosion of Mg in hydrodynamics conditions. The following basic
reactions are captured by this model, which is an extension of our previous
contribution [131] (Chapter 3) as the overall process is described in more
detailed equations:

Mg + 2H2O
k0→ Mg2+ + H2 + 2OH− (5.11)

Mg2+ + 2OH− k1→ Mg(OH)2 + H2 (5.12)

Mg(OH)2 + 2Cl−
k2→ Mg2+ + 2Cl− + 2OH− (5.13)
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MgO + Cl− + H2O
k2→ Mg2+ + Cl− + 2OH− (5.14)

The following state variables hold the concentration of various basic ions
involved in reactions described by Eqs. 5.11, 5.12, 5.13, and 5.14:

CMg = CMg(x, t), CMg[s] = CMg[s](x, t), CMg(OH)2
= CMg(OH)2

(x, t)

CCl = CCl(x, t), COH = COH(x, t) x ∈ Ω ⊂ R3
,

(5.15)

Additionally, two more state variables are needed to couple the models, rep-
resenting the calculated concentration of the hydroxyapatite-like precipitation
as well as the cumulative layer concentration:

CHydrox = CHydrox(x, t), CFilm = CFilm(x, t) x ∈ Ω ⊂ R3, (5.16)

where the total film concentration can be calculated as:

CFilm = CHydrox + CMg(OH)2
. (5.17)

With the above state variables defined, the biodegradation model can be
constructed by implementing the following PDEs:

∂CMg[s]

∂t
= −k0CMg[s] (5.18)

∂CMg

∂t
= ∇·

(
De

Mg∇CMg

)
−∇·

(
uCMg

)
+ k0CMg[s] − k1αCMgC2

OH + k2CFilmCCl
2

(5.19)
∂CMg(OH)2

∂t
= k1αCMgC2

OH − k2CFilmCCl
2 (5.20)

∂CCl
∂t

= ∇ · (De
Cl∇CCl)−∇ · (uCCl) (5.21)

∂COH

∂t
= ∇· (De

OH∇COH)−∇· (uCOH)+ k0CMg[s] − k1αCMgC2
OH + k2CFilmCCl

2

(5.22)
showing the mathematical representation of reactions 5.11, 5.12, 5.13, and 5.14
in hydrodynamics condition in the formof a set of reaction-diffusion-advection
equations. k0, k1, and k2 are reaction rate constants corresponding to the Mg
oxidation, film formation, and film elimination reactions, respectively. In Eqs.
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5.19, 5.20, and 5.22, α is defined as:

α =

(
1 − β

CFilm
[Film]max

)
, (5.23)

in which the protective film maximum concentration is calculated using its
porosity (ϵ) [68]:

[Film]max = ρFilm × (1 − ϵ). (5.24)

In Eqs. 5.19, 5.21, and 5.22, u is the velocity field from the surrounding fluid
flow governed by the Stokes equation:{

−ν∆u +∇p +
ν

K
u = 0

∇ · u + εp = 0.
(5.25)

in which u is the fluid velocity, p is the pressure (which is actually pressure
divided by the density), ν = µ

ρ is the kinematic viscosity (with µ being the
dynamic viscosity), and K is the permeability function.

The local pH can be calculated using the simulated concentration of hydroxide
(Eq. 5.22):

pH = 14 + log10

(
COH/MWOH × 106

)
, (5.26)

with MWOH = 17.01 being the molecular weight (MW) of the hydroxide ions.

The concentration of the hydroxyapatite-like precipitation (CHydrox in Eqs.
5.15 and 5.17) is calculated using the thermodynamics-based simulations
(module 2) based on calculated local pH (Eq. 5.26) for each node of the
desired domain. After solving the derived equations in each time step, the
linking module passes the obtained local pH to the thermodynamics module
to calculate the individual concentration of involved chemical components.
Then, the individual concentrations are converted to the concentration of the
hydroxyapatite-like precipitation by taking into account the stoichiometry of
the formation reaction (Eq. 5.10), leading to the calculation of CHydrox for each
node. After this, the total concentration of the film can be calculated according
to Eq. 5.17 by passing back the calculated value to module 1.

The thermodynamics-based simulations were conducted using the Hydra-
Medusa code [147–149], in which the input data of chemical equilibrium
constants, solubility products, temperature, and involved chemical compo-
nents are used to generate a set of equilibrium diagrams correlating pH to
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concentration or fraction of desired chemical components. The experimental
conditions, including the initial composition of the electrolyte (Table 5.2)
and evaluated temperatures (25◦C and 37◦C), were given as input, and
contributing components and solubility products were selected as represented
in Table 5.3.

Table 5.3: Solubility products of related chemical reactions at 25◦C (RT) and
37◦C [150]

Chemical reaction pKsp25◦C pKsp37◦C
Ca5 (PO4)3 OH → 5Ca2+ + 3PO3−

4 + OH− 54.46 58.77
Mg(OH)2 → Mg2 + 2OH− 11.25 11.25
Ca(OH)2 → Ca2+ + 2OH− 5.20 5.38
MgCO3 → Mg2+ + CO2−

3 8.03 5.51
CaCO3 → Ca2+ + CO2−

3 8.48 8.44
Mg3 (PO4)2 → 3Mg2+ + 2PO3−

4 23.28 27.62
H2O(l) → H+(aq) + OH−(aq) 14.00 13.61

HCO3−(aq) → CO2−
3 (aq) + H+(aq) 10.33 10.24

HPO2−
4 (aq) → PO3−

4 (aq) + H+(aq) 12.35 12.32

The derived PDEs for the mechanistic model (Eqs. 5.19, 5.20, 5.21, and 5.22)
were solved using a standard first-order finite element scheme. The open-
source PDE solver FreeFEM [86] was used to implement the finite element
model, resulting in a linear system of equations. The obtained equations were
solved in parallel using efficient preconditioners and iterative solvers available
in the open-source high-performance computing (HPC) toolkit PETSc [89].
The HYPRE BoomerAMG [87] and FieldSplit preconditioners were applied
to the reaction-diffusion PDEs and the Stokes equations, respectively, and
the GMRES solver [88] was used to solve the linear systems. Moreover,
the computational mesh was partitioned and distributed among available
computing resources using the HPDDM preconditioner [90]. Additionally, a
Level-Set-based approach was employed to track the change of morphology of
the degrading part, on the solution of which appropriate boundary conditions
for the PDEs were applied via the penalization method. The details of this
implementation are presented in our published works [131,151] and Chapters
3 and 7. Since Eq. 5.22 is a non-linear PDE, a Picard-relaxation approach
was followed to linearize this equation. The linking module (module 3) was
implemented as a FreeFEM plugin in C++.



METHODS 81

5.2.3 Simulation setup

Since the objective of the current study is to investigate local pH changes in
regions close to the degrading metal, the computational domain was selected
to include only a small portion of the chamber used in the experimental setup
(Fig. 5.1). The domain was a 3 × 3 × 3mm cube on top of the degrading
object, and the degrading block, represented as a disc with a diameter of
2mm and height of 0.3mm, was attached to the outside of the cube. The cube
size was selected such that it represents the sample-centered area used in the
experimental setup for line scan mapping. This setup is depicted in Fig. 5.3.
The computational mesh was generated using a set of first-order tetrahedral
elements, which was adaptively refined on the interface of the degrading
sample to increase the numerical accuracy of the employed interface capturing
technique. The Netgen mesh engine [91] in the SALOME platform [92] was
used to generate the mesh. The generated mesh contained 290,997 elements
with 51,757 degrees of freedom (DOF) for each equation.

The boundary conditions include an inlet on the left of the box, an outlet on the
right, a wall on the bottom except where the degrading part exists, and a free
slip on top. The inlet velocity was selected to be a linear profile ranging from
zero on the bottom to 0.01mm.s−1 on the top, a value coming from solving the
Navier-Stokes equations in the full chamber model (described in Chapter 4).

The values of model parameters were set based on our previous work [131]
(Chapter 3), but the following assumptions were also applied for selecting the
proper parameters of the coupled computational model:

1. Diffusion rate of hydroxide ions is 5-10 times more than the rate of Mg
ions, so DOH was set as DOH = 7.5DMg [146].

2. The hydroxyapatite-like precipitation does not form immediately at the
beginning and emerges later [146, 150]. In the current model, it is set to
start forming after the first hour of simulation time.

3. The magnesium hydroxide layer is ticker at 37◦C [150], so the film elimi-
nation parameter (k2) was set to be 50 times lower in this temperature in
comparison to the room temperate.

The density of the electrolyte was selected to be 1.085 × 10−3g.mm−3, and the
dynamic viscosity was set to 1.28 × 10−3g.mm−1s−1. The simulations were
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Figure 5.3: Computational model setup for local pH simulations: a) the
geometry of the desired domain, being a small portion of the full chamber
on top of the disc-like sample, b) the dimensions of the domain and
applied boundary conditions for the fluid flow simulation, c) the generated
computationalmesh, depicting the flow region in green and the biodegradable
sample in yellow, d) a cross-section of the mesh showing the refined meshing
on the interface of the degradable metal.

carried out on the Snellius supercomputer using 100 CPU cores on a thin node
with 256 GB of total memory.
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5.3 Results

5.3.1 Thermodynamics-based simulation

Inputting the experimental conditions in the Hydra-Medusa software, includ-
ing the initial composition of the electrolyte, temperature and the contributing
chemical components, results in a big and complex output containing all the
possible occurring chemical reactions. From this output, relevant reactions for
the current biodegradation systemswere filtered out, and the filtered reactions
were converted to desired concentration units. Fig. 5.4 depicts the output of
this process separately for simulations performed at 25◦C (RT) and 37◦C,
showing how the concentration of relevant components varies with changing
the environment pH. The solubility products of these simulations were taken
from Table 5.3, and equilibrium concentrations were set to be equal to the
electrolyte composition, listed in Table 5.2. These results (module 2)were used
by the linking module (module 3) to provide equilibrium information for the
mechanistic model (module 1).

Figure 5.4: Selected relevant components from the Hydra-Medusa software
output for given experimental conditions, showing how the concentration of
various components vary with changing local pH

5.3.2 Biodegradation simulations

In the current study, the local pH profiles, i.e., the pattern of pH changes
in the region close to the degradation surface, were used to validate the
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developed coupled computational model. The comparison between compu-
tational predictions and experimental results was made in 3 different ways:
1) qualitative comparison of pH distribution above the degradable metal in a
sample-centered squarewith an edge size of 3mm, 2) comparing the horizontal
pH profiles, where the pH was measured over a line parallel to the sample,
and 3) comparing vertical pH profiles, in which the pH was measured over a
distance from the surface of the sample to the bulk of the electrolyte.

Fig. 5.5 shows a visualization of the local pH profiles from the top and
side views for simulations performed at 25◦C (RT) and 37◦C after 12 hours.
These patterns are comparable with the local pH distribution measured in the
experiments, as shown in Fig. 5.6. In these figures, the flow is from left to right,
advecting the released ions in the flow direction.

Quantitative profiles provide a more accurate comparison between the com-
putational predictions and experimentally-obtained values. The horizontal
profiles, also called line scans, are depicted in Fig. 5.8, in which the local pH
changes are plotted over a horizontal line located 50µm above the surface of
the sample. The profiles are shown separately for the experiments performed
withCP andUHPMg and the computationalmodel. The resultswere recorded
after 3, 6, and 12 hours of immersion.

Similarly, Fig. 5.8 shows the vertical pH profile after 12 hours of degradation,
which was the final time of the simulation. The local pH is measured over a
distance of 0.5mm vertically, starting from 50µm above the sample.

5.4 Discussion

In this study, an interface-coupled multiphysics biodegradation model was
developed in order to predict the corrosion behavior in simulated body fluids
in the presence of various chemical components. The quantity to compare
with the experimental results was the predicted local pH, which reflects
the capabilities of the model to capture the complex chemistry occurring
near the biodegradation interface. For this end, our previous biodegrada-
tion model [131] (Chapter 3) was extended and coupled with a fluid flow
model capturing the hydrodynamics condition. Then, the coupled model was
linked to a thermodynamics-based code for computing the concentration of
involved chemical components, the results of which were provided back to the



DISCUSSION 85

Figure 5.5: Simulation results for local pHpredictions, depicting the local pH in
a) top view from a horizontal cross-section, b) side view from a vertical cross-
section, and c) perspective view with both the top and side cross sections, for
simulations performed at 25◦C (RT) and 37◦C.

biodegradation model via a linking module to compute the concentration of
the precipitation layer.

It has been shown that the local pH changes can be a reflective characteristic
of the biodegradation process in SBF-like solutions [146, 150]. Consequently,
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Figure 5.6: Experimental results for the distribution of local pH above the
surface of the sample, measured after 12 hours of degradation.

the vertical and horizontal local pH profiles can be reasonably used for
the validation of the computational models of the biodegradation process.
Capturing the complex interaction of various chemical components on the
biodegradation interface in a mechanistic model can be a big challenge,
especially for 3D cases with any arbitrary shape. That’s why several modules
were coupled in the current study to deliver such a model.

In this work, while the experiments were performed using CP and UHP Mg,
the computational model does not take into account the difference in the
elemental composition of these materials. Instead, the biodegradation model
was developed by ignoring the effect of alloying elements and impurities.
There are noticeable quantitative and qualitative variations in the obtained
experimental results, such as different behavior of CP and UHP for horizontal
pH profiles in line scan mappings (Fig. 5.7) and distribution of local pH
above the sample (Fig. 5.6). However, these differences are still roughly the
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Figure 5.7: Comparing computational predictions and experimentally-
obtained horizontal line scans of local pH changes, measured 50µm above the
surface of the sample after 3, 6, and 12 hours of degradation.

Figure 5.8: Comparing computational and experimental results for the local
pH profiles, measured over a vertical line above the center of the sample after
12 hours of immersion.

same behavior and quantity, which support the performed assumption and
simplification of ignoring the dissimilarity of elemental composition. As a
consequence, the computational results, including the pH profiles (Fig. 5.8),
line scans (Fig. 5.7), and local pH distributions (Fig. 5.5), lies between the
values and profiles obtained for CP and UHP Mg.

Recent studies on measuring local pH changes on the biodegradation surface
of Mg alloys show that the local values are different from the pH within the
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bulk of the electrolyte [146]. For example, in the tests performed by Mareci
et al. [152], such observation was made when the vertical pH profiles were
compared to the global pH values. Similar behavior was observed in theWang
et al. work [150]. Reproducing this behavior is problematic in mechanistic
computational models due to the uniformity of the diffusion of hydroxide
ions that change the pH. In other words, a uniform diffusion with a relatively
high diffusion coefficient leads to the same local and global pH values. In the
model presented here however, spatially dependent behavior was successfully
reproduced in silico by letting a narrow film form at the beginning of the
mechanistic biodegradation simulation and then computing the interaction
of various ions in this narrow region by using the coupled thermodynamics-
based code. Comparing the results of the predicted vertical pH profiles with
the experimentally obtained curves (Fig. 5.8) shows good agreement, implying
that the employed approach was able to mimic the complex chemistry on
the biodegradation surface from a quantitative point of view. Yet, a different
behavior can be observed further away from the surface where the local pH
approaches the global value. In experimental results, this happens at a shorter
distance from the implant compared to the computational predictions (Fig. 5.8)
where yielding to the global pH seems to occur at longer distances from the
biodegradation surface. This behavior can be confirmed by the visualization
of computed pH (Fig. 5.5) and is due to the uniform diffusion mechanism of
ions in the computational model, causing a gradient in the bulk part outside
of the narrow formed region.

The results of horizontal line scan mapping on the surface of the sample and
local pH distribution (Figs. 5.7 and 5.6) show that the pH starts to change in
regions above the sample. In the computational predictions depicted in Fig.
5.7, the change of pH starts sharply when the line scan reaches the sample, a
behavior rooted in the presence of the fluid flow model, which prevents ions
from being diffused to the left, as shown in Fig. 5.5. Similarly, the advected
ions in the direction of fluid flow (to the right in Fig. 5.5) prevent the pH
value from decreasing dramatically where the sample ends in the line scan
mapping. Moreover, the line scans show different behavior for experiments
performed at room temperature compared to 37◦C, especially for CP Mg
samples. At RT, the horizontal pH profile tends to descend slightly over time,
meaning that the profile measured after 3 hours of degradation is placed
above the one measured after 12 hours. This behavior occurs oppositely for
the measurement done at 37◦C. The computational predictions of line scan
profiles follow the same pattern,which could be due to how the coupledmodel
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computed the change of concentration of various chemical components and
their contribution to the change of local pH.

Regarding the horizontal line scan results, a slight increase in the local pH
values can be observed in the computational results in the region where
the sample ends (Fig. 5.7). Although a similar behavior can be seen in the
experimentally-obtained line scans (Fig. 5.6), it should be further investigated
from the numerical implementation perspective to make sure that numerical
artifacts do not contribute to it. One possible approach that may help remove
numerical artifacts in this regard is to make the type of employed boundary
conditions consistent in the employed fluid flow model. In the current model,
a velocity condition was used for the inlet while the outlet condition was fixed
pressure. Using the same type of boundary conditions for both inlet and outlet,
meaning either assigning pressure conditions to the inlet or velocity to the
outlet, can be considered in further extensions of themodel to check their effect
on the obtained local pH results.

As mentioned before, various chemical components of the electrolyte con-
tribute differently to the change of pH, among which Ca2+ seems to have
the most intricate effect [7]. It has been reported that in the absence of Ca2+

ions, the surface pH tends to be between 10 and 11, the typical range for pH
value in biodegradation tests performed in saline solution [146]. This value
is in line with the computational predictions of our previous study [131]
(Chapter 3). However, in presence of Ca2+ cations, local pH between 7.8 and
8.5 and significantly lower degradation rates are reported [36,153–155]. These
findings are in line with the predictions made by the model presented in this
chapter, obtained by coupling a mechanistic modeling approach and chemical
equilibrium modeling, the latter of which considers the presence of Ca2+.

The simplification assumptionsmade for developing the computationalmodel,
including the correlation between the diffusion rates of hydroxide andMg ions,
higher film elimination rate at room temperature, and the time at which the
precipitation layer starts to form, can be seen as the limitations of the developed
model. Regarding the latter mentioned assumption, the time was hard-coded
into the model due to limitations of implementing the actual mechanisms
of inducing the precipitation in the model. This can be improved in further
developments of the model by incorporating a kinetics-based description
of the precipitation layer formation, similar to the formation of magnesium
hydroxide layer defined using a PDE (Eq. 5.20). This improvement will
remove the necessity of the assumption made for linking the results obtained
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in equilibrium using the thermodynamics-based code (module 2) with the
kinetics-based model (module 1), which was elaborated in section 5.2.2.

Knowing the mechanism of ionic activities at regions close to the biodegra-
dation interface is crucial for comprehending the chemical process of Mg in
complex solutions such as simulated physiological conditions. The developed
computational model can be seen as an a facilitating tool for moving towards
understanding thesemechanisms bymaking it possible to virtually investigate
the effective parameters such as the flow rate and environment composition.
This knowledge will be helpful for biomedical applications where new coating
and stabilization systems can be developed for different implantation environ-
ments.

5.5 Conclusion

In this chapter, the model developed in Chapter 3 was extended and combined
with the fluid flow model developed in Chapter 4 to deliver a computational
model of the biodegradation process in hydrodynamics conditions capable
of predicting local pH changes close to the corrosion surface. In order to
simulate local pH evolution in simulated body fluids, the precipitation of
the hydroxyapatite-like protective model should be modeled. This was done
by coupling the mentioned model with a thermodynamics-based code to
compute the concentration of active chemical components contributing to the
formation of the protective layer on the degradation interface. Results obtained
from the coupledmodel showagood agreementwith experimentally-obtained
local pH measurements, demonstrating the effectiveness of the developed
simulation workflow.
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This chapter focuses on developing computational models of the curvature-
driven neotissue growth process, which can be coupled with the biodegra-
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dation model to have a hybrid model of biodegradation of biomaterials
combined with the growth of neotissue inside/around them. To this end, two
curvature-driven models were developed using the phase-field and level-set
interface tracking techniques and compared to evaluate their similarities and
differences.

6.1 Introduction

Neotissue is defined as the cells and the extracellular matrix they produce.
Coupling biodegradation and neotissue growth models can be useful for
tuning the biodegradation rate to the rate of regeneration of new tissue, an
example of which can be found in Chapter 10. Similar to the biodegradation
model, the modeling of the tissue formation process can take advantage
of the interface tracking techniques in which the neotissue surface evolves
over time, representing the growth process. Neotissue growth in porous
scaffolds has been shown to be depending on the local mean curvature of the
interface between the neotissue and the surrounding void space [156–158].
The commonly-used interface tracking techniques provide an efficient way
to formulate curvature-driven problems. Although these models do not have
immediate clinical applications, they can be quite useful for in vitro tissue
engineering experiments where the proliferation behavior and growth of
various cell types need to be improved.

Numerical tracking of interface movement has been widely used for certain
modeling applications in science and engineering for multi-material and
multiphase problems such as solidification, melting, corrosion, and grain
growth to name a few [159]. The most popular Eulerian methodologies in this
regard are the level-set [80,160,161], volume-of-fluid (VOF) [162], and phase-
field methods [163,164].

The basic idea of the level-set method is to employ the Hamilton-Jacobi
(HJ) algorithm for solving the general interface advection equation. The
independent variable in the level-set method is a signed distance function
called the level-set function ψ [80]. The level-set function should be re-
initialized as the interface evolves, which is the reason behind an inadvertent
mass loss, one of the most prominent shortcomings of the level-set method.
Although the VOF method is not vulnerable to the mass loss issue, calculating



DERIVING THE MODEL 93

the interface curvature is difficult from the volume fraction [159], making it
less efficient to be used for curvature-driven problems.

To overcome these challenges, diffuse interface methods [165] have gained
attention in recent decades, among which the phase-field method has shown
potential for solving complexmoving interface problems. Contrary to the level-
set method, the interface is considered a smooth transition between phases,
which usually has a finite width in diffuse interface methods. In the phase-
field method, a non-conserved (or conserved) order parameter ϕ is defined
such that ϕ = 1 in one bulk phase and ϕ = −1 in the other. Then, the smooth
transition between these two phases (−1 < ϕ < 1) is marked as the interface.
One of the advantages of the phase-field method is that the derived equation
can be solved over the entire desired domain without considering the location
of the interface.Moreover, although the curvature and interface normal vectors
are not formulated explicitly, the phase-field method is suitable for problems
inwhich the evolution of the interface depends on the local curvature or a field
acting normal to the interface [159]. The phase-field method keeps a constant
thickness for the smooth transition region normal to the interface, and as a
result, no re-initialization as for the level-set method is needed.

The phase-field method has been already proved to be an efficient interface
tracking technique for various problems in micro/meso scales such as solidi-
fication [163, 166], microstructural evolution [167], grain growth [168], crack
propagation [169,170], electromigration [171] and extractivemetallurgy [164].
However, it has been used recently for dealing with problems described in
macro level, such as corrosion [172–178] and cell/tissue growth [179,180]. This
chapter discusses the development of a phase-field model of the tissue growth
process to describe the cell growth behavior on 3D surfaces as a moving-
boundary problem. Additionally, a similar model was developed based on
the level-set method to compare the performance and results of both interface
tracking methods. Both models were implemented using the finite element
method.

6.2 Deriving the model

This section demonstrates the derivation of the phase-field and level-set
equations from the general advection equation, showing the similarities and
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differences of these interface tracking techniques for moving boundary prob-
lems.

6.2.1 General equation of interface motion

The general interface advection equation for an Eulerian description of inter-
face movement can be written as [159]:

∂ϕ

∂t
+ u · ∇ϕ = 0, (6.1)

where ϕ is the phase-field and u is the interface velocity. The velocity u can be
divided into normal (un) and external velocity components (ue):

u = unn + ue, (6.2)

in which n = ∇ϕ/|∇ϕ| is the unit vector normal to the interface. So, Eq. 6.1
can be rewritten as:

∂ϕ

∂t
+ un|∇ϕ|+ ue · ∇ϕ = 0. (6.3)

The normal velocity can be decomposed into more components to take
into account the effect of interface curvature (κ) such that the terms are
independent and proportional to the curvature, respectively:

un = a − bκ, (6.4)

where the coefficients a and b have units of m/s and m2/s. Substituting this
into Eq. 6.2 yields the final form of the interface motion equation:

∂ϕ

∂t
+ a|∇ϕ|+ ue · ∇ϕ = bκ|∇ϕ|. (6.5)

6.2.2 Phase-field formulation

To further proceedwith the phase-field formulation, a proper kernel should be
selected for the phase-field variable, which can be done based on Beckermann
et al. [181]:

ϕ = − tanh
(

n√
2w

)
, (6.6)
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in which w is the thickness of the transition profile (ϕ varies from−0.9 to+0.9
in a narrow layer with the width of 3

√
2w), and n is the coordinate normal

to the interface. The curvature can be written as a function of the phase-field
variable:

κ = ∇ · n = ∇ ·
(

∇ϕ

|∇ϕ|

)
=

1
|∇ϕ|

[
∇2ϕ − (∇ϕ · ∇)|∇ϕ|

|∇ϕ|

]
. (6.7)

Using the defined kernel, the terms in Eq. 6.7 can be expressed as:

|∇ϕ| = −∂ϕ

∂n
=

1 − ϕ2
√

2w
and (∇ϕ · ∇)|∇ϕ|

|∇ϕ| =
∂2ϕ

∂n2 = −
ϕ
(
1 − ϕ2)
w2 . (6.8)

Substituting Eq. 6.8 into Eq. 6.7 yields to the following definition of interface
curvature:

κ =
1

|∇ϕ|

[
∇2ϕ +

ϕ
(
1 − ϕ2)
w2

]
, (6.9)

which subsequently changes Eq. 6.5 into:

∂ϕ

∂t
+ a|∇ϕ|+ ue · ∇ϕ = b

[
∇2ϕ +

ϕ
(
1 − ϕ2)
w2

]
. (6.10)

Eq. 6.10 is the derived form of the phase-field equation for tracking an
evolving interface, containing terms corresponding to normal interfacemotion,
advection by an external field, and curvature-drivenmovement. The term |∇ϕ|
in Eq. 6.10 can be replaced by its definition in Eq. 6.8 to form another version
of the equation:

∂ϕ

∂t
+ a

1 − ϕ2
√

2w
+ ue · ∇ϕ = b

[
∇2ϕ +

ϕ
(
1 − ϕ2)
w2

]
, (6.11)

which is an easier version to be implemented using numerical methods. The
unique term on the right-hand side of Eq. 6.11 is a characteristic of the phase-
field method.
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6.2.3 Level-set formulation

From the mathematical perspective, the level-set equation has a direct connec-
tion to the phase-field equation and can be derived by replacing the phase-field
variable with a sign distance function. To this end, Eq. 6.5 can be rewritten to
be a level-set equation:

∂ψ

∂t
+ a|∇ψ|+ ue · ∇ψ = bκ|∇ψ|, (6.12)

with ψ being a sign distance function that descibes the distance of each point
of the computational domain to the interface. This implies that the zero iso-
contour of the level-set function defines the interface.

6.3 Dimensionless forms for various cases

6.3.1 Stationary interface

A stationary interface, where there is no interface motion (a = 0 and ue =

0), is a primary problem in examining the formulation and select proper grid
spacing parameters. For a 1-D case, Eq. 6.11 can be simplified as:

∂ϕ

∂t
= b

(
∂2ϕ

∂x2 +
ϕ
(
1 − ϕ2)
w2

)
. (6.13)

To scale this equation, the following dimensionless variables can be defined:

x′ =
x
xc

and t′ =
t
tc

. (6.14)

So, Eq. 6.13 can be rewritten using these new variables:

1
tc

∂ϕ

∂t′
=

b
x2

c

∂2ϕ

∂x′2
+

b
w2 f (ϕ), (6.15)

with f (ϕ) being defined as:

f (ϕ) = ϕ
(

1 − ϕ2
)

. (6.16)
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Figure 6.1: Comparison of phase-field variable and level-set function on the
interface of a stationary interface with step function like initial condition [159]

Defining xc = w and tc = w2/b leads to the following dimensionless form of
Eq. 6.13:

∂ϕ

∂t′
=

∂2ϕ

∂x′2
+ ϕ

(
1 − ϕ2

)
. (6.17)

Numerical results for Eq. 6.17 is depicted in Fig. 6.1, and the phase-field profile
is compared with the level-set distance function profile. An appropriate value
for grid spacing and the layer width should be selected such that 0.25w <

∆x′ < 0.5w. Additionally, the selected value of w should satisfy w < R/4.2, in
which R is the local radius of curvature [159].

6.3.2 Evolution under constant normal speed

For a problem in which the interface moves with constant velocity exclusively,
Eq. 6.11 in 1-D can be simplified according to the condition of a = const., ue =
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0, and b = 0:
∂ϕ

∂t
+ a

1 − ϕ2
√

2w
= β

∂2ϕ

∂x
+ β

f (ϕ)
w2 , (6.18)

in which β is a numerical parameter for smoothing the interface and relaxation
behavior of the phase-field profile.

Defining dimensionless variables according to Eq. 6.14 yields to:

1
tc

∂ϕ

∂t′
+

a
w

1 − ϕ2
√

2
=

β

w2
∂2ϕ

∂x′2
+

β

w2 f (ϕ), (6.19)

which can be reordered to:

∂ϕ

∂t′
+

1 − ϕ2
√

2
= β′

(
∂2ϕ

∂x′2
+ f (ϕ)

)
, (6.20)

with β′ = β/aw. For a stable numerical implementation, ∆t′/∆x′ < 0.1 and
β′ < 1.2 should met roughly [159].

6.3.3 Curvature-driven interface evolution

A curvature-driven motion, which is desired for the current study, is straight-
forward to formulate using the phase-field method. A dimensionless form of
Eq. 6.11 can be derived using a similar method for the stationary interface for
a multidimensional case with un = −bκ, a = 0, and ue = 0:

∂ϕ

∂t′
= ∇′2ϕ + ϕ

(
1 − ϕ2

)
, (6.21)

in which t′ and ∇′ are defined similar to Eq. 6.14 as t′ = t/(w2/b) and ∇′ =
∇/w, respectively.

6.4 Adapting the formulation for curvature-driven
tissue growth

Due to intrinsic support of interface curvature in the phase-field and level-
set methods, an in silico model of curvature-based tissue growth can be
efficiently implemented using these principles. The growth-induced changes
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Figure 6.2: Schematic representation of the phase-field and level-set models for
tissue growth, in which the neotissue domain (Ωnt) is separated from the void
domain (Ωv) by an interface (Γ).

in the neotissue topology during the culture process can be seen as a moving
interface between two different domains [158]. In this study, one domain
represents the neotissue volume (Ωnt), and the other one is the void (Ωv),
which are separated by an interface (Γ) as can be seen in Fig. 6.2.

The interface Γ evolves over time to fill the void space, having a faster growth
in regions with higher curvature. Based on this definition, the phase-field
variable can be defined as follows to separate these domains:

ϕ = 1 in Ωnt
ϕ = −1 in Ωv
−1 < ϕ < 1 in Γ

(6.22)

Similarly, a level-set function can be defined such that it separates the neotissue
and void domains: 

ψ > 0 in Ωnt
ψ < 0 in Ωv
ψ = 0 in Γ

(6.23)
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In order to adapt Eq. 6.21 for the curvature-driven process of neotissue growth,
one can consider the following equation:

∂ϕ

∂t′
=
(
∇′2ϕ + ϕ

(
1 − ϕ2

))
.H
(
∇′2ϕ + ϕ

(
1 − ϕ2

)
> 0

)
, (6.24)

in which H denotes a Heaviside step function. Eq. 6.24 implies that the growth
is only allowed for regions with a positive curvature (right hand side of Eqs.
6.11 and 6.21).

Using the same approach, a similar level-set formulation can be obtained
based on Eq. 6.12 by omitting the normal velocity and curvature terms and
embedding the effect of the curvature in the velocity field. Doing this yields a
convection equation for the distance function:

∂ψ

∂t
+ u · ∇ψ = 0, (6.25)

in which the convection velocity field can be defined as:

u =

{
−κn if κ > 0
0 if κ ≤ 0

(6.26)

with κ being calculated similarly to Eq. 6.7 for a distance function ψ. This
implies that neotissue grows faster where the curvature is higher and does
not grow if the curvature is negative or equal to zero [156]. The negative sign
in Eq. 6.26 is due to our definition of ψ, where the normal nΓ points toward
neotissue, so growth has to be towards the opposite of the gradient of the level-
set function (∇ψ).

6.5 Numerical implementation

6.5.1 Phase-field model

The numerical solution of the phase-field equation requires dealing with the
nonlinearity of the equation. Additionally, in the case of the dimensional form
(Eq. 6.11), small coefficients of the state variable in the PDE lead to numerical
difficulties. As a result, numerical implementation of the phase-field equation,
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especially for the spectral methods and the finite element method, is not
straightforward and is an active field of research [182,183].

In the finite element method, the solution of a PDE is calculated based on a
sum of a set of certain basis functions, which are commonly piecewise linear,
quadratic or polynomial functions that are non-zero only on a small element.
For doing this, the PDE is first written in a weak formulation, and then the
weak form is projected on a discretized space (a set of elements) to be written
as the summation of the basis functions.

In this section, the numerical solution of the stationary form (Eq. 6.13) and
its corresponding considerations are elaborated as an example of employing
the finite element formulation for simulating the phase-field equation. So, by
assuming b = 1, the problem can be summarized as:

∂ϕ
∂t − ∆ϕ + 1

w2 f (ϕ) = 0, (x, t) ∈ Ω × (0, T]
∂ϕ
∂n

∣∣∣
∂Ω

= 0

ϕ|t=0 = ϕ0

(6.27)

which demonstrates the PDE, the boundary condition, and the initial condition
of the phase-field variablewhereΩ is the domain of interest, ∂Ω is its boundary,
and T is the final time. Deriving the weak formulation of Eq. 6.27 is relatively
straightforward as it can be seen as a time-dependent diffusion-reaction
PDE, but the difficulty arises in choosing the numerical stability scheme for
discretizing the temporal derivative and dealing with the nonlinearity of f (ϕ)
when normally the 1

w2 coefficient is a small number.

Incorporating a first-order semi-explicit scheme for Eq. 6.27 yields [183]:

1
∆t

(
ϕn+1 − ϕn, v

)
+
(
∇ϕn+1,∇v

)
+

1
w2 ( f (ϕn) , v) = 0, ∀v ∈ H1(Ω),

(6.28)
where ∆t is the time step, (·, ·) denotes the inner product, and H1(Ω) is the
Sobolev space of the domain Ω, which is a space of functionswhose derivatives
are square-integrable functions in Ω. The main issue with this discretization
scheme is its restrictive time step condition which should satisfy [182]:

∆t <
2w2

L
, (6.29)
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where L is a limit related to the non-linear part:

max
∣∣ f ′(ϕ)∣∣ ≤ L. (6.30)

Obviously, since ∆t ∼ w2, a very small time step is required to achieve stability
in this scheme.

Taking advantage of a fully implicit scheme improves the stability because it
will be unconditionally stable, but it results in an equation that is difficult to
implement as it needs to solve a fixed point problem at each time step. For
example, amodified second-order implicit Crank-Nicolson scheme for Eq. 6.27
can be written as [183,184]:(

ϕn+1 − ϕn

∆t
, v
)
+

(
∇ϕn+1 + ϕn

2
,∇v

)
+

1
w2

(
f̃
(

ϕn+1, ϕn
)

, v
)
= 0, ∀v ∈ H1,

(6.31)
where:

f̃ (u, v) =

{
F(u)−F(v)

u−v if u 6= v
f (u) if u = v

(6.32)

in which F is the potential term ( f (ϕ) = F′(ϕ)).

An alternative can be deriving a stabilized semi-implicit scheme by adding a
stabilization term to Eq. 6.28. The first-order version of such a scheme can be
written as:(

1
∆t

+
S

w2

)(
ϕn+1 − ϕn, v

)
+
(
∇ϕn+1,∇v

)
+

1
w2 ( f (ϕn) , v) = 0, ∀v ∈ H1(Ω),

(6.33)
which is unconditionally stable for any S ≥ L

2 [182].

6.5.2 Level-set model

The derived level-set PDE (Eq. 6.25) is an advection equation, which can
be implemented numerically using the finite element method, in which the
temporal term is discretized by the backward Euler method, and the advection
term can be treated with the method of characteristics.

A key parameter of the developed model is the local growth velocity of the
neotissue. In the current implementation, the velocity was dependent on the
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interface’s local mean curvature as shown in [157, 185]. In order to match the
growth velocity to experimental data, a coefficient can be added to the derived
interface convection velocity (Eq. 6.26):

u =

{
−κAn if κ > 0
0 if κ ≤ 0

(6.34)

The model calibration performed by Guyot et al. [185] was for a culture
condition on titanium scaffolds in a bioreactor setting, estimating parameter
A to be 4 × 10−14m2/s, obtained using trial and error from the experimental
data on low flow rate tests [186]. More dedicated calibration experiments
were performed on prismatic structures, demonstrating a considerably slower
growth on the CaP scaffolds, nevertheless confirming the curvature-based
nature of tissue growth [187].

In practical implementations, the distance function is not differentiable at
every location of the domain due to discontinuities in the gradients, so one
can consider taking advantage of artificial diffusion terms to overcome this
issue, leading to the following equations for the normal vector and curvature
calculation:

n =
∇φ

|∇φ| + ε∆n (6.35)

κ = ∇ · n + ε∆κ, (6.36)

in which ε denotes the numerical diffusion coefficient.

6.6 Simulation setup

Numerical simulations of neotissue formation on various shapes (scaffolds)
were carried out using the developed phase-field and level-set models to
compare their performance. In 2D, two shapes were used, a square and a semi-
circle (Fig. 6.3), which were simulated using both phase-field and level-set
models. The qualitative comparison of the two developed models were done
using this 2D setup, so for 3D cases, the models were simulated on vastly
different geometries for just checking the performance of the interface tracking
techniques on 3D scaffolds. In 3D, both models were evaluated on a cube,
but the level-set model was also used to simulate the cell growth behavior on
scaffolds with triply periodic minimal surface (TPMS) shapes.
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Figure 6.3: Schematic representation of the simulation domains

The initial configuration of the phase-field variable and level-set distance
function corresponds to a homogenous single cell layer over the scaffold struts
with a thickness equal to 10µm in a dimensional setup [188]. This is depicted
as the green layer in Fig. 6.3. For the 3D level-set model, neotissue growth was
simulated for a variety of TPMS family and compared in a qualitative manner.
A full quantitative prediction is not possible due to the absence of relevant
validation experiments, which explains why comparisons between geometries
are made over non-dimensional time.

The derived weak forms were implemented using FreeFEM open-source
PDE solver [86]. An Eulerian computational mesh for each simulation was
constructed by generating tetrahedral elements using the internal mesh gen-
erator of FreeFEM, called BAMG. To decrease run time and increase the
performance of the simulation, the mesh was partitioned using METIS graph
partitioner [127] and HPDDM preconditioner [90], available in FreeFEM and
the PETSc toolkit [89]. Moreover, the efficiency was boosted by using the
HYPRE BoomerAMGpreconditioner [87] and the GMRES iterative solver [88]
of the PETSc toolkit.

6.7 Results and discussion

In the current study, various 2D and 3D cases for the simulation of curvature-
based neotissue formation were prepared and separately simulated using the
phase-field and level-set models. The cases were a square and a semi-circle for
2D simulations, mimicking the situation in which cells were homogeneously
seeded onto the scaffold to initiate the production of extracellular matrix.
Similarly, a 3D cube was considered for evaluating the performance of the
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Figure 6.4: Simulation result of the phase-field (A) and level-set (B) models
for neotissue growth in the square domain. The light gray region shows the +1
part of the phase-field variable and the positive part of the distance function
for the phase-field (A) and level-set (B) models, respectively. The evolution
occurs from left to right over non-dimensionalized time.

implementation of both models in 3D. Additionally, the level-set model was
used to simulate cell proliferation on TMPS scaffolds with quantitative mea-
surements being carried out for the percentage and filling rate of generation of
neotissue.

The results of neotissue growth model simulations can be visualized by
depicting the+1 part of the phase-field variable (Eq. 6.22) and the positive part
of the level-set function (Eq. 6.23). Fig. 6.4 demonstrates such a visualization
for the phase-field and level-set simulations performed on the square domain.
Cells were seeded on the perimeter of the square, and the formation of
neotissue was modeled using the evolution of the phase-field variable and
level-set function. The light gray region in these figures shows the +1 part of
the phase-field variable and the positive part of the level-set function.

As shown in Fig. 6.4, a qualitative comparison of the evolution of the formed
tissue interface between the phase-field and level-set models indicates that
they capture the curvature-driven growth similarly. It seems that the level-set
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Figure 6.5: Simulation result of the phase-field (A) and the level-set (B)models
for neotissue growth in the semi-circle domain. The evolution occurs from left
to right over non-dimensionalized time.

model resulted in sharper interfaces, in which the surfaces without curvature
do not move at all. But, in the phase-field predictions, the surfaces not having
any curvature slightly move. This can be seen by comparing the growth
pattern on the middle part of the top edge of the square, where it starts to
grow only in the fourth column in Fig. 6.4 for the level-set results, while a
minor move can be seen in the phase-field predictions. This slightly different
behavior can be related to the implementation details, such as the lack of a
proper Heaviside function in FreeFEM that the phase-field model depends
on. Another possible reason for this difference can be the visualization aspect
since the transition region of the phase-field variable representing the surface
is thicker in the phase-field model in comparison to the zero iso-contour of
the level-set function. As a result, the evolution can be artificially plotted in
the visualization software, which was ParaView in this case. This effect can be
investigated further by refining the mesh to minimize artificial evolution.

A similar visualization is depicted in Fig. 6.5 for the neotissue formation
on the semi-circle domain. Results show that the phase-field and level-set
models have good agreement on the way they treat the curvature-based tissue
growth. As seen in the figure, both models show identical predictions on the
surface with curvature (the curvy edge of the semi-circle). However, the small
difference observed for the square case can also be seen here on the top surface,
where the neotissue grows slightly faster in the phase-field model.

Fig. 6.6 shows the evolution of the phase-field variable corresponding to
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Figure 6.6: Visualization of the evolution of phase-field variable in the semi-
circle domain. The evolution is depicted over time in an arbitrary unit,
occurring from top to bottom and from left to right in each row. The red, blue,
and white show the +1 region, -1 region, and the transient phase representing
the interface, respectively.

the results depicted in Fig. 6.5-A, demonstrating how the diffuse interface
model works. In this figure, the concept of the diffusive interface can be
observed, where a narrow region between the two phases (the neotissue and
the void space in this case) is formed and moves over time. This visualization
demonstrates the internal mechanism of the phase-field model, in which the
narrow region is kept at a fixed length (defined by the kernel in Eq. 6.6 for
a length of 3

√
2w) and gets advected over time by the phase-field equation

(Eq. 6.11). In contrast, in the level-set formalism, the interface is not tracked as
a fixed length region, and instead, the zero iso-contour of a signed distance
function is the interface between the phases. The signed distance function
maps each node of the whole space (the desired computational domain)
into the distance to the interface, and as a result, the change in the function
determines the movement of the interface.

Similar results are obtained in 3D, where the cells are seeded on the circum-
stance of a cuboid. Fig. 6.7 shows the simulation results of this 3D case, inwhich
the evolution of the phase-field variable is converted to a bulk of the formed
neotissue. As can be seen in this figure, the phase-field model performs well
in 3D, showing a similar growth behavior to the 2D model. The mesh in the
3D case is relatively coarse, but the captured behavior of tissue growth by the
phase-field model seems to be more acceptable than in the 2D case. This claim
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Figure 6.7: Simulation result of the phase-field model for neotissue growth
in a 3D cube domain, in which the +1 regions of the phase-field variable are
visualized to show the formation of neotissue over non-dimensionalized time.

can be observed on the top and bottom surfaces of the cube,where the interface
does not move until a curvature is created in those regions, a behavior that was
captured better by the level-set model in the 2D cases.

Similarly, Fig. 6.8 shows the evolution of neotissue formation in a 3D level-
set simulation, in which the results are similar to the ones obtained using the
phase-field model (Fig. 6.7). Generally speaking, the level-set model requires
finer mesh in 3D in order to capture the interface movement accurately, which
is the reason behind having a smoother interface in Fig. 6.8 in comparison
to Fig. 6.7. However, a qualitative comparison shows that both models act
equivalently for capturing the curvature-dependent growth in 3D.

Fig. 6.9 depicts various simulation results of the netissue formation in gyroid-
TPMS scaffolds, demonstrating an example of the final application of these
models in action. The reason for choosing gyroid-TPMS scaffolds is their
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Figure 6.8: Simulation result of the level-set model for neotissue growth in
a 3D cube domain, in which the positive regions of the level-set variable are
visualized to show the formation of neotissue over non-dimensionalized time.

promising performance for neotissue formation due to their favourable lo-
cal curvature. Various geometries for investigating the pore size and wall
thickness were evaluated in order to obtain the combination leading to
optimal neotissue growth. Pore size was varied between 700µm and 1.3mm,
and wall thickness was varied from 200µm to 800µm, which are ranges that
take into account restrictions of the manufacturing process in terms of the
smallest feature dimensions. Balancing the need for swift neotissue ingrowth
(Fig. 6.9-B, relevant for short-term implant stability) with the volume of
neotissue formed (Fig. 6.9-A, relevant for long-term dental implant stability),
the combination of 700µm pore size and 200µm wall thickness (Fig. 6.9-C)
seemed to be the most optimal structure.

The study shown as an example above [187] demonstrates the relevance
of the developed tissue growth models in tissue engineering applications.
In silico modeling is widely used for tissue engineering as it offers a more
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Figure 6.9: Neotissue formation quantified in absolute volume (A) and filling
percentage (B) for cylindrical test samples (diameter 6mm, height 6mm). The
different combinations are indicated in the legend by 2 numbers, the first of
which refers to pore size (7: 700 µm, 10: 1 mm, 13: 1.3 mm), and the second
refers to wall thickness (2: 200 µm; 5: 500 µm; 8: 800 µm;). (C) Side view and
cross-sectional view of neotissue growth in gyroid (7-2) scaffold for different
levels of filling, starting with the initial condition at t=0 (top). Scale bars: 6
mm.

exhaustive approach compared to a “trial-and-error” method and reduces the
number of experimental tests. Optimization of scaffold structures for bone
tissue engineering purposes is often corroborated by comparison with in vitro
tests [189, 190] and only a small number of in vivo studies have been reported
in this regard [191–193]. However, in these in vivo studies, optimization was
first performed on mechanical properties rather than the structural elements
such as local curvature underlying the in silico model presented in this
chapter. Having such a model developed makes it easier to investigate the
structural elements of scaffolds for improved regenerative performance. Using
the modeling results makes it possible to limit the number of conditions tested
in vivo.
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6.8 Challenges in coupling tissue growth andbiodegra-
dation models

Coupling our biodegradation model [131] (Chapter 3) with the developed
tissue growth model in this chapter could have been a milestone of the
current PhD thesis, where the neotissue is produced by the cells seeded
on a biodegradable scaffold. Another interesting example could be using
biodegradable porous implants in bone healing applications (similar to the
model presented in Chapter 10), in which the implant degrades while new
bone forms and replaces the porous implant. However, despite the effort put
on tissue growth modeling, such coupling can be complicated to accomplish
in a mechanistic manner due to specific technical difficulties. In this section,
these challenges are briefly reviewed.

Both the biodegradation and the tissue growth models are free boundary
problems, in which an interface capturing method (phase-field or level-set
for the tissue growth and level-set for the biodegradation) was used to track
the movement of a boundary. The moving boundary in the biodegradation
model is the corrosion front, the interface between the metallic part and the
surrounding environment, which can be a static electrolyte in immersion tests
or circulated solutions in a perfusion setup. Various mass transfer boundary
conditions are defined on this boundary [131], meaning that the boundary
conditions are not fixed and move with the evolution of the surface. In other
words, the boundary conditions of a set of equations are defined on the
solution of one of the governing equations of the model (level-set equation),
which is one of the challenging parts of the implementation of that model.
On the other hand, the moving boundary in the tissue growth model is the
surface of the formed neotissue, the interface between the neotissue and the
surrounding environment in the bioreactor, which is considered as the void
space since there is no tissue in that region. Coupling these two models
requires defining the moving boundary problem of neotissue growth on the
solution of the interface capturing of the biodegradation model. Regardless of
using the same technique for both problems or using separatemethods for each
problem, such coupling can be quite challenging from the implementation
perspective.

The second problem is related to the behavior of neotissue formation after
coupling the models when the biodegradable material shrinks and a new void
space appears at the back of the formed neotissue. Fig. 6.10 shows this problem
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schematically. Fig. 6.10-A shows an initial state of the coupled system, inwhich
a level-set formulation is used to divide the domain into the scaffold and
medium parts (the ψ function on the top) while a phase-field function divides
the domain into tissue and void space (the ϕ function on the bottom). The
positive side of the level-set function (ψ > 0) is not defined in the domain of the
tissue growth model (ϕ = NaN). After several time steps, the system enters a
state similar to the one depicted in Fig. 6.10-B, where the scaffold has shrunk
to the left due to biodegradation, and the tissue has grown to the right. As can
be seen in the figure, these movements cause a new area to appear between
the scaffold and neotissue, in which the level-set function is negative (ψ < 0)
and the phase-field variable is one (ϕ = +1). Since this area is part of the void
space for the phase-field model, the tissue should grow in this direction as
well, but this behavior does not have a clear definition from an implementation
point of view. From a common-sense perspective, one might expect part of the
tissue to still be attached to the surface of the scaffold and move with it to the
left, a behavior that is quite challenging to consider in the formulation of the
two coupled interface moving problems. Moreover, it is not fully clear how
such behavior happens in experiments, so dedicated experiments are required
to observe the actual reaction of the growing neotissue to the shrinkage of
the scaffold. This behavior may be sensitive to experimental conditions such
as static or perfusion setup of the medium, making the problem even more
complex from the mathematical perspective.

A potential solution for the mentioned coupling challenge would be to take
advantage of the multi-phase field method for describing both the biodegra-
dation and tissue growth processes using a single model. Putting this solution
into practice requires a tremendous amount of work to re-implement the
biodegradation model using the phase-field method, which needs to change
part of the fundamental equations in the mathematical model elaborated in
Chapter 3, but it removes the necessity of coupling two models and dealing
with the emerging difficulties in the implementation. Such an idea has already
been implemented in studies like Moure et al. work [194, 195], in which they
used a multi-phase field model to investigate individual and collective cell
migration and crawling.

The next challenge would be the validation of the coupled model. In addition
to the necessity mentioned above for performing dedicated experiments to
observe the actual behavior of tissue growth on biodegradable scaffolds,
such experiments are crucial to validate the model from a quantitative point
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Figure 6.10: Schematic presentation of coupled neotissue growth and
biodegradationmodels (implemented using phase-field and level-setmethods
respectively): A) initial state of the system with level-set (ψ) and phase-
field (ϕ) variables dividing the domain for the biodegradation and neotissue
growthmodels, respectively, B) the state of the system after some time steps, in
which the biodegradation shrinks the scaffold to the left, the neotissue grows
to the right, and a new area emerges between the scaffold and the neotissue.

of view. Doing these experimental studies seems to be challenging and
resource-demanding because both the qualitative behavior and quantitative
measurements should be recorded. The qualitative behavior is crucial to
observe how tissue growth reacts to the shrinkage of the material underneath,
while the quantitative output of the experiments can be directly used to
validate the rate of degradation and neotissue formation predicted by the
coupled model. Such resource-demanding experiments were never planned
as part of this PhD, and as a result, the coupled models could not be easily
validated.

A suitable workaround for the aforementioned challenges can be coupling the
biodegradation model with a simpler tissue growth model in the first place. A
simpler model here implies that it does not include an interface tracking sub-
model, for which the above challenges may appear in the implementation. An
example of such simplified coupling is the work of Byrne et al. [196], in which
randomwalk algorithmswere used tomodel neotissue differentiation, scaffold
degradation, and their coupled effect phenomenologically. Another example
of a more straightforward model is Carlier et al. work [197, 198], in which
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they solved a set of taxis-diffusion-reaction PDEs describing the evolution
of biochemical factors, cells, and extracellular matrices to model the healing
process, assuming the entire domain is already occupied by some form of
tissue (no void space). Due to the lack of interface capturing, such a model is
easier to integrate with the biodegradation model. This approach can be more
difficult to validate, but it comes with the advantage of a more straightforward
implementation. Looking at the time scales of the both processes however,
several weeks for neotissue filling of a 3D porous scaffold of 6 mm cube and
several months to years for the degradation of the same scaffold (depending
on composition and circumstances), a practical work-around might be to
decouple them. This would mean first simulating the neotissue growth until
complete filling and only then considering scaffold degradation which focuses
all the attention on the zone between the tissue and the scaffold.

6.9 Conclusion

In this chapter, two curvature-driven models of the neotissue growth process
were developed using the phase-field and level-set interface tracking methods.
The models were used in various 2D and 3D growth simulations with cells
seeded on the circumference of basic geometrical primitives, showing the
similarities and differences between the phase-field and level-set methods.
Additionally, the level-set model was used to simulate tissue growth on
open porous scaffolds generated with TPMS geometries, demonstrating the
applicability of the developed models for tissue engineering applications.
The complications to couple the tissue growth models with the developed
biodegradationmodel inChapter 3were also elaborated, inwhich the potential
solutions to address the emerging coupling challenges were discussed.
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CHAPTER

7

MODEL PARALLELIZATION
FOR HIGH-PERFORMANCE

COMPUTING

This chapter is based on previously published content in The Interna-
tional Journal of High Performance Computing Applications:
M. Barzegari, and L. Geris, “Highly scalable numerical simulation
of coupled reactiondiffusion systems with moving interfaces,” The
International Journal of High Performance Computing Applications, vol. 36,
pp. 198-213, 2022.

A combination of reaction-diffusion models with moving-boundary problems
yields a system in which the diffusion (spreading and penetration) and
reaction (transformation) evolve the system’s state and geometry over time.
These systems can be used in a wide range of engineering applications. In this
study, as an example of such a system, the degradation of metallic materials
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is investigated. A mathematical model is constructed of the diffusion-reaction
processes and the movement of corrosion front of a magnesium block floating
in a chemical solution. The corresponding parallelized computationalmodel is
implemented using the finite elementmethod, and theweak and strong scaling
behaviors of themodel are evaluated to analyze the performance and efficiency
of the employed high-performance computing techniques.

7.1 Introduction

Moving-boundary problems [79] are a subset of the general concept of
boundary-value problems which not only require the solution of the under-
lying partial differential equation (PDE), but also the determination of the
boundary of the domain (or sub-domains) as part of the solution. Moving-
boundary problems are usually referred to as Stefan problems [79] and can be
used to model a plethora of phenomena ranging from phase separation and
multiphase flows in materials engineering to bone development and tumor
growth in biology. Reaction-diffusion systems are the mathematical models in
which the change of state variables occurs via transformation and spreading.
These systems are described by a set of parabolic PDEs and can model a large
number of different systems in science and engineering, for instance predator-
prey models in biology and chemical components reactions in chemistry [78].
Combining the reaction-diffusion systems with moving-boundary problems
provides a way to study the systems in which the diffusion and reaction lead
to the change of domain geometry. Such systems have great importance in
various real-world scenarios in chemistry and chemical engineering as well
as environmental and life sciences.

In this study, the material degradation phenomenon has been investigated as
an example of a reaction-diffusion system with moving boundaries, in which
the loss of material due to corrosion leads to movement of the interface of the
bulk material and surrounding corrosion environment. More specifically, the
degradation of magnesium (Mg) in simulated body fluid has been chosen as
a case study. Magnesium has been chosen due to its growing usability as a
degradable material in biomedicine, where it is usually used in biodegradable
implants for bone tissue engineering and cardiovascular applications [5, 71].
The ultimate application of such a model can be then to study the degradation
behavior of resorbable Mg-based biomaterials.



INTRODUCTION 119

A wide range of different techniques has already been developed to study the
moving interfaces in reaction-diffusion problems, which can be grouped into
3 main categories: 1) mesh elimination techniques, in which some elements
are eliminated to simulate the interface movement (or loss of material in
corrosion problems), 2) explicit surface representation, such as the arbitrary
Lagrangian-Eulerian (ALE) method, which tracks the interface by moving a
Lagrangian mesh inside an Eulerian grid, and 3) implicit surface tracking,
in which an implicit criterion is responsible to define the moving interface
during the reaction-diffusion process. Related to the aforementioned case
study, studies performed by [59] and [63] are examples of the first group.
[59] have constructed a simulation of degradation using the mesh elimination
technique. [63] have developed a continuous damage (CD)model by using an
explicit solver to study the degradation. The work of [66] is an example of the
second group as they have developed one of the first models to correlate the
mass flux of the metallic ions in the biodegradation interface to the velocity
of said interface. This was used to build an ALE model to explicitly track the
boundary of the material during degradation. Studies of the third category
are based more on mathematical modeling rather than available models in
simulation software packages. This approach results in more flexibility and
control over the implementation of the computationalmodel. For instance, [75]
have derived a systemofmathematical equations to study galvanic corrosion of
metals, taking advantage of the level set method (LSM) to track the corrosion
front. [68] have used the definition of velocity of the biodegradation interface
as the speed of the moving boundary in LSM, enabling them to track the
geometrical changes of the material during degradation. Similarly, [199] have
used a combination of LSM and extended finite element method (XFEM), a
method to model regions with spatial discontinuities, to study the moving
corrosion front in the pitting corrosion process. A very similar approach and
formulation has been taken by [200] to model localized pitting corrosion. An
alternative method for tracking themoving interface is the phase fieldmethod,
which has beenused in awide range of relevant studies.A comparison between
the behavior of phase-field and LSM formulations for an evolving solid-liquid
interface has been performed by [201], showing that both methods lead to the
same results for diffusion-reaction systems. The approach taken in this study
was similar to the one from Bjger et al., where LSM was employed to correlate
the diffusion and reaction processes to the movement of the solid-solution
interface using continuous variables.

Tracking the moving front at the diffusion interface requires high numerical
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accuracy of the diffusive state variables, which can be achieved using a refined
computational grid. This makes the model computationally intensive, and
as a consequence, implementing parallelization is an inevitable aspect of
simulating such a model. Such an approach enables the model to simulate
large-scale systems with a large number of degrees of freedom (DOF) in
3D with higher performance and efficiency in high-performance computing
(HPC) environments. In recent years, parallelization of diffusion-reaction
systems simulation has been investigated, but the studies are mainly con-
ducted for stochastic (statistical) models. For instance, [202] have developed
a parallel stochastic model for large-scale spatial reaction-diffusion simulation,
and similarly, [203] have developed a stochastic high-performance simulator
for specific biological applications. Also as an example for massively parallel
systems, [204] have conducted a simulation of reaction-diffusion processes in
biology using graphics processing units (GPUs). Although stochastic models
have more parallel-friendly algorithms, explaining the underlying process,
especially when it involves reaction-diffusion processes of chemistry and
biology, is less complex and more universal using mechanistic (determin-
istic) models, which are based on well-developed mathematical models of
continuous systems [205]. To the best of authors’ knowledge, none of the
previous contributions to the topic of reaction-diffusion systems with moving
interfaces has employed parallelization techniques to increase the performance
and speed of execution of themodelwithout compromising the accuracy of the
interface tracking.

In the current study, we developed amechanistic model of a reaction-diffusion
system coupled with a moving interface problem. Improving the accuracy
of the interface capturing requires a refined computational mesh, leading to
a more computation-intensive simulation. To overcome this challenge and
yield more interactable simulations, scalable parallelization techniques were
implemented making the model capable of being run on massively parallel
systems to reduce the simulation time. The investigated case-study is the
material degradation process. The developed model captures the release of
metallic ions to the medium, formation of a protective film on the surface of
thematerial, the effect of presented ions in themedium on the thickness of this
protection layer, and tracking of the movement of the corrosion front (Fig. 7.1).
The interface tracking was performed using an implicit distance function that
defined the position of the interface during degradation. This implicit function
was obtained by constructing and solving a level set model. It is also worth
noting that in a real-world application, such systems require a calibration (also
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called parameter estimation or inverse problem), inwhich themodel should be
simulated hundreds of times. This makes the parallelization evenmore crucial
for these models.

Figure 7.1: A schematic presentation of different components of the developed
model for simulation of the degradation process with a moving front.

7.2 Background theory and model description

Before elaborating the parallel implementation strategy, the mathematical
model is briefly described in this section. The model is constructed based
on the chemistry of degradation, starting from the previous work by [68], in
which the ions can diffuse to the medium and react with each other.

7.2.1 Chemistry of degradation

In metals, degradation occurs through the corrosion process, which usually
consists of electrochemical reactions, including anodic and cathodic reactions
as well as the formation of side products [2].

For Mg, the corrosion reactions comprise the following steps [2]: first, the
material is released as metallic ions and free electrons, which causes the
volume of the bulk material to be reduced:

Mg −→ Mg2+ + 2e−. (7.1)

The free electron reduces water to hydrogen gas and hydroxide ions:

2H2O + 2e− −→ H2 + 2OH−. (7.2)
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Then, with the combination of the metallic and hydroxide ions, a porous film
is formed on the surface, slowing down the degradation rate by protecting the
material underneath:

Mg2+ + 2OH− −→ Mg(OH)2. (7.3)

With the presence of some specific ions in the surrounding medium, such as
chloride ions in a saline solution, the protective film might be broken partially,
which contributes to an increase of the rate of degradation:

Mg(OH)2 + 2Cl− −→ Mg2+ + 2Cl− + 2OH−. (7.4)

The degradation process of metals is a continuous repetition of the above
reactions.

7.2.2 Reaction-diffusion equation

A reaction-diffusion partial differential equation can describe the state of a
reaction-diffusion system by tracking the change of the concentration of the
different components of the system over time [78]. The equation is a parabolic
PDE and can be expressed as

∂u
∂t

−∇ · [D∇u] = f (u) (7.5)

in which the change of the state variable u = u(x, t), x ∈ Ω ⊂ R3 is described
as a combination of how it diffuses and how it is produced or eliminated
via reactions. The term f (u) is a smooth function that describes the reaction
processes.

In the example used in this study, the state variable in Eq. 7.5 is the concen-
tration of effective chemical components involved in the degradation process,
namely magnesium ions and the protective layer, denoted by CMg and CFilm
respectively.

CMg = CMg(x, t), CFilm = CFilm(x, t) x ∈ Ω ⊂ R3 (7.6)

Ω is the whole domain of interest, including the bulk material and its
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surrounding medium. So, by assuming that the reaction rates of Eqs. 7.3 and
7.4 are k1 and k2 respectively, one can write the change of those state variables
according to Eq. 7.3 and Eq. 7.4 as

∂CMg

∂t
= ∇ ·

(
De

Mg∇CMg

)
− k1CMg + k2CFilm[Cl]2 (7.7)

∂CFilm
∂t

= k1CMg − k2CFilm[Cl]2. (7.8)

We assumed that the concentration of the chloride ions is constant (denoted
by [Cl] in the equation) and does not diffuse into the protective film. The
missing part of the model described by Eqs. 7.7 and 7.8 is the effect of the
protective film on the reduction of the degradation rate. To this end, we
defined a saturation term, (1− CFilm

[Film]max
) for the concentration ofMg ions in the

equations. By considering the film’s porosity (ϵ), the maximum concentration
of the protective layer can be calculated based on its density (ρMg(OH)2

):

[Film]max = ρMg(OH)2
· (1 − ϵ). (7.9)

The defined saturation term acts as a function of space that varies between 0
and 1 in each point. By adding this term to the concentration of Mg ions, we
can write

∂CMg

∂t
= ∇ ·

(
De

Mg∇CMg

)
− k1CMg

(
1 − CFilm

[Film]max

)
+ k2CFilm[Cl]2 (7.10)

∂CFilm
∂t

= k1CMg

(
1 − CFilm

[Film]max

)
− k2CFilm[Cl]2. (7.11)

Since the film is a porous layer and allows the ions to diffuse through it, the
diffusion coefficient in Eq. 7.10 is a function of space and not a constant value
(which is the reason for being denoted as De

Mg). We can calculate this effective
diffusion function by interpolating two values at any point: 1) De

Mg = DMg

when CFilm = 0, and 2) De
Mg = ϵ

τ DMg when CFilm = [Film]max, in which ϵ

and τ are the porosity and tortuosity of the protective film, respectively. The
interpolation leads to the effective diffusion function:
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De
Mg = DMg

((
1 − CFilm

[Film]max

)
+

CFilm
[Film]max

ϵ

τ

)
. (7.12)

7.2.3 Level-set method

The level set method is a methodology that allows moving interfaces to be
described by an implicit function. In other words, the boundaries of domains
can be tracked as a function instead of being explicitly defined. In the level set
method, a signed distance function, ϕ = ϕ(x, y, z, t), describes the distance of
each point in space to the interface, and the zero iso-contour of this function
implies the interface [80]. In the current study, this function was defined in
a way that divides the domain into two subdomains: 1) the bulk material, in
which the implicit function is positive (ϕ > 0), and 2) the medium, in which
the function is negative (ϕ < 0). The interface is defined as the points in space
where ϕ = 0. Fig. 7.2 shows a schematic representation of the solid-medium
interface in the current study, in which the interface moves as the material
degrades over time.

Figure 7.2: A schematic representation of the implicit function definition in
the current study. V denotes the shrinkage speed of the interface due to
degradation.

The level set equation defines this implicit function. The full level set equation
can be written as [80]:

∂ϕ

∂t
+

−→
VE · ∇ϕ︸ ︷︷ ︸

External velocity field

+ VN|∇ϕ|︸ ︷︷ ︸
Normal direction motion

= bκ|∇ϕ|︸ ︷︷ ︸
Curvature - dependent term

(7.13)
in which the terms correspond to temporal changes, external velocity field
effect, normal directionmotion, and curvature-dependent interfacemovement,
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respectively.
−→
VE is the external velocity field, and VN is the magnitude of the

interface velocity along the normal axis. In practical usage, some of the terms
are neglected. In this study, perfusion (rotation of the liquid around the bulk
sample) is not considered, and the degradation rate does not depend on the
curvature of the interface. As a result, by assuming that the interface moves in
normal direction only, Eq. 7.13 can be simplified to

∂ϕ

∂t
+ VN|∇ϕ| = 0 (7.14)

where VN is depicted in Fig. 7.2. The RankineHugoniot equation can be used
to calculate the interface velocity in mass transfer problems [85]:

{J(x, t)− (csol − csat)V(x, t)} · n = 0 (7.15)

in which J is the mass flux, csol is the concentration of the material in the
bulk part (i.e. its density), and csat is the concentration at which the material
(here, the ions) saturates through the medium. So, for the investigated Mg
degradation problem, Eq. 7.15 will be:

De
Mg∇nCMg − ([Mg]sol − [Mg]sat)VN = 0. (7.16)

Inserting the obtained velocity of Eq. 7.16 into Eq. 7.14 and considering the
direction of the shrinkage velocity, which is in the opposite direction of the
surface normal vector, yields

∂ϕ

∂t
−

De
Mg∇nCMg

[Mg]sol − [Mg]sat
|∇ϕ| = 0. (7.17)

Eq. 7.17 is the final formulation of the level set equation in the current
study, which alongside Eqs. 7.10 and 7.11 forms the mathematical model of
degradation of Mg with a moving interface. Eq. 7.17 contributes indirectly to
the evolution of Eqs. 7.10 and 7.11 as it defines the boundary, the zero iso-
contour of the ϕ function, on which the boundary conditions of the equations
are applied.
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7.3 Methodology of model implementation

The developed mathematical model comprised of Eqs. 7.10, 7.11, and 7.17
cannot be solved using analytical techniques. The alternative approach in these
scenarios is solving the derived PDEs numerically. In this study, we used
a combination of finite element and finite difference methods to solve the
aforementioned equations. In the developed numerical model, the PDEs are
solved one by one, each of which is a linear equation, so the model implemen-
tation follows the principles of solving linear systems. In the following section,
only the process to obtain the solution of Eq. 7.10 is described in detail, but
the other PDEs were solved using the same principle. Although the adopted
finite element method is standard, we elaborate on its derivation to clarify the
bottlenecks of the later-discussed implementation.

7.3.1 Finite element discretization (bottleneck of the algo-
rithm)

In order to solve Eq. 7.10 numerically, we used a finite difference scheme for
the temporal term and a finite element formulation for the spatial terms. For
simplicity of writing, notations of variables are changed, so CMg is represented
as u (the main unknown state variable to find), CFilm is denoted by p, [Cl] is
denoted by q, and the saturation term (1− F

Fmax
) is denoted by s. By doing this,

Eq. 7.10 can be written as

∂u
∂t

= ∇ · (D∇u)− k1su + k2 pq2. (7.18)

To obtain the finite element formulation, the weak form of derived PDE is
required. In order to get this, we define a space of test functions and then,
multiply each term of the PDE by any arbitrary function as a member of this
space. The test function space is

V =
{

v(x)|x ∈ Ω, v(x) ∈ H1(Ω), and v(x) = 0 on Γ
}

(7.19)

in which the Ω is the domain of interest, Γ is the boundary of Ω, and H1

denotes the Sobolev space of the domain Ω, which is a space of functions
whose derivatives are square-integrable functions in Ω. The solution of the
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PDE belongs to a trial function space, which is similarly defined as

St =

{
u(x, t)|x ∈ Ω, t > 0, u(x, t) ∈ H1(Ω), and ∂u

∂n
= 0 on Γ

}
. (7.20)

Then, we multiply Eq. 7.18 to an arbitrary function v ∈ V :

∂u
∂t

v = ∇ · (D∇u)v − k1suv + k2 pq2v. (7.21)

Integrating over the whole domain yields:∫
Ω

∂u
∂t

vdω =
∫

Ω
∇ · (D∇u)vdω −

∫
Ω

k1suvdω +
∫

Ω
k2 pq2vdω. (7.22)

The diffusion term can be split using the integration by parts technique:∫
Ω
∇ · (D∇u)vdω =

∫
Ω
∇ · [v(D∇u)]dω −

∫
Ω
(∇v) · (D∇u)dω (7.23)

in which the second term can be converted to a surface integral on the domain
boundary by applying the Green’s divergence theory:∫

Ω
∇ · [v(D∇u)]dω =

∫
Γ

Dv
∂u
∂n

dγ. (7.24)

For the temporal term, we use the finite difference method and apply a first-
order backward Euler scheme for discretization, which makes it possible to
solve the PDE implicitly:

∂u
∂t

=
u − un

∆t
(7.25)

where un denotes the value of the state variable in the previous time step (or
initial condition for the first time step). Inserting Eqs. 7.23, 7.24, and 7.25 into
Eq. 7.22 yields:∫

Ω

u − un

∆t
vdω =

∫
Γ

Dv
∂u
∂n

dγ−
∫

Ω
D∇u ·∇vdω−

∫
Ω

k1suvdω+
∫

Ω
k2 pq2vdω.

(7.26)

The surface integral is zero because there is a no-flux boundary condition on
the boundary of the computational domain (defined in the trial function space
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according to Eq. 7.20). By reordering the equation, we get the weak form of Eq.
7.18:∫

Ω
uvdω+

∫
Ω

∆tD∇u ·∇vdω+
∫

Ω
∆tk1suvdω =

∫
Ω

unvdω+
∫

Ω
∆tk2 pq2vdω.

(7.27)

So, the problem is finding a function u(t) ∈ St such that for all v ∈ V Eq.
7.27 would be satisfied. By defining a linear functional ( f , v) =

∫
Ω f vdω and

encapsulating the independent concentration terms into f n = pq2, Eq. 7.27 can
be simplified as:

(u, v)[1 + ∆tk1s] + ∆t(D∇u,∇v) = (un, v) + ∆t ( f n, v) (7.28)

which can be further converted to the common form of the weak formulation
of time-dependent reaction-diffusion PDEs bymultiplying to a new coefficient
α = 1

1+∆tk1s :

(u, v) + α∆t(D∇u,∇v) = α (un, v) + α∆t ( f n, v) . (7.29)

One can approximate the unknown function u in Eq. 7.29 by u(x) ≈ ∑N
i=0 ciψi(x),

where the ψi are the basis functions used to discretize the function space,
and c0, . . . , cN are the unknown coefficients. The finite element method uses
Lagrange polynomials as the basis function and discretizes the computational
domain using a new function space Vh spanned by the basis functions {ψi}i∈Is

,
in which Is is defined as Is = {0, . . . , N}, where N denotes the degrees
of freedom in the computational mesh. The computational mesh discretizes
the space into a finite number of elements, in each of which the ψi is non-
zero inside the ith element and zero everywhere else. In this study, 1st order
Lagrange polynomials were used as the basis functions to define the finite
element space.

For 1D elements, a 1st order Lagrange polynomial for the ith element with the
width of h can be written as:

ψi(x) =


0 x < xi−1

(x − xi−1) /h xi−1 ≤ x < xi
1 − (x − xi) /h xi ≤ x < xi+1

0 x ≥ xi+1

. (7.30)
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A similar approach can be applied to define the basis function space in 2D and
3D spaces.

In order to derive a linear system of equations for obtaining the unknown
coefficients cj, we define

u =
N

∑
j=0

cjψj(x), un =
N

∑
j=0

cn
j ψj(x) (7.31)

as the definition of the unknown function u and its value in the previous time
step un. We then insert it into Eq. 7.29, which yields the following equation for
each degree of freedom i = 0, . . . , N, where the test functions are selected as
v = ψi:

N

∑
j=0

(
ψi, ψj

)
cj + α∆t

N

∑
j=0

(
∇ψi, D∇ψj

)
cj =

N

∑
j=0

α
(
ψi, ψj

)
cn

j + α∆t ( f n, ψi) .

(7.32)

Eq. 7.32 is a linear system:
∑

j
Ai,jcj = bi, (7.33)

with
Ai,j =

(
ψi, ψj

)
+ α∆t

(
∇ψi, D∇ψj

)
(7.34)

bi =
N

∑
j=0

α
(
ψi, ψj

)
cn

j + α∆t ( f n, ψi) , (7.35)

which can also be rewritten as:

(M + α∆tK)c = αMc1 + α∆t f . (7.36)

M (which traditionally is called the mass matrix), K (which traditionally is
called the stiffness matrix), f , c, and c1 are defined as:
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M =
{

Mi,j
}

, Mi,j =
(
ψi, ψj

)
, i, j ∈ Is

K =
{

Ki,j
}

, Ki,j =
(
∇ψi, D∇ψj

)
, i, j ∈ Is

f = { fi} , fi = ( f (x, tn) , ψi) , i ∈ Is

c = {ci} , i ∈ Is

c1 = {cn
i } , i ∈ Is.

(7.37)

By solving Eq. 7.33 and substituting the obtained c in Eq. 7.31, u (CMg in the
example in this study) can be calculated in the current time step. As stated
before, the same approach can be applied to Eq. 7.11 and Eq. 7.17 to get CFilm
and ϕ. This procedure is repeated in each time step to compute the values of
CMg, CFilm, and ϕ over time.

A common practice to save time for solving Eq. 7.33 for a constant time step
size is to compute the left-hand side matrix (A in Eq. 7.34) once and compute
only the right-hand side vector of the equation at each time iteration. But in
this case, although the time step size is fixed, due to the presence of the α

coefficient, the matrix changes along the time. The α coefficient is not constant
and should be updated in each time step because it depends on the saturation
term s (which is a function of the concentration of the film as can be seen by
comparing Eq. 7.10 and Eq. 7.18). In addition to this, the diffusion coefficient is
not constant (Eq. 7.12), making the second term in Eq. 7.34 non-constant even
in the absence of α coefficient. Consequently, the left-hand sidematrix of the Eq.
7.33 cannot be computed before the start of themain time loop, and computing
it in each time step is an extra but inevitable computational task in comparison
to similar efficient and high-performance finite element implementations. This
contributes to a slower algorithm for solving the aforementioned PDEs.

7.3.2 Implementation and parallelization

The model was implemented in FreeFEM [86], which is an open-source PDE
solver to facilitate converting theweak formulation (Eq. 7.27) to a linear system
Ax = b (with A from Eq. 7.34 and b from Eq. 7.35). The computational
mesh was generated using Netgen [91] in the SALOME platform [92] by a
set of linear tetrahedral elements, and all the other preprocessing steps were
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performed in FreeFEM. The mesh was adaptively refined on the material-
medium interface in order to increase the accuracy of the level set model.
Postprocessing of the results was carried out using Paraview [206].

Computing the diffusion solely in themediumdomain causes oscillations close
to the interface, and to prevent this, the mass lumping feature of FreeFEMwas
employed. In this technique, the desired mass matrix is handled node-wise
and not element-wise. Technically speaking, this means that the state variable
is stored in the mesh nodes, and although this is the natural formulation in the
finite differencemethod, it requires artificialmodification in the standard finite
element formulation [207]. The mass lumping feature of FreeFEM applies a
quadratic formula at the vertices of elements tomake themassmatrix diagonal,
which contributes positively to the convergence of the solution.

The main parallelization approach for the current study was domain decom-
position, in which the mesh is split into smaller domains (can be overlapping
or non-overlapping), and the global solution of the linear system is achieved
by solving the problem on each smaller local mesh. What really matters in
this approach is providing virtual boundary conditions to the smaller sub-
domains by ghost elements, transferring neighboring sub-domain solutions
[208]. As a result, a high-performance parallelism is feasible by assigning each
sub-domain to one processing unit.

In computational science, preconditioning is widely used to enhance the
convergence, which means instead of directly working with a linear system
Ax = b, one can consider the preconditioned system [209]:

M−1 Ax = M−1b (7.38)

in which the M−1 is the preconditioner. In the current study, we considered
this approach for both the domain composition and the solution of the
linear system. We opted to use an overlapping Schwarz method for domain
decomposition, in which the mesh is first divided into a graph of N non-
overlapping meshes using METIS (or ParMETIS) [127]. Then, by defining a
positive number δ, the overlapping decomposition

{
T δ

i
}

1⩽i⩽N can be created
recursively for each sub-mesh {Ti}1⩽i⩽N by adding all adjacent elements of
T δ−1

i to it. Then, the finite element space Vh (Eq. 7.19) can be mapped to the
local space

{
V δ

i
}

1⩽i⩽N by considering the restrictions {Ri}1⩽i⩽N and a local
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partition of unity {Di}1⩽i⩽N such that:

N

∑
j=1

R>
j DjRj = In×n (7.39)

where I and n denote identity matrix and the global number of unknowns,
respectively [210].

In this study, we decomposed the mesh by using the one-level preconditioner
Restricted Additive Schwarz (RAS):

M−1
RAS =

N

∑
i=1

R>
i Di A−1

i Ri (7.40)

in which {Ai}1⩽i⩽N is the local operator of the sub-matrices [210]. For
this purpose, we took advantage of the HPDDM (high-performance domain
decomposition methods) package interface in FreeFEM [90]. The partitioned
mesh is shown in Fig. 7.3. The effect of the construction of these local sub-
domains on the sparsity pattern of the global matrix is also depicted in Fig. 7.4.
The global matrix is a sparse matrix according to Eq. 7.34 and the definition of
the basis function ψ.

Figure 7.3: Overlapping domain decomposition in the current study. Each color
shows a separate sub-domain, and the narrow lighter bands are the overlapped
regions.
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Figure 7.4: Comparison of the sparsity patterns (highlighting non-zero
elements) of the global matrix A for a different number of decomposed
domains a: 1 domain b: 2 sub-domains c: 4 sub-domains d: 8 sub-domains.

Generally, two categories of methods have been used to solve a large linear
system of equations on parallel machines: direct solvers (e.g. Multifrontal
Massively Parallel Sparse, MUMPS [211]) and iterative solvers (e.g. Gen-
eralized Minimal Residual Method, GMRES [88]). While direct solvers are
quite robust, they suffer from the memory requirement problem on large
systems. Inversely, iterative solvers are quite efficient onmemory consumption,
but similar to other iterative approaches, they are not very reliable in some
cases [212]. Direct solvers modify the matrix by factorization (e.g. Cholesky
decomposition), but an iterative solver does not manipulate the matrix and
works solely using basic algebraic operations. However, for an efficient usage
of iterative solvers, a proper preconditioner is crucial [212]. By evaluating and
comparing the performance of the aforementioned methods for the current
model, we decided to use an iterative approach using the Krylov subspaces
(KSP) method, in which we preconditioned the equation using a proper
preconditioner (Eq. 7.38) and then solved it with an iterative solver.

Krylov methods have been frequently used by researchers as robust iterative
approaches to parallelism [213].Whatmatters in this regard is ensuring proper
scaling of the parallelized algorithm for both the assembling of the matrices
and the solution of the linear system of equations. One good solution to
this challenge is taking advantage of HPC-ready mathematical libraries to
achieve efficient distributed-memory parallelism through theMessage Passing
Interface (MPI). In the current study, we used the PETSc (Portable, Extensible
Toolkit for Scientific Computation) library [89], which provides a collection of
high-performance preconditioners and solvers for this purpose.



134 MODEL PARALLELIZATION FOR HIGH-PERFORMANCE COMPUTING

In order to yield the highest performance, a variety of different combinations
of KSP types and preconditionerswere evaluated, such as ConjugateGradients
(CG) [214], Successive Over-Relaxation (SOR) [215], block Jacobi, and Alge-
braic Multigrid (AMG) [128], to name a few. The performance tests results
are presented in the appendix section of this chapter. The best performance
for the reaction-diffusion system model was achieved using the HYPRE
preconditioner [87] and the GMRES solver [88]. This was the combination
used for all the performance analysis tests.

7.3.3 Level-set issues

As mentioned before, in order to track the interface of the bulk material and
the surrounding fluid, an implicit signed distance function is defined as the
solution of Eq. 7.17. This equation can be solved using the aforementioned
finite element discretization, but in a practical implementation, there are
usually a couple of problems associated with this PDE.

The first issue is defining De
Mg and ∇nCMg on the moving interface. To ensure

correct boundary conditions for Eq. 7.16, the value of CMg is set constant on
the whole bulk material by using the penalty method. As a result, the implicit
interface is not necessarily aligned on the computational mesh. Although
this is a beneficial fact for the interface tracking, it inserts the problem of
overestimation of CMg on the nodes close to the interface, which makes it
difficult to calculate∇nCMg on these nodes correctly. The same problem exists
for calculating De

Mg. To overcome this issue, the values of CMg and De
Mg

are calculated at the distance h from the interface in the normal direction
(towards the medium), where h is the edge size of the smallest element of the
computational mesh.

The next issue is a well-known problem of the level set method: if the velocity
of the interface is not constant (as in Eq. 7.13), the level set function ϕ may
become distorted by having too flat or too steep gradients close to the moving
front. This could cause unwanted movements of the interface. The problem
becomes even worse when the distance function is advected. A solution to this
issue is re-initializing the distance function in each time step (re-distancing),
but this operation requires solving a new PDE. From numerical investigations,
it has been observed that this operation inserts new errors in the numerical
computation of the level set equation [216]. This can be resolved by improving
the method of reconstruction of the distance function [216].
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However, re-initialization results in another issue on a massively parallel
implementation: as the mesh is partitioned into smaller sub-meshes, it is not
feasible anymore to evaluate the distance to the interface globally on each sub-
domain. As a result, the inverse process of domain decomposition should be
taken to assemble the mesh again. This can be done by the restriction matrix
and the partition of unity (defined in Eqs. 7.39 and 7.40), but it is rather a
very inefficient procedure regarding the parallelization of the simulation and
results in a long execution time in each time step.

In the current study, the distance function ϕ was initialized only once at the
beginning of the simulation. The re-initialization process was unnecessary in
this case because according to Eq. 7.17, the distance function is advected only
in the regions where there is a gradient of the concentration of Mg ions, which
means that advection is applied only on the regions close to the interface in
the medium. This prevented the whole distance function of being distorted,
and as a result, it was not required to re-initialize it in each time step. This also
removed the need for inverting the decomposition process.

7.3.4 Simulation setup

In order to verify the performance of the developed model, a degradation
experiment was reconstructed in-silico, in which the degradation of a block
of Mg (with the size of 13mm × 13mm × 4mm) was investigated in a simulated
body fluid solution. All the experimental parameter data (used to setup the
simulation), as well as the degradation rates (used to calibrate and validate
the numerical model) were extracted from [36].

As can be seen in Eqs. 7.1 and 7.2, each mole removed from the Mg block
corresponds to one mole of the produced hydrogen. As a result, instead of
a direct measurement of mass loss, one can collect and measure the amount of
produced hydrogen to monitor the degradation rate. This is a common way of
reporting degradation in this type of studies [53]. In order to get this quantity
out of the developedmodel, we used the level set model output. The total mass
loss of Mg at each desired time can be calculated based on the movement of
the corrosion front:

Mglost =
∫

Ω+(t)
MgsoliddV −

∫
Ω+(0)

MgsoliddV (7.41)



136 MODEL PARALLELIZATION FOR HIGH-PERFORMANCE COMPUTING

where Ω+(t) = {x : ϕ(x, t) ≥ 0}. It is worth noting that this integration
should be performed by ignoring the ghost elements generated in the mesh
partitioning process, otherwise the calculatedmaterial loss will be higher than
the real value. Then, the amount of formed hydrogen gas can be calculated
based on the ideal gas law:

H f =
Mglost
Mgmol

RT
PA

(7.42)

in which R is the universal gas constant, P is the pressure, T is the solution
temperature, A is the exposed corrosion surface area (which can be computed
using the level set function), and Mgmol is the molar mass of Mg. Plotting a
comparison of the predicted and experimentally obtained values of hydrogen
can show the overall validity of the mathematical model because both the
diffusion-reaction equations and the level set equation contribute to the
prediction made by the computational model.

The geometry of the simulation experiment is depicted in Fig. 7.5. Based on
this geometry, an Eulerian computational meshwas constructed by generating
tetrahedral elements on the whole domain, including the Mg block and the
medium. This resulted in 830,808 elements with a total of 143,719 DOFs for
each PDE (Eqs. 7.10, 7.11, and 7.17), which indicates the size of matrix A
in Eq. 7.34. Model parameters and material properties were obtained from
[68]. The diffusion coefficient of Mg was calculated using an inverse problem
setup in which a Bayesian optimization process [93] was used to run the
simulation code multiple times and minimize the difference of the model
output and the experimental data reported by [36]. A time step convergence
study was performed to measure the sensitivity of the model to the time
stepping parameter, and based on the results, the time step value was set to
0.025 hours.

7.3.5 Performance analysis

To investigate the performance and scaling behavior of the implemented
parallel code, we conducted a set of weak-scaling and strong-scaling tests on
the computational model. To do this, the time required to solve each PDE in
each time step was measured in a simulation. This acted as a rough estimation
of the time required in each time step because it ignores all the other factors
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Figure 7.5: Representation of the experimental set-up simulated to perform nu-
merical validation of the developed model and evaluate parallel performance.
a) A cuboid of Mg (with the size of 13mm × 13mm × 4mm) is floating inside a
simulated bodyfluid solution to investigate the degradation process, b) a cross-
section of the computational mesh, refined on the metal-medium interface to
increase the interface capturing accuracy.

contributing to speedup results such as communication costs, load imbalance,
limited memory bandwidth, and parallelization-caused overhead.

Weak-scalingwas evaluated bydividing the computational domain into smaller
sub-domains (each of which was 1

16 of the whole domain, Fig. 7.6) and
conducting simulation experiments with 1, 2, 4, and 8 computational cores
in a way that the number of processors corresponded to the number of
employed sub-domains. In Fig. 7.6 the upper row shows different domains
as an accumulation of the smaller divisions, and the lower row shows the
corresponding domain decomposition for parallel computing by depicting
each processing unit in a different color. In fact, it demonstrates the concept
of increasing the number of MPI processing units as we increase the size of the
problem.

After calculating the speedup of each test (by comparing the differences in
execution time), we can use Gustafsons law [217] to calculate the sequential
and parallelizable portion of computation in the current implementation in
weak-scaling evaluation:

Speedup = f + (1 − f )× N (7.43)

where N is the total number of computational cores, f is the fraction of
operations in the computation that are sequential, and as a result, 1 − f is the
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Figure 7.6: Models used for weak-scaling, in which the number of elements
was doubled each time while doubling the number of computational cores.
Upper row: actual computational domain in which colors show the medium
(blue) and the material block (red). Lower row: domain decomposition for
parallelization, colors show different decomposed mesh parts (distributed
to different MPI processing units). Each column corresponds to a different
simulation with a: 1 MPI unit, b: 2 MPI units, c: 4 MPI units, and d: 8 MPI
units.

fraction of the execution time spent on the parallelizable part.

The strong-scaling evaluation was performed using the entire domain. The
evaluation was done using 1, 8, 16, 40, 60, 90, 200, and 300MPI cores. In strong-
scaling, Amdahls law [218] is used to calculate the portion of the algorithm
that runs in parallel:

Speedup =
1

f + 1− f
N

(7.44)

in which the parameters are the same as Eq. 7.43.

7.3.6 Compute environment

Simulations were conducted on the VSC (Flemish Supercomputer Center)
supercomputer with the availability of Intel CPUs in three different micro-
architectures: Ivy Bridge, Haswell, and Skylake. Due to a better performance,
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the strong and weak-scaling measurements were solely performed on the
Skylake nodes. On this supercomputer, we made use of 3 nodes, 36 cores each,
with 576 GB of the total memory, each node holding 2 Intel Xeon Gold 6132
CPUs with a base clock speed of 2.6 GHz. The nodes in the supercomputer
are connected using an InfiniBand EDR network (bandwidth 25 Gb/s). For
interprocess communication, Intel’s MPI implementation 2018 was used.

7.4 Results

7.4.1 Numerical simulation results

The performed numerical simulation produces the output of three main
quantities: the concentration of the Mg ions in the medium (as the solution of
Eq. 7.10), the concentration of the protective film (as the solution of Eq. 7.11),
and the level set function values at each element (as the solution of Eq. 7.17).
In addition to this, a quantitative prediction of the mass loss is also generated
according to Eqs. 7.41 and 7.42.

In order to have quantitative predictions, the coefficients of Eqs. 7.10 and
7.11 (diffusion rates and reaction rates) should be calibrated using an inverse
problem. Fig. 7.7 shows the results produced by the computational model after
this parameter estimation stage. A narrow layer of the protective film is formed
on the surface of the Mg block, and the volume of produced hydrogen gas is
compared with values obtained from experiments. Additionally, by plotting
the zero iso-contour of the level set function, we can obtain the shape of the
material block as it degrades during the degradation process (i.e. tracking the
moving corrosion front). This is depicted by the grey surface in Fig. 7.7.

7.4.2 Weak and strong scaling results

Weak-scaling results are plotted in Fig. 7.8, in which the execution time of each
time step is broken down into the time spent on each PDE. The results show
good scalability of the parallel implementation.

Speedup and parallel efficiency of the weak-scaling experiment is plotted
in Fig. 7.9. By fitting a curve based on the Gustafson equation (Eq. 7.43)
on the obtained results (Fig. 7.9), the sequential proportion of the current
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Figure 7.7: Numerical simulation result. Left: formation of a protective layer on
the surface of the Mg block (red region). Right: comparison of the produced
hydrogen (a surrogate for the material loss) in the computational model and
the experimental data, which is a validation of the full model as both the
reaction-diffusion equations and the level-set equation are involved in the
computation of this quantity.

Figure 7.8:Weak-scaling test result. Results are broken down into contributions
for each PDE, which are plotted cumulatively and separately in the left and
right plot, respectively.

implementation was calculated to be 18%, which means that 82 percent of the
code can be parallelized, which is a proper but not an ideal scalability.

The strong-scaling results are plotted in Fig. 7.10, which shows a better
scalability in comparison to the weak-scaling test. For a better representation,
exact measured values are presented in Table 7.1.

Similar toweak-scaling results, Fig. 7.11 demonstrates the speedup andparallel
efficiency of the developed code for strong-scaling evaluation. From the results,
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Figure 7.9: Speed-up and parallel efficiency of the weak-scaling experiment.
The orange line in the left plot shows the fitted curve based on the Gustafson
equation.

Figure 7.10: Strong-scaling test result. Results are broken down into contribu-
tions for each PDE, which are plotted cumulatively and separately in the left
and right plot, respectively.

it is obvious that increasing the number of cores leads to a better performance
but a lower efficiency. By fitting Amdahls equation (Eq. 7.44) on the obtained
speedup results (Fig. 7.11), f was obtained as 0.01, which means in strong-
scaling terms that 99% of the code can run in parallel.

7.5 Discussion

In this investigation, the derivation and implementation of a reaction-diffusion
model with moving boundaries were presented. Such an approach finds ap-
plication in many scientific and engineering problems. The target application
in the current work was the degradation of a bulk metal cuboid in a liquid
environment, specifically Mg in an aqueous ion solution as a representative
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Table 7.1: Strong-scaling test result, presented by the execution time of each
PDE in simulations with a different number of employed MPI cores.

MPI Size 1 8 16 40 60 90 200 300
Solution time
of each time
step (s)

LS PDE 9 1.39 0.75 0.36 0.26 0.19 0.11 0.07
Mg PDE 13.04 1.76 0.94 0.46 0.31 0.22 0.12 0.09
Film PDE 6.38 0.84 0.45 0.21 0.14 0.09 0.05 0.04

Total time (s) 28.42 3.99 2.14 1.03 0.71 0.5 0.28 0.2

Figure 7.11: Speed-up and parallel efficiency of the strong-scaling experiment.
The orange line in the left plot is the fitted equation based on the Amdahl rule.

for temporary medical devices. The simulations were based on the corrosion
of Mg metal to Mg ions to form a film of Mg hydroxide that partially protects
the metal block from further degradation except where this film is impacted
by reaction with other ions in the environment (such as chloride ion). The
reactive moving boundary problem was cast in the form of equations in
which the change of the concentrations of the different chemical components
is represented by parabolic PDEs. The coupled equations depend on several
kinetic constants that have been calibrated from experiments. The moving
interface between the metal bulk and the liquid phase was described by an
implicit function using the level set method. The derivation led to equations
that require the use of numerical techniques for which a combination of finite
difference and finite element methods was implemented. As the required
high accuracy on the moving interface results in an increase in computation
time, parallelization was crucial for the computational model to decrease the
execution time of the simulations. The results of the total execution time in
each time step (Table 7.1) clearly indicate that without the parallelization, the
simulation of the model is slow and as a result, less interactable for real-world
simulation analyses. Considering the properly employed parallelization, the
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computational time has been decreased noticeably for the investigated case-
study.

The output of the conducted numerical simulation demonstrates that the
developed mathematical model is capable of capturing the degradation inter-
face movement and of modeling of the underlying chemical phenomena. The
predicted mass loss is in line with the experimental results, and the simulated
corrosion behavior is as expected for such a system. It is worth noting that
the chosen system is highly idealized as a model for medical devices. A more
realistic chemical environment would contain many more species that play a
role in the formation of either soluble ions or the protective film. Moreover,
in real-world scenarios, corrosion occurs in a more complex way than the
simplified one described in this paper, which will have a significant influence
on the local concentration of ions in the regions close to the solid surface.
Nevertheless, the developed framework is capable of capturing these physical
and chemical phenomena in the future by simply adding the appropriate
terms to the base PDEs without any major changes in the computational
model. Furthermore, although it requires some changes to the parallelization
approach, the addition of the fluid flow around the block is feasible by adding
convective terms to forma reaction-diffusion-convection system. Such a system
can be used to model relevant systems such as experimental bioreactor setups
in biology and medical sciences.

The parallel algorithm was implemented using a domain decomposition
method. Standard domain decomposition preconditioners, such as restricted
additive Schwarz, are widely used for parallel implementation of computa-
tional models. In a parallel implementation, such preconditioners bring the
benefit of relatively low communication costs [209]. Beside this, the formed
linear system of equations in each partition of the mesh was solved using
Krylov methods by taking advantage of the highly-efficient preconditioners
and iterative solvers of the PETSc library. According to the obtained results,
the employed parallelization approach of the current study yields reasonable
scalingwith respect to the available computational resources (or the number of
sub-domains). Out ofmultiple evaluations, the best performancewas achieved
using the preconditioner/solver combination of HYPRE/GMRES, which is in
agreement with findings in more specific studies in this regard [219].

To evaluate the scaling performance of the implemented parallelism, a set
of weak and strong scaling tests was conducted. In weak-scaling, the main
approach is changing the problem size proportional to the change in the
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available computing resources. In an ideal parallelization, we expect that the
speedup remains the same for all the setups because we provide double
resources as we double the size of the problem. In strong-scaling, the size of
the problem remains constant, but the number of computing units increases.
So, in an ideal case, we should observe a double speedup as the number of
computing units doubles. By fitting Gustafson’s and Amdahl’s laws on the
scaling test results (Figs. 7.9 and 7.11), the maximum parallelizable portion
of the code was calculated to be 82% and 99% for the weak-scaling and strong-
scaling tests, respectively. This is a reasonable theoretical scaling for both cases.
However, it should be noted that Gustafson’s and Amdahl’s laws are only
applicable and valid for ideal parallelization cases, a fact that can be considered
as the simplification made for performing the analysis made in the current
research.

The obtained scaling behavior is similar to other conducted studies for dif-
fusion or diffusion-convection systems [220, 221], in which the efficiency
of the parallelization decreases with increasing the number of available
computational resources. The reason behind this behavior in the current
model seems to lie in the mesh partitioning process. Indeed, the mesh is
partitioned into semi-equal partitions, each of which has the same number of
elements, but the main computation is only carried out on the nodes located
outside the degrading material block (i.e. in the medium). In other words,
the computational resources assigned to the nodes inside the material bulk do
not contribute significantly to the simulation. This limitation can be prevented
by modifying the mesh generation process in a way that a lower number
of elements be generated inside the material block, but doing this requires
remeshing of the interior region as the moving interface approaches it, which
imposes even more complexity to the algorithm due to the partitioned mesh.
Another bottleneck of the current model, as discussed before, routed in the
non-constant right-handmatrix of the linear system (Eq. 7.33), which requires
computing the A matrix (Eq. 7.34) in each time step and leads to a slower
execution time.

One important point in this regard is that the way that the results are
interpreted does not necessarily imply the true scaling behavior of the system.
Indeed, it is more like a surrogate model of the system performance. The
correctmethodology for obtaining true scaling factors is rather starting froman
analysis of the code and time used in each routine for a non-parallel run. Then,
based on the fraction of routines that are possible to execute in parallel, one
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can get a theoretical limit for the speedup. This will be reduced by practical
limitations such as load balancing and communication costs of the network.
Since it is a theoretical limit, it is not fully correct to ignore those extra parts
and use the execution time to invert the relation to predict the fraction of the
code that is parallel. However, for a complex computational model like the one
that was developed in the current study, doing such a measurement of each
routine is very difficult due to the complexity of the orchestrated libraries and
tools. As a result, we were limited to use the roughly approximated speedup
limit to evaluate the scaling of the constructedmodel. Regarding the scalability
results, it is worth mentioning that although having studies with thousands
of MPI ranks is more common in this field, due to the limitation we faced in
accessing computational resources, the maximum number of employed cores
were limited to 300. The goal of the current study was to demonstrate the
scalability of the developed model on massively parallel systems, and the
behavior of the model in moving from 90 cores to 300 shows the consistency
in the performed performance analysis. As a result, we expect to see the same
scalability behavior for problems in a larger scale with a higher number of
employed computing nodes.

7.6 Conclusion

In this work, a mathematical model of a reaction-diffusion system with a
moving front was constructed, and the corresponding computational model
was implemented using the finite element method. In order to correlate the
diffusion phenomenon to the moving boundary position, high numerical
accuracy is necessary at the diffusion interface, which requires a finer dis-
cretization of space near the moving front. This leads to an expensive com-
putational model, which makes employing HPC techniques crucial in order
to improve the simulation execution time. To this end, a high-performance
domain decomposition approach was employed to partition the mesh and
distribute the workload to available computing resources. Additionally, an
efficient preconditioner/solver combination for reaction-diffusion PDEs was
used to optimize the model to be used for the high-performance simulation of
large scale systems in which the movement of system boundaries is controlled
by reaction-diffusion phenomena.

The investigated problem was the degradation of a magnesium block inside a
solution, in which the surface of the block moves due to the reaction-diffusion
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phenomena in the metal-medium interface. The implemented model showed
a good agreement with the experimental data in terms of the degradation rate
and chemical reactions, and the parallel efficiency and linear scalability were
appropriate in performance evaluation tests. For the next stage of the study,
it could be interesting to evaluate the model and its performance on a much
larger system and tune the resources and memory usage by testing different
preconditioners and solvers.

7.A Comparing the performance of different com-
binations of KSP types and preconditioners

In order to yield the highest performance, a variety of different combinations of
KSP types and preconditioners were evaluated, such as Conjugate Gradients
(CG), Successive Over-Relaxation (SOR), block Jacobi, and Algebraic Multi-
grid (AMG), and Generalized Minimal Residual Method (GMRES). The tests
were performed using 6 MPI cores on an Ubuntu machine with an Intel Core
i7-8850H CPU (2.6 GHz of clock speed) and a total available memory of 32 GB.

Figure 7.12: Performance test result for various combinations of precondition-
ers and solvers. Results are broken down into contributions for each PDE,
which are plotted cumulatively and separately in the left and right plots,
respectively.
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Table 7.2: Performance test result for various combinations of preconditioners
and solvers, presented by the execution time of each PDE.
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Solution time
of each time
step (s)

LS PDE 2.4 2.9 2.1 2.9 3.0 2.9 2.5 2.5
Mg PDE 3.4 4.1 3.1 3.8 3.9 4.3 3.4 3.5
Film PDE 1.8 2.0 1.6 2.2 2.1 2.6 1.7 1.8

Total time (s) 7.6 9.0 6.8 8.9 9.0 9.8 7.6 7.8





CHAPTER

8

BIODEG SIMULATION
SOFTWARE

This chapter is based on previously published content in the Journal of
Open Source Software:
M. Barzegari, and L. Geris, “BioDeg: A finite element software for
the simulation of the corrosion and biodegradation process in metallic
biomaterials,” Journal of Open Source Software, vol. 7, p. 4281, 2022.

8.1 Summary

BioDeg is an open-source software written in FreeFEM (a domain-specific
language for finite element programming), C++, and Python formodeling the
degradation ofmetallic biomaterials and simulating the biodegradation behav-
ior of medical devices and implants in corrosion experiments. The underlying
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mathematical and computational models are already validated in the previous
contributions [131, 151] (presented in Chapters 3 and 7) by comparing the
predictions made by the code with the experimentally obtained quantities.
BioDeg supports simulating the change of morphology of the biodegradable
part, release of materials, formation of surface corrosion products, the effect
of the surrounding environment (such as various electrolyte solutions and
chemical components aswell as the presence of fluidflow), and change of other
quantities (such as pH). It features command-line and graphical interfaces,
being available on all major operating systems and platforms. BioDeg is
designed with open standards in mind and as a result, can be easily integrated
into other established workflows such as topology optimization and tissue
growth models.

8.2 Statement of need

Biomaterials, the substances we put inside the body to replace/repair a lost
functionality, can be classified into two categories from a biodegradation
perspective: bio-inert and biodegradable. While the former type has a few
interactions with its surrounding environment, the latter gradually disappears
and gets absorbed by the body [2,71]. Although bio-inert biomaterials show a
great performance especially in fixation applications, they bring an important
problem into play: they remain in the body forever or require additional
surgery to remove them. Biodegradable materials do not have this problem,
and in the case ofmetallic biomaterials, they also provide a suitablemechanical
stability profile. However, taking advantage of them requires tuning the
degradation parameters and material release rate [5].

This problem is usually investigated by conducting in-vitro (in the lab) and
in-vivo (in a living system) tests of biodegradable metallic implants, which
requires conducting multiple experiments for different scenarios and situa-
tions and spending a lot of resources. Developing a quantitative mathematical
model of the degradation process is a proper solution to this issue by allowing
researchers to study the biodegradation behavior of any desired implant in-
silico (in the computer) prior to conducting any in-vitro or in-vivo experiments.
Developed mathematical models can be simulated using efficient numerical
methods such as the finite element method.

Although there is a wide variety of relevant theoretical studies in the field of
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corrosion and biodegradation simulation [63,66,68,75,100,143,222], to the best
of the authors’ knowledge, none of the developed models has been publicly
released together with their code to be evaluated by the scientific community.
It means that none of the previous contributions are available as a software
tool for relevant users such as researchers in biomaterials science, regenerative
medicine (tissue engineering), and biomedical engineering.

Moreover, the available tools used to implement aforementioned models are
not open-source or have the issue of restricted access. For example, COMSOL
multiphysics (COMSOL Inc., USA) has a module for mechanistic corrosion
simulation, although it lacks certain research-related features like simulating
the change of morphology of the corroding object and freedom in defining the
chemical reactions. Another example in this regard is the MuPhyS software
[100, 223] developed by the research group of Electrochemical and Surface
Engineering (SURF), Vrije Universiteit Brussel, Brussels, Belgium. Despite
being able to perform mechanistic biodegradation simulations, MuPhys is a
closed-source software for in-house applications and is not publicly available
to general users.

BioDeg is a fully open-source biodegradation and corrosion simulation soft-
ware, currently validated for magnesium biomaterials [131]. A cross-platform
and easy-to-use user interface makes it possible for anyone to use the program
to simulate the biodegradation behavior of metallic implants with any shape
of interest without concerning the technical aspects of the code. Technically
speaking, BioDeg uses the finite element method to solve a set of partial
differential equations derived mechanistically from the chemistry of biodegra-
dation and utilizes high-performance computing (HPC) techniques to make
the computation scalable to hundreds and thousands of computational nodes.

8.3 Overview of BioDeg

8.3.1 Basic concepts

From a general point of view, material modeling techniques are categorized
as either stochastic or deterministic. In stochastic modeling, material state
evolution is modeled by a set of semi-random rules, implying the conditions
in which materials interact with their surrounding environment. On the other
hand, deterministic modeling takes advantage of conservative laws in physics,
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formulating the interactions ofmaterials bymeans of the rules such as the ones
coming from transport phenomena [224].

BioDegworks based on the principles of deterministic modeling for predicting
the biodegradation and corrosion of metallic materials. Several studies have
demonstrated that this type of modeling has a high potential in representing
the biodegradation and corrosion phenomena [68, 100, 222]. BioDeg is built
upon amechanistic formulation of the biodegradation process [131], described
in Chapter 3. The developed model captures the release of metallic ions,
changes in pH, the formation of a protective film, the dissolution of this film
in presence of different ions, and the effect of fluid flow of the surrounding
solution. This has been accomplished by deriving a system of time-dependent
reaction-diffusion-convection partial differential equations (PDEs) from the
underlying oxidation-reduction reactions. The level set formalism [80] was
employed to track the biodegradation interface between the biomaterial and
its surroundings, enabling the model to monitor the morphological changes
of the investigated implant/device during the biodegradation process. As an
example of BioDeg output, figure 8.1 demonstrates the simulation results of
the biodegradation of an orthopedics screw, in which the white body and the
color contour show the degrading shape of the screw and concentration of
metallic ions as they are released over time, respectively. The current model
is able to simulate diffusion-based corrosion only, and localized corrosion is
not supported yet, but further development is being done to make the model
capable of simulating non-uniform corrosion as well.

8.3.2 Implementation

Implementing a parallel 3D computational model of the developed mathemat-
ical framework allows studying the corrosion and biodegradation behavior of
medical implants and devices in-silico no matter the complexity of the implant
shape. This has been achieved by solving the derived systemof equations using
the finite element method on any arbitrary 3D mesh.

The computational model (BioDeg-core) is implemented in FreeFEM [86], a
domain-specific language for PDE solving and finite element computations.
While having a syntax almost identical to C++, FreeFEM provides rich
interfaces to well-known scientific computing libraries for performing relevant
tasks such as mesh generation, solving linear system of equations, various
IO operations, and HPC. This fact makes FreeFEM a perfect choice for the
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Figure 8.1: Simulation results of the degradation process of a screw made
of magnesium inside a saline (NaCl) solution, leading to a high rate of
degradation. The contours display the concentration of magnesium ions on a
cross-section view of the medium beside the moving surface of the screw. The
screw was selected to be small (1 millimeter) so that the effect of degradation
can be observed in a smaller time window. Each sub-figure shows a time
difference of 24 hours, and the numbers (1) to (4) demonstrate the evolution
of the simulation over time. This example is provided along with the code.

implementation of complex mathematical models, especially for resource-
demanding applications. Additionally, a general preprocessor for embedding
desired 3D shapes inside a container (the medium/electrolyte in biodegra-
dation simulations) is implemented in FreeFEM using the ParMmg parallel
mesh manipulation library [225]. This helps non-technical users to perform
simulations on their desired geometries. The preprocessor performs mesh
refinement on the interface of the implant and the medium to increase the
numerical accuracy of interface tracking. This mesh refinement is based on
the level-set function used to measure the distance of each element of the
mesh to the biodegradable part surface. The preprocessor uses this function
and a set of user-defined values (like the minimum and maximum element
size) to refine the elements on the moving corrosion front. BioDeg supports
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tetrahedral elements only, which is a limitation routed in supported element
types in FreeFEM.

The user interface (BioDeg-UI) is implemented using C++ and Qt toolkit. A
front-end using Qt and a back-end in FreeFEM enable BioDeg to be cross-
platform and be able to run on major operating systems including Linux,
Windows, and macOS. The postprocessing of the results is carried out by
the open-source software ParaView [206], which is also a cross-platform
postprocessor.

8.3.3 High-performance computing

Biodegradation simulations in BioDeg can become complex and resource-
demanding. The reason lies within the refined mesh on the metal-electrolyte
interface. This refined mesh is required to increase the accuracy of employed
numerical schemes to track the moving corrosion front [131, 151]. This leads
to an expensive computational model, and as a result, employing parallel
computing and HPC techniques becomes crucial to make it possible to scale
the simulations to hundreds or thousands of computational nodes and de-
crease the simulation execution time. To this end, a high-performance domain
decomposition approach was employed to partition the mesh and distribute
the workload to available computing resources [210]. Additionally, efficient
preconditioners and solvers were used to solve the linear system of equations
resulting from the finite element discretization. This was achieved by using the
rich PETSc library [89], which provides a collection of efficient preconditioners
and solvers for solving PDEs.

8.3.4 Installation

The main prerequisites of BioDeg are FreeFEM, PETSc, Mmg, and an MPI
runtime (such as OpenMPI or MPICH). The PETSc library contains the rest
of the dependencies. Since FreeFEM provides appropriate interfaces to Mmg
andPETSc and includes installation scripts for building and installing them, all
the requirements can be met by building/installing FreeFEM with the PETSc
link enabled.While a set of pre-built binaries are available for download on the
FreeFEMwebsite, the user manual of BioDeg includes a section for instructing
the users to build FreeFEM to achieve maximum flexibility on their systems.
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The next step is to build or install the BioDeg UI, the graphical user interface
of BioDeg. Stable binaries can be downloaded from the Release section of
the GitHub repository for Windows and Linux, but if the user prefers to
compile it from source code, the build process is straightforward as well. The
prerequisites for building the UI are Qt framework and CMake, which need to
be installed for the target operating system. The rest of the process is a standard
CMake build routine, which can be followed from the installation instruction
in the BioDeg UserManual or the GitHub repository. After building/installing
BioDeg UI, the user can run it to setup and execute simulations.

In case the user does not need toworkwith theUI, like inHPC environments or
for advanced users, the previous steps for building BioDeg-UI can be skipped,
and the user can directly run the core model by executing mpiexec -n N
FreeFem++-mpi core/src/main.edp -v 0 to parallelize the computation into
N MPI processes. In this way, the simulation can be configured by dozens of
available command-line arguments, documented in the BioDeg User Manual.

For graphical output, the postprocessing of the simulation results is handled by
ParaView, so the users should have it installed on the system. Stable binaries for
various platforms can be found on the ParaView website, including portable
versions which do not require installation and are ready to run immediately
after download. BioDeg UI can help visualize the results by executing specific
filtering processes in ParaView, which can also be done manually by following
the postprocessing guideline provided in the BioDeg User Manual.

8.3.5 Documentation

A comprehensive user manual is provided for user-oriented documentation
on installing the software, preparing the simulations, running themodels, and
postprocessing the results. As this is being developed in a separate repository
(BioDeg-doc [226]), additional documents and supporting materials will be
added eventually.

Since FreeFEM does not support developer-focused technical documentation
(like Doxygen), the core code is fully commented for easier contribution.
Further technical details regarding the development, like the theoretical foun-
dations of the computational models, has been added to the BioDeg-doc
repository [226]. Both the user manual and the theory guide are accessible
from the Help menu on the BioDeg UI.
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8.3.6 Contribution

BioDeg is developed using a wide range of open-source tools and is released
under GPLv3, so unconstrained use and reuse are encouraged and welcome.
The code has been initially developed as part of a PhD research project,
but further contributions, either on the development of the core models or
providing more supporting materials, are highly welcome. More guidelines
for such contributions can be found in the CONTRIBUTING.md file in the
GitHub repository. Previous contributions are acknowledged in the BioDeg
User Manual.

8.3.7 Published works

The code has been already used in publishing 2 scientific works so far, and
there are several studies ongoing to be prepared for publication. In the
published works, BioDeg was employed to simulate the behavior of high-
pure magnesium (HP Mg) in immersion corrosion tests [131] as well as to
evaluate the efficiency and scalability of the employed parallelization schemes
for reaction-diffusion systems with moving boundaries [151]. Currently, the
code is being used for simulating the degradation of magnesium in hydro-
dynamics (perfusion) conditions, in which the underlying phenomena are
investigated in the presence of fluid flow. Moreover, BioDeg is being coupled
with a topology optimization code for optimizing the shape of biodegradable
structures for medical applications. Later, it will be integrated it with an
optimization code and bone tissue growth models for improving the design
process of biodegradable orthopedics implants.



CHAPTER

9

BAYESIAN PARAMETER
ESTIMATION OF THE

COMPUTATIONAL MODELS

This chapter is based on previously published content in the Journal of
Open Source Education:
M. Barzegari, and L. Geris, “An open source crash course on parameter
estimation of computational models using a Bayesian optimization
approach ,” Journal of Open Source Education, vol. 4, p. 89, 2021.
This publication included didactical and educational materials in
Jupyter Notebooks format to make it possible for readers to follow the
principles interactively. The introductory part of the Jupyter Notebook
file is included in this chapter as well.
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9.1 Summary

Parameter estimation is a crucial aspect of computational modeling projects,
especially the ones that deal with ordinary differential equations (ODE) or
partial differential equation (PDE) models. Well-known examples in this
regard are models derived from a basic balance or conservation law, such
as mass balance or heat transfer problems. For real-world applications, these
equations contain some coefficients that cannot be obtained directly from
published scientific materials or experimental studies [227]. One of the best
solutions to this challenge is constructing an inverse problem.

According to [228], inverse modeling is the use of the results of some
measurements of observable parameters to infer the values of the model
parameters. Put differently, what we want to do is estimate parameters that
cannot be directly measured for our computational model. This is also called
parameter estimation or model calibration [229]. Indeed, we calibrate our
model to act similarly to available experimental data, and then this calibrated
model can be used to simulate other scenarios that haven’t been tested yet in
the experiments. This is a common process in a lot of modeling problems in
science and engineering.

Take a simple reaction-diffusion equation as an example, in which the change
of the concentration of a sample chemical component C is studied over time.
By assuming that the correlated chemical reaction is A + 2B ⇌ C, occurring
in a diffusible medium (such as a chemical solution), the PDE to describe the
mass transfer phenomenon over time can be written as [78]:

∂[C]
∂t

= ∇. (DC∇[C]) + k1[A][B]2 − k2[C] (9.1)

in which [X] denotes the concentration of the chemical component X, the DC is
the diffusion coefficient of C in the medium, and k1 and k2 are the rates of the
forward and backward reactions, respectively. To solve this PDE numerically
and get quantitative data (the goal ofmost of the scientific computing projects),
we need to know the value of DC, k1, and k2, which is usually hard-to-find in
the literature.

As mentioned above, one solution is to to solve the inverse problem, in which
we can use optimization techniques to minimize the difference between the
model output and experimental data. Bayesian optimization is one of the most



STATEMENT OF NEED 159

efficient approaches in this regard [93]. HyperOpt [230] is a Python package
that provides easy-to-use interfaces to implement a Bayesian optimization
problem, making it a good choice for both educational and practical purposes.
In our educational module, we used this package to teach the principles of an
efficient parameter estimation pipeline.

For demonstration purposes, an interpolation problem is solved by using the
parameter estimation techniques that a computational modeling researcher
employs for model calibration. Indeed, the computationally intensive code is
replaced with a simple function evaluator, which helps students to learn the
core concepts without waiting too much for the process to finish. Students will
be guided through several steps of refining the results inside the notebook,
where the interactive computing environment of Jupyter facilitates exploring
the implementation more efficiently in comparison to traditional educational
materials.

9.2 Statement of need

Despite its simplicity, building an inverse problem is hard for many students.
The problem is that, although it is relatively simple to describe the process
visually, implementing it for a practical application becomes challenging in
its early stages. In this educational module, a simple optimization problem
is implemented in a Jupyter notebook to teach students how to construct
an inverse problem and tune it to get better results in such a problem. In
this way, students can work on a real-world optimization problem in an
interactive environment and learn the concepts behind taking advantage of
a modern optimizationmethod (Bayesian approach) for parameter estimation
of a computational model.

Our notebook is a modern learning module for relatively old and frequently-
used concepts (global optimization, Bayesian techniques, inverse problems).
It has been designed to be useful for both teachers and students. Students
can use it as a self-study guide for parameter estimation and inverse problem
construction, while teachers can change the underlying problem to any other
desired one easily and make the learning module compatible with their own
teaching requirements.
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9.3 Learning objectives

Upon completion, students will be able to:

• Understand the concept and necessity of parameter estimation in science
and engineering

• Describe what the whole process of Bayesian optimization is all about

• Define and implement a Bayesian optimization workflow for parameter
estimation of common use-cases

• Critically evaluate the output of the process and fine-tune the setup of
the Bayesian optimization

• Apply the obtained knowledge to any kind of models that are commonly
used in science and engineering

9.4 Prerequisites

In order to go through the learning module, the students should have a
working knowledge of programming in Python. Additionally, a basic under-
standing of mathematics is required to get the concept of models in science
and engineering. The given example is a mathematical model derived from
differential equations, so knowledge of differential equations can help to
understand the importance of parameter estimation in these widely-used
models.However, in case of necessity, the example can be replaced by any other
relevant one for the target learners.

9.5 Pedagogy and instructional design

The provided material is in the format of a crash course, which is suitable for
being taught in one session of undergraduate or graduate courses for science
and engineering students. Courses to which this material is relevant can be
“optimization”, “scientific computing”, or “parametric design”. The material
may also be useful for relevant educational projects for the target students, in
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which they can employ the learned techniques to construct efficient inverse
problems for parameter estimation.

The teaching strategy is based on the worked-example effect [231], in which
an example of parameter estimation is fully implemented to allow students
to play with and modify the code to have their own reflection in class
discussions. Basic prior knowledge of Python suffices as the problem doesn’t
involve students with complicated programming stuff. The student-centric
characteristic of this crash course helps teachers to adopt the material easily
and integrate it into an existing syllabus of relevant courses in science and
engineering.

9.6 Getting started

The learning material is provided as a single Jupyter notebook, in which all
the steps of constructing an inverse problem are described in detail with
accompanying Python codes. A very simple simulation code (in the context of
an interpolation problem) is also provided and can be found in the repository.
The code inside the notebook calls this external program at certain points
to mimic the interaction of the parameter estimation routine and the main
computational code that contains the unknown parameters.

To get started with the module, the user should set up the environment first.
The setup instructions are provided in the README.md file of the repository.
After setting up the Jupyter notebook and installing the required packages, the
user can navigate to the src folder and run the notebook file. No further action
is needed as the content of the notebook is self-explanatory and easy-to-follow.
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9.A A glimpse of the Jupyter notebook

9.A.1 Introduction

As the name implies, the parameter estimation process deals with approximat-
ing unknown parameters, the factors that define a system or its operation. In
science and engineering, this can be seen as a sub-category of optimization
techniques since we seek to find the optimal state of a system. After finding
the desired state, we look for the parameters contributing to such a state. It is
indeed what parameter estimation is all about. Seems complex? Look at it as a
calibration process, in which a machine, tool, or system is tuned to produce a
correct output. Imagine youwant to calibrate a machine with 3 knobs. How do
you do the calibration? You compare the output with a reference, something
you know the machine should produce, and then try to adjust the knobs
such that the output matches the reference. It is how calibration works, no?
Take a thermometer as an example. You have a reference temperature, like
boiling water at 100 degrees Celsius, and 3 knobs on the device. You continue
turning the knobs to see 100 appearing on the machine, and by doing that,
you calibrate the thermometer. In this way, you have estimated the unknown
parameters (the 3 knobs) of the device. After being calibrated, you can use the
thermometer to measure any temperature.

Now, instead of the machine, assume you want to perform the same process
on an engineering system. Each system (or, let’s say, model) has a certain
number of parameters to be tuned. After calibrating the system (model) with
the reference data (a data we already know is correct), we can assure that the
system’s output is more or less valid if being used for another measurement
(prediction). Real-world systems in science and engineering contain some
parameters that cannot be obtained directly frompublished scientificmaterials
or experimental studies. Thus, we should estimate them using a calibration
(optimization) strategy, a process that is generally called an inverse problem.

An inverse problem in science is usually referred to the process of calculating
the causal factors from a set of observations that have produced them. Inverse
problems are important because they tell us about parameters that we cannot
directly observe. That’s exactlywhatwewant to do: estimating parameters that
we cannot directly measure for our model. Indeed, we calibrate our model to
act similarly to available experimental data, and then this calibratedmodel can
be used to simulate other scenarios thatwe have not tested in experiments. This
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concept is similar to the training process ofmachine learningmodels. You train
the model by making it fit to previously available data and asking it to predict
unseen data.

To construct an inverse problem for computational models, we can take
advantage of conventional optimization approaches. The goal is to minimize
or maximize a function, or more technically speaking, an objective function.
Mathematical optimization is selecting the best element (concerning some
criterion) from some set of available alternatives. In the simplest case, an
optimization problem consists of maximizing or minimizing an objective
function by systematically choosing input values from an allowed set and
computing the output of the system. More generally, optimization is the
process of finding the optimum value of an objective function given a defined
domain (or input). To wrap up, the essential concepts here are the objective
function (what we want to minimize) and the domain space (values of the
parameters over which we minimize the objective).

Back to our example problem, our objective function will be the difference
between the produced output of our simulation and the experimental data of
the exact condition, which is also called "loss". In other words, we change the
coefficients such that the simulation output would be the same as (or close to)
the experimental data thatwe already have. To this end,we can choose random
values out of the domain space (the range that we search for appropriate
values), evaluate themodel with those values, and continue this process till we
find the lowest loss possible. This can be a good approach as long as the cost
function evaluation is cheap, which means the simulations run fast (because
we need to run the simulation to evaluate the cost function). The problem is,
for most of the real-world models, running each simulation takes quite long.
As a result, each iteration of the optimization algorithm is not cheap anymore.
To overcome this issue, we use a Bayesian optimization strategy, a method that
is usually employed to optimize expensive-to-evaluate functions.

9.A.2 Bayesian optimization

To describe how the Bayesian optimization approach helps us to overcome the
problemmentioned above, I use the great descriptionmade by@WillKoehrsen1.

1https://github.com/WillKoehrsen

https://github.com/WillKoehrsen
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I cannot explain it better (you can find the full interactive document at
https://github.com/WillKoehrsen/hyperparameter-optimization):

Evaluating the objective function is the expensive part of optimization, so ideally,
we want to limit calls to this function. One way we can limit calls is by choosing
the next values to try in the objective function based on the past results. Bayesian
optimization differs from random or grid search by doing exactly this: rather than
just selecting from a grid uninformed by past objective function evaluations, Bayesian
methods take into account the previous results to try more promising values. They
work by constructing a probability model of the objective function (called a surrogate
function) p(score|parameters) which is much easier to optimize than the actual
objective function. p(A | B), the conditional probability, is the probability of A given
B, i.e., A after B is observed.

After each evaluation of the objective function, the algorithm updates the probability
model (usually given as p(y|x) incorporating the new results. SequentialModel-Based
Optimization (SMBO) methods are a formalization of Bayesian optimization that
updates the probability model sequentially: every evaluation of the objective function
with a set of values updates the model with the idea that eventually the model will come
to represent the true objective function. This is an application of Bayesian Reasoning.
The algorithm forms an initial idea of the objective function and updates it with each
new piece of evidence.

The next values to try in the objective function are selected by the algorithm optimizing
the probability model (surrogate function), usually with a criterion known as Expected
Improvement. Finding the values that will yield the greatest expected improvement in
the surrogate function is much cheaper than evaluating the objective function itself.
By choosing the next values based on a model rather than randomly, we hope that the
algorithm would converge to the true best values much quicker. The overall goal is to
evaluate the objective function fewer times by spending a little more time choosing the
next values. Overall, Bayesian Optimization and SMBO methods:

• Converge to a lower score of the objective function than random search

• Require far less time to find the optimum of the objective function

So, we get both a faster optimization and a better result. These are both two desirable
outcomes, especially when we are working with heavy computational models!

According to this simplified description, Bayesian optimization is a great
candidate to perform the parameter estimation of PDE-based computational

https://github.com/WillKoehrsen/hyperparameter-optimization
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models. If you are interested to know more about the mathematical aspects
of the Bayesian optimization, you may have a look at the SigOpt Bayesian
Optimization Primer.

In this notebook, we implement the whole process of a Bayesian optimization
strategy, including constructing a cost function by calling the simulation code,
performing the optimization, and postprocessing the results. To do this, we use
Python and HyperOpt, an open-source Python library for Bayesian optimiza-
tion that implements SMBOusing the Tree-structured Parzen Estimator (TPE).
TPE, along with Gaussian Processes and Random Forest Regression, are the
algorithms that can be used in the SMBO method to construct the probability
model (surrogate function). We don’t need to worry about implementing the
algorithm because Hyperopt takes care of that for us. We have to make sure
we have correctly defined the objective function and the domain of values to
search over.

9.A.3 Sample problem

Instead of a PDEmodel, we use a more straightforward problem to focus more
on the optimization rather than the numerical simulation of the PDE. The
problem with which the optimization algorithm interact is fitting a 4th-order
polynomial equation on some experimental data. You should notice that the
optimization algorithm is entirely unaware of the fitting problem behind the
objective function.

The objective function is implemented in a general way: calling the external
simulation code, gathering produced output, and computing the loss. Tomake
this as real-world as possible, I implemented an external Python code that
takes polynomial coefficients and computes the function values on desired
points. This data is saved on the disk and then retrieved by the objective
function of the main optimization code to calculate the loss. In a real-world
application, the external simulation code takes the coefficients (such as the
reaction rates in the above PDE example), performs the simulation, and writes
the output to the disk. The rest of the process is the same. In the next step,
the optimization algorithm changes the parameters and calls the external
simulation code again to see the loss of the new parameters. This process
continues iteratively to a certain number of iterations.

The experimental data, which are indeed 21 points of a 4th-order polynomial
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function in the range [0, 5], are stored in a CSVfile. Each line contains one point,
better to say a pair of two values defining a point, and this exactly what it
can be in a real scenario. For example, it can contain the value of a chemical
component concentration over time, in which the first and second values of
each line would be time and concentration, respectively.

The optimization output of this sample problem will be similar to Fig. 9.1.

Figure 9.1: A typical output of the parameter estimation process, plotted using
the SeabornPythonpackage,which showshow the optimization algorithmhas
chosen the values of different parameters in different iterations by comparing
the distribution of points 2 by 2 for 4 unknown parameters of the polynomial
model.
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CHAPTER

10

MODEL APPLICATIONS:
PATIENT-SPECIFIC POROUS
ACETABULAR IMPLANTS

This chapter is based on a manuscript prepared to be submitted:
M. Barzegari, F. Perez-Boerema, G. Zavodszky, and L. Geris, “High-
performance computer simulation of biodegradation of optimized
personalized implants; a case study of a patient-specific porous
acetabular implant.”

In this chapter, the developed biodegradation work is tested on the output
of a surrogate model for design optimization of patent-specific orthopedics
implants, which can be seen as coupling of the twomodels. Since the output of
the surrogate model has a high level of geometrical details, the corresponding
biodegradation model becomes highly computational-intensive, making it
suitable for tuning and evaluating the HPC scaling behavior of the model.
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10.1 Introduction

3D-printed orthopedic implants have been gaining popularity in recent years
due to this manufacturing technique giving the designer control over the
different design aspects of the implant [232, 233]. It allows manufacturing
implants with specific designs and using material properties similar to the
bone, allowing the implant designer to address complications experienced
in various surgeries such as total hip arthroplasty (THA). The implants
used in THA consist of three main components: a femoral stem, a liner and
an acetabular component, which comprises a cup and a solid (or porous)
part behind. In large bone defects and severe deformations, the acetabular
component can be designed andmade patient-specific, an example of which is
shown in Fig. 10.1 (Ortho Baltic Implants Co., Lithuania). This patient-specific
design has certain advantages such as decreased mechanical instability risk,
adaptation of the implant shape to the patient’s bone geometry, restoring the
biomechanics of the joint after the severe fractures, and optimal positioning of
the screws.

Although such a patient-specific design helps surgeons address multiple
problems in the first place, other issues may emerge during revision surgeries,
an example of which is the aseptic loosening of the implant after THA. The rate
and quality of bone regeneration after implantation of orthopedic implants de-
pends significantly on the achieved (initial and long-term)mechanical stability.
To restore proper function after the implant loosening, the implant needs to be
replaced. During these revision surgeries, some bone is removed along with
the implant, further increasing the already present bone defects and making
it harder to achieve proper mechanical stability with the revision implant
[234]. A possible way to limit the increasing loss of bone is using (partially)
biodegradable orthopedic implants that optimize long-term implant stability,
in which part of the implant, like the irregular patient-specific part behind the
acetabular cup in Fig. 10.1, is made from biodegradable metals. This means
that the biodegradable part of the implant will disappear and be replaced by
newly formed bone during the implant’s lifetime. Taking advantage of these
implants needs to optimize the implant so that stress shielding is minimized
and tune the implant degradation rate so that newly formed bone can replace
the degradingmetal tomaintain proper bone-implant contact. The hope is that
such (partly) degradable implants will lead to a reduction in the size of the
bone defects over time, making possible future revisions less likely and less
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Figure 10.1: Demonstration of patient-specific acetabular implants in large
bonedefects (reproducedwith permission fromOrthoBaltic ImplantsCo.1), a)
the full setup comprises a femoral stem, a liner and an acetabular component,
b) a sample design of the acetabular component which consists of a (non-
degradable) cup and a porous part designed to match the geometry of
the patient’s fractured bone. The porous part can be manufactured from
biodegradable materials such as Mg alloys.

complex.

In this study, we focused on improving the long-term implant stability of
patient-specific acetabular implants for large bone defects and tuning their
biodegradable behavior. To improve the long-term implant stability, a surrogate-
based optimization approach was implemented that sought to reduce implant-
induced stress shielding by adjusting the stiffness of an acetabular implant.
The optimized stiffness was subsequently translated into a porous implant
design of varying porosity. In the initial stage of developing a computational
workflow containing both the patient-specific optimization routine and the
biodegradation model, the geometry of the acetabular component of the
implant was assumed to be only the cup by ignoring the additional back-parts,
all of which is designed to be porous and made from biodegradable materials
(Fig. 10.2). Although this assumption was made for demonstration purposes
and simplifying the geometry of the optimization model, the workflow can be

1https://balticimplants.eu/

https://balticimplants.eu/
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applied to the full acetabular implant setup consisting of a cup-shaped non-
degradable part (combined with a polyethylene cup) and a patient-specific
porous degradable part matching the patient’s bone geometry in the future.

Figure 10.2: Demonstration of the simplified patient-specific acetabular
implant used in the current study to demonstrate the developed computational
workflow, which assumed to have a porous structure on its back made from
biodegradable metals, a) the large bone defects in the hip bone, b) the implant
used for fixing the problem in the total hip arthroplasty surgery, c) the porous
structure on the back of the implant, which is assumed to be biodegradable for
demonstration purposes. This part is made from non-degradable materials in
real-case scenarios to provide support to the patient-specific degradable part
attached to it (Fig. 10.1). Polyethylene liner is not shown.

A quantitative mathematical model of the degradation process is a useful tool
for tuning the biodegradation and material release rate, allowing researchers
to study the biodegradation behavior of any desired implant in silico (in the
computer) prior to conducting any in vitro or in vivo experiments. Developed
mathematical models can be simulated using efficient numerical schemes
such as the finite element method. The primary challenge here will be
achieving a high numerical accuracy at the interface between the implant and
surrounding tissue in the body since the interface plays an important role in the
degradation phenomena. Increased accuracy means increased computational
cost and resources (especially time), but high-performance computing (HPC)
techniques can be used to overcome this challenge.

The implant design optimization (surrogate-based and topology optimization)
is the PhDwork of Fernando Perez-Boerema (in preparation), that is extended
in this chapter with a model of the metal biodegradation process. Hence, the
focus of the description here will be on the coupling with the degradation
module as well as the improvement of the use of HPC techniques.
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10.2 Materials and methods

10.2.1 Surrogate-based optimization model

Two patient-specific finite elements (FE) models of the hip joint, i.e., one with
implant and one without, were derived from computed tomography (CT)
scans of the pelvis, implemented using MARC/MENTAT software (Perez-
Boerema et al., in preparation). The elastic modulus of the implant was
parametrized, making use of two paraboloids, one for the upper half of the
acetabular implant and one for the lower half. The FE model of the hip joint
with implant was then used to generate a surrogate model by first applying
a principal component analysis (PCA) in order to reduce the size of the
output space and subsequently constructing a radial basis function (RBF)
surrogate, implemented inMATLAB. The resulting surrogate model was used
in a multi-start local optimization routine that relied on sequential quadratic
programming to perform the local optimizations. The optimization had as
objective minimizing the difference in stresses between the physiological
control (no implant) and the case with implant. The coefficients of the
paraboloids used to parametrize the elastic modulus were taken to be the
design variables. The elastic modulus was limited to values between 1.2 and
110 GPa, while implant stresses were constrained to at most 0.3 times the yield
stress. The optimized stiffness distribution was subsequently used to design
an acetabular implant with a local porosity chosen to match the optimized
global stiffness distribution. To this end, the open-source tool ASLI [235] was
developed in-house, facilitating the generation of a skeletal-gyroid-based infill
of varying porosity that can be tuned to match a predefined (in this case, the
optimized) stiffness.

10.2.2 Biodegradation model

In this application chapter, we apply the previously developed quantita-
tive mathematical model capturing the biodegradation of magnesium-based
implants (Chapter 3). Magnesium (Mg) was selected to start with due to
its acceptable mechanical properties, biocompatibility, and contribution to
osteoinductivity [236]. The developed model captures the release of Mg ions,
the formation of a protective film, the dissolution of this film due to the
presence of various ions in the surrounding environment, and the change in



174 MODEL APPLICATIONS: PATIENT-SPECIFIC POROUS ACETABULAR IMPLANTS

pH. This was accomplished by deriving a system of nonlinear time-dependent
reaction-diffusion partial differential equations (PDEs) from the underlying
oxidation-reduction reactions occurring during the biodegradation process
of metallic materials in simulated body fluid. The level-set formalism was
employed to track the movement of the biodegradation front between the
implant and its surroundings. The equations were solved implicitly using the
finite element method for spatial terms (with a 1st order Lagrange polynomial
as the shape function) and backward-Euler finite difference method for
temporal terms on an Eulerian mesh, implemented in the open-source PDE
solver FreeFEM [86]. The details of this model can be found in Chapter 3 and
[131]. Two separate simulations were performed using two different diffusion
coefficients, as calibrated in our previous work, to model the degradation
behavior in non-buffered and buffered solutions.

In order to build the computational model, the resulting surface mesh of
the surrogate-based optimization routine, consisting of 5,347,924 faces, was
converted to a volume mesh and embedded in a cubic container that was to
act as the environment during the biodegradation simulations. The conversion
of the surface mesh was performed using GMSH [237], and the embedding
process was carried out using the internal mesh engine of FreeFEM, called
BAMG.Themeshwas refined on the implant-environment interface to increase
the numerical accuracy of the interface tracking model, leading to a final mesh
with 45,870,053 elements. The mesh refinement process was handled using
Mmg [225] (and ParMmg [238]). Fig. 10.3 shows the embedded cup model
and a cross-section of the final generatedmesh,whichwas refined on themetal-
solution interface.

For dealing with a problem of this size andmaking the model capable of being
scaled in large-scale computing systems, the model implementation made use
of the HPC techniques available in the FreeFEM language v4.10 and PETSc
toolkit v3.16.1 [89]. In this implementation, METIS and ParMETIS graph
partitioners [127] were used to decompose the mesh into various partitions,
and then the partitioned mesh was distributed among available computing
resources using the HPDDM preconditioner [90]. Fig. 10.4 shows the decom-
position of the computational mesh. Moreover, the HYPRE BoomerAMG [87]
preconditioner and GMRES iterative solver [88] were used to solve the linear
systems of equations obtained from applying the finite element discretization
on the model. More details of the implementation can be found in Chapter 7
and [151].
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Figure 10.3: The computational biodegradation model for the porous acetab-
ular implant: a) the optimized acetabular implant embedded inside a cubic
container, b) a cross-section of the generated mesh with the implant’s surface
visualized as the light gray surface.

Figure 10.4: Mesh decomposition of the computational biodegradation model
to be distributed to available computing nodes, a) top view, b) perspective side
view.

The simulationwas carried out using 2,000 CPU cores with 16.5 TB of available
memory on the Dutch national supercomputer, Snellius. The simulation
results, comprising of 95,000 files with a total size of 148 GB, were visualized
using a parallel client-server remote rendering approach in ParaView server
v5.9.1 running on 128 CPU cores on the ARCHER2 supercomputer.

In order to obtain the scaling behavior of the model in an HPC environment,
strong and weak scaling tests were performed on the Snellius supercomputer.
For the weak scaling test, in addition to the mesh with 45,870,053 elements,
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two more mesh files consisting of fewer elements were generated using
the aforementioned procedure for embedding and refining the mesh. These
models had 15,989,521 and 29,035,491 tetrahedral elements, respectively, to
which the number of employed CPU cores was adjusted accordingly. The
strong scaling test was carried out for all three model sizes by varying the
number of employed CPU cores from 60 to 9000.

10.3 Results and discussion

10.3.1 Surrogate-based optimization of the acetabular implant

The optimized design to minimize stress shielding, depicted in Fig. 10.5, has a
skeletal-gyroid infill of varying porosity with apparent elastic moduli ranging
from 4.7 to 49 GPa and an estimated acetabular stress shielding reduction of
about 56% compared to a solid titanium implant.

Figure 10.5: Titanium acetabular implant infilled by skeletal gyroidmicrostruc-
ture with varying volume fraction to match a desired apparent stiffness
distribution [235]

.

The varying porosity was adjusted during a surrogate-based optimization
process tomatch the stiffness distribution required tominimize stress shielding
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during the bone healing process. Considering the target application is bone
tissue engineering, the infill used to generate the lattice structure was se-
lected based on triply periodic minimal surfaces (TPMS). TPMS-based lattices
have shown good performance for biological processes of cell attachment,
migration, and proliferation [187, 239], making them a suitable choice for
tissue engineering applications where their aim is to guide tissue growth. This
positive influence is routed in the appropriate balance of various structural and
mechanical properties required to improve bone tissue formation, such as yield
strength, fatigue strength, adequate mechanical stimulus, and permeability
[240,241].

10.3.2 Biodegradation of the infilled implant

Fig. 10.6 shows the mass loss during the biodegradation for simulations
performed in buffered (low degradation rate) and non-buffered (high degra-
dation) solutions. Mass loss is one of the commonly-used indicators for the
degradation rate, demonstrating that the biodegradation rate is much higher
in the non-buffered solution. Although evaluated on different geometries
with certain effect on the results, loss of material over time was found to be
comparatively in linewith the values obtained in Chapter 3 and [131], with the
mass loss in the saline solution being 6 to 10 times more than that of buffered
solution in evaluated time points before 21 hours. It shows that scaling the
model in an HPC environment does not affect the quantitative predictions
made by the model. The developed mechanistic model of the biodegradation
process includes a level-set equation correlating the loss of material to the
velocity atwhich the implant interface shrinks. The aforementioned agreement
of results on a large scale (a model with ∼45M elements) shows that the
interface tracking formulation behaves efficiently even in problemswith a high
level of details. This verifies the performance of the developed biodegradation
model, which has never been tested before in such high resolutions.

From a qualitative point of view, visualizing the biodegradation results over
time, depicted in Fig. 10.7, shows that the acetabular implant degrades faster
in the regions with higher porosity, i.e., the regions with more exposed surface
area to the environment. These are the regions designed to have lower stiffness,
resulting in high porosity after being filled with TPMS unit cells with a lower
volume fraction. From the induced bone formation perspective, the implant
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Figure 10.6: Rate of mass loss during the biodegradation of the porous
acetabular implant in saline and buffered solutions.

parts with low stiffness disappear during the bone healing process, a fact that
can be further taken into account in the optimization procedure.

Figure 10.7: Visualization of the change of morphology of the acetabular
implant over time (1) to (6).

Fig. 10.8 demonstrates a similar visualization but with a zoomed view on
the surface of the implant being plotted along with a cross-section of the
medium showing the concentration of releasedMg ions. The movement of the
corrosion interface is formulated based on the release of material ions, and as a



RESULTS AND DISCUSSION 179

result, thematerial loss rate is higher in regionswith higher ions concentration.
The concentration is directly correlated to the exposed surface area, meaning
that a higher surface-to-volume ratio results in a higher material release. This
explains why the regions with higher porosity degrade faster in the current
biodegradation model.

Figure 10.8: A closer look at the visualization of the change of morphology of
the acetabular implant over time ((1) to (6)) along with a cross-section of the
medium showing the concentration of released Mg ions.

Regarding the clinical interpretation of the obtained results, it is worth
reminding that the simulated cup is a simplified version of the acetabular
component of the implant. In real-case scenarios, this component contains a
patient-specific part on the back that can bemanufactured from biodegradable
materials (shown in Fig. 10.1). In order to simplify the geometry construction
and the optimization procedure, the shape of the patient-specific component
was neglected andwas assumed to be the cup instead (Fig. 10.2), which should
be created from non-degradable materials in real applications to provide
enough support for fixing the implant behind the polyethylene liner. As a
result, the simulation results cannot be used directly for clinical interpretation.
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However, by only changing the geometry construction from the CT scans
performed for the surrogate-based optimization model, the whole workflow
can be applied for the patient-specific design of acetabular implants in more
clinical-relevant cases.

10.3.3 Scaling tests on the computational models

The results of the strong scaling tests are plotted in Fig. 10.9, which shows the
solution time of individual equations of the biodegradation model in a single
time step versus the varying number of CPU cores. The comprising equations
are the transport equation for Mg ions (Mg equation), hydroxide ions (OH
equation), and chloride ions (Cl equation), as well as the film formation (film
equation) and the derived level-set equation. These equations are detailed in
Chapter 3 and [131]. The run time of a single time step wasmeasured for three
model sizes of ∼16M (small), ∼29M (medium), and ∼45M (big) elements.

As can be seen in the strong scaling results, different PDEs show different
scaling behavior, the most distinct of which belongs to the OH equation used
to calculate the pH change in the surrounding environment. The different
scaling behavior is rooted in the boundary conditions used for each equation.
They impact the formation of the linear system of equations and appear in the
scaling results due to the penalization technique used to implement boundary
conditions.

Fig. 10.10 shows the results of the strong and weak scaling tests side by side.
As can be seen in the weak scaling result, the model shows an ideal scaling
behavior in environments with less than 1000 cores. The system shows non-
ideal behavior with more CPU cores than this, as can be observed in strong
scaling results, in which adding more CPU cores does not cause a linear drop
in the execution time (wall time). The parallel efficiency graphs plotted in Fig.
10.11 show this behavior more clearly, which are calculated from the strong
scaling results.

The strong scaling test and parallel efficiency plot show that themaximum size
for the distributed computing environment is 2000 CPU cores, above which
no significant improvement in the execution time was observed in all three
tested problem sizes, and the efficiency drops below 50%. It was expected to
observe different scaling behavior for models depending on the size of the
problem as in problems with smaller sizes, the costs associated with inter-
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nodes communication become effective faster in comparison to bigger models.
However, no significant difference was observed here, and all three problem
sizes show very similar behavior in the parallel efficiency plots (Fig. 10.11),
demonstrating the non-ideal behavior of the developed model in terms of
efficient usage of available computing resources.

Although the executed performance analysis showedpoor parallel efficiency in
higher number of CPU cores, it was necessary to reveal the weaknesses of the
developed model in this regard. The weak and strong scaling results and the
parallel efficiency graphs clearly indicate that the code can be improved from
the performance point of view. Given the current state of HPC for biomedical-
related simulations and computational modeling works, even taking 10K CPU
cores is not unrealistic. The first part of improvement seems to be related
to assembling the linear system, in which the schemes used for numerical
integration, the order of elements used for various involved physics, and the
method for applying boundary conditions play an essential role. Secondly,
the configuration of employed preconditioners and iterative solvers can be
modified for individual components according to the numerical computing
requirements, which can affect their scaling behavior (Fig. 10.9). Thirdly, the
load balancing issues caused by the mathematical problem formulation, in
which the system has nothing to solve in regions still in the solid block,
seem to contribute to the poor parallel performance. This can be improved
by revising the mathematical and computational problem definition from the
load-balancing perspective. However, making a more tangible conclusion on
the performance bottlenecks of the developed model requires further analysis
of the results for the parallel speedup, similar to the analysis performed in
Chapter 7 and [151]. Furthermore, it should be taken into account that such
performance analysis has an inherent simplification of more complex technical
aspects affecting the simulation execution time, such as load balancing, net-
work communication, and per-node limitations in memory access, which may
differ in each HPC environment due to the configurations made by the system
maintainers.
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Figure 10.9: Strong scaling of the computational model, performed using the
small, medium, and large mesh for the solution of individual and combined
equations of the biodegradation model (Chapter 3), in which the execution
time is plotted in the logarithmic scale versus the varying CPU cores.
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Figure 10.10: Weak and strong scaling of the computational biodegradation
model of the acetabular implant, plotted for the total time needed to solve all
the equations in a single time step.

Figure 10.11: Parallel efficiency calculated from the strong scaling results of
the computational biodegradation model of the acetabular implant, plotted
separately for the small, medium and big models.
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10.4 Conclusions

In this work, taking advantage of HPC techniques to simulate a large-scale 3D
model led to a computational model capable of predicting the biodegradation
behavior of an acetabular implant in high resolution. Results demonstrate
the potential of the model to act as a tool for assessing and tuning the
biodegradation properties of orthopedic implants regardless of shape or
complexity.
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MODEL APPLICATIONS:
MECHANICAL INTEGRITY
OF INFILLED STRUCTURES

In this chapter, the developed biodegradation model in chapter 3 is coupled
with a level-set based topology optimization procedure that aims to facilitate
the design of porous biodegradable scaffolds with complex infill geometries.
It’s worth mentioning that this chapter is only discussing the first steps of
the interaction of these two models rather than a fully developed study. The
research presented in this chapter is carried out as an ongoing collaboration
work between KU Leuven and Kyoto University, initiated by Dr. Hao Li and
Dr. Heng Zhang. The effort put in by Dr. Li for contributing to the code
development as well as writing part of this chapter is highly appreciated.
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11.1 Introduction

Mg-based alloys are called revolutionary metals in biomedical applications
[242], but in order to take advantage of these materials in bone tissue
engineering applications, their degradation parameters should be tuned to
the bone regeneration rate. One approach to investigating biodegradation
behavior is to construct computational models to assess the biodegradation
properties prior to conducting any in vitro or in vivo tests. In addition to
degradation tuning, these models can be used for evaluating the mechanical
integrity of the implants, which can be considered an important application in
bone tissue engineering.

Mechanical integrity can be studied via the change of mechanical properties
of the implant over time, an example of which is the stiffness variations of
the implant while the degradation takes place. In this chapter, the stiffness
change of porous structures during the biodegradation process is investigated
by coupling the degradation model and a mechanical analysis model. Such
coupling allows studying the correlation of variations in different quantities in
both models, such as the effect of mass loss on the structure’s compliance and,
as a result, on the stiffness.

Porous (or partially porous) structures are frequently used in biomedical
applications due to their attractive properties , one of which is to allow more
interaction between the implant and the body environment [243]. A bone
implant with a proper lattice structuremanufacturedwith functionally graded
materials can improve the healing process of bone defects [244]. In this chapter,
the investigated porous structures are created using a topology optimization
(TO) routine, in which a set of different volume constraints leads to different
final infill shapes.

Performing TO on degrading structures has been rarely studied, the reason of
which is the difficulty of evaluating the sensitivity of the optimization models
in the presence of complex biodegradation mechanisms. Zhang et al. [245]
presented such a model for a simplified degradation mechanism in which a
constant mass loss from the surface was considered in a sophisticated level-
set based TO to mimic the biodegradation process. In their later work [246],
they enhanced their implementation from the TO perspective by extending
and verifying it in the microscopic scale for stiffness changeable composite
structures. Despite the technical difficulty, the model presented in this chapter
can be a first step towards building a coupled model for designing implants by
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optimizing the structure with the biodegradation tuning taken into account.
In this model, the change in the compliance of the degrading structure is
calculated in each step of the degradation simulation, making it possible to
use it later as the objective function of the TO process to consider the effect of
biodegradation.

11.2 Methods

The coupled model developed in this chapter includes two sub-models: 1)
a level-set-based TO model to get optimized lattice shapes out of initial
geometries, and 2) a biodegradation model to perform degradation simu-
lation on the optimized shapes. The computational workflow is such that
the TO model generates lattice structures first, which are transferred to the
biodegradation model to get the morphology changes due to the degradation
process. These morphological changes are then moved to a sub-module of the
TO model to compute the change in the strength (stiffness) of the structure
and its deformation due to the applied load. A fully-coupled model is still
under-development, in which the output of the biodegradation simulation is
transferred back to the TO model during the optimization process, making
it possible to consider biodegradation as part of the objective function of
the optimization routine. Fig. 11.1 shows a schematic representation of how
simulation data is being passed from one model to the next, in which the
sub-module of the TO model performing the stiffness analysis is depicted
as a separate module (component 3) for easier demonstration. The ongoing
development is shown in a yellow arrow, indicating that it is not considered in
the work presented in this chapter.

11.2.1 Topology optimization test cases

In order to prepare the optimized lattices for the biodegradation simulations,
the developed TO procedure was applied on two 2D test cases, which were
different due to type of applied constraint. The details of the developed level-
set-based TO is briefly presented in the appendix. The computational domain
was a rectangle with a dimension of 2.5L × 1.0L. There were two holes inside
the domain. The surface traction g = [0,−1]T was distributed evenly on the
boundary of the right-hand side hole, and that of the left-hand side hole was a
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Figure 11.1: Computational workflow of the coupled TO-biodegradation
model, showing how individual components are connected, the programming
languages and tools used for the implementation, and the university at which
each component is developed.

fixed wall u = [0, 0]T (Fig. 11.2). The Young’s Modulus was set to 1.0, and the
Poisson’s ratio was set to 0.3. This setup was used for both the TO procedure
and the structural analysis used to get the deformations and change of stiffness.
For test case #1, the local volume constraint was imposed, with maximum
allowable local volume fraction (V̄max in Eqs. 11.4 and 11.5) set to 0.6. After
being optimized, the global volume fraction was 0.45. Then, for test case #2,
the global volume constraint was imposed with Vmax = 0.45 (Eq. 11.7b),
the value obtained from the final global volume fraction of test case #1. The
implementation of these numerical examples was done in FreeFEM.

11.2.2 Biodegradation simulation

The output of the TO process for both cases is shown in Fig. 11.3 (the
evolution of the shape to get these lattice structures is discussed later in
section 11.3). Since there is no space surrounding the optimized shapes, this
output was embedded in a bigger domain for the biodegradation simulation.
For doing this, the output level-set function of the TO process was mapped
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Figure 11.2: The computational domain used for the topology optimization
with the applied load and fixed boundary conditions.

on the mesh of a bigger domain, transforming it into the level-set function
of the biodegradation simulation, which is used to track the change in the
morphology of the degrading object.

Figure 11.3: Topology optimization output to be used in the biodegradation
simulations. The black region depicts the optimized material distribution, and
the gray zone is the void space.

The biodegradation simulation was performed using the developedmechanis-
tic model of biodegradation (Chapter 3 and [131]), in which the chemistry
of the corrosion process is converted to a set of partial differential equations.
The derived PDEs are solved using the finite element method implemented in
FreeFEM. After mapping the level-set function of the TO process to that of the
biodegradationmodel, the computational meshwas refined on the interface of
the degrading lattice to increase the accuracy of the interface capturingmethod,
the result of which is demonstrated in Fig. 11.4.
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Figure 11.4: Computational mesh for the biodegradation simulations resulted
frommapping the TOprocess output to a bigger domain and refining themesh
on the surface of the lattice. The lower row shows the zoomed view of the
regions denoted by the dashed rectangle.

The change in the stiffness of the structure was measured during the biodegra-
dation process by applying the boundary condition illustrated in Fig. 11.2.
The stiffness was calculated as the inverse of the compliance computed
using Eq. 11.10, which is the sensitivity criterion used for the TO process.
The biodegradation simulations were performed in three different diffusion
regimes (high, low, and medium) in order to investigate the effect of the
corrosive environment.

11.3 Results and discussion

The coupled biodegradation and structural mechanics models were con-
structed using the output of the TO procedure. Fig. 11.5 shows the temporary
evolving shapes of the infilled structures during the optimization process for
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case 1, each of which is taken by skipping several intermediate steps. Fig. 11.6
shows a similar 2D visualization for case 2. As mentioned in Section 11.2.1, the
difference between these two cases is related to the applied constraints, where
a local volume constraint and a global volume constraint were assigned for
case 1 and case 2, respectively.

Figure 11.5: Evolution of the topology optimization level-set function to get the
optimized shape for case 1, in which a local volume constraint was imposed.
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Figure 11.6: Evolution of the topology optimization level-set function to get
the optimized shape for case 2, where only the global volume constraint was
imposed.

Fig. 11.7 shows the quantitative results of both components of the coupled
computational model for the investigated cases. On the upper row, the degra-
dation rate is plotted by measuring the mass loss over time, showing how
the diffusion rate of the Mg ions affects the rate of biodegradation in this
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model. On the lower row, the change of the stiffness during the biodegradation
is plotted, where the stiffness is calculated by inverting the compliance, the
objective function of the TO routine calculated in each time step after adjusting
the geometry in the presence of degradation. The morphology of the object
changes as the degradation continues, leading to an increment in compliance
and, subsequently, a decrease in the structure’s stiffness. This behavior is
adequately captured by the coupled model, demonstrating that the models
are correctly coupled. Validating the correct predictions of the model on the
quantitative effect of degradation on the strength of the structures requires
performing further UQ analysis to check the sensitivity of the coupled model
to chosen parameters.

Case 2 has a higher initial stiffness due to more constitutive materials, but it
is also subject to a higher loss of stiffness in the investigated time window
compared to case 1 in the high diffusion model (Fig. 11.7). In the first place,
this effect may seem to be related to a higher degradation rate and loss of
material, i.e., more exposed surfaces to corrosion. However, the mass loss
plots show the opposite, where the degradation rate of case 1 is higher in the
simulated timewindow. This observation is more complicated for themedium
diffusion regime (D = 0.01), in which both the drop in stiffness and mass
loss are higher for case 1. In low diffusion, both cases show similar behavior.
Although not quantitatively validated, these observations demonstrate the
necessity of this study, where the mutual effect of biodegradation and the
structural characteristics can be investigated to find out the variability of these
structural parameters in respect to different degradation parameters. In this
study, the effect of only one degradation parameter (diffusion rate) was tested,
but the analysis should be further extended by performing sophisticated
VVUQ analysis on various biodegradation parameters such as the reaction
rates. Moreover, the interplay of various parameters can be included in the
TO process such that the change of morphology of the structure due to
biodegradation is taken into account for computing the compliance (TO
objective function), yielding more accurate optimization of the morphology
of the implants.

Fig. 11.8 demonstrates how the qualitative results of the coupled model look
like, inwhich the infilled part undergoes the degradation andmechanical load-
ing simultaneously. The green surface results from the mechanical analysis, vi-
sualized by bending the part according to the computed deformation vector in
each node. The light gray surface is the degradation object visualized without
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Figure 11.7: Results of the coupled model to predict the mass loss and stiffness
changes during the biodegradation process of the optimized porous shapes for
different Mg diffusion rates. Note the difference in vertical axes scaling.

bending, showing the change of the morphology due to biodegradation (by
comparing the green and gray objects), while the release of the metallic ions is
also depicted. The red region shows the release of Mg ions to the surrounding
medium,moving the biodegradation interface by shrinkage. This visualization
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demonstrates the result of the applied boundary conditiondepicted in Fig. 11.2,
where a load is applied to the circumference of the right hole, and the left hole
is fixed. These boundary conditions were also used for the TO process to get
the optimized morphology of the infilled structures.

Figure 11.8: Coupled model results showing the structural analysis taking
place during the biodegradation simulation. The green surface shows the
deformed infilled structure, and the light gray surface is the state of the
morphology during biodegradation. The contour part shows the concentration
of metallic ions as being released from the surface of the degrading part.

In order to visualize the biodegradation only, the green surface is removed
from Fig. 11.8, and the results are plotted at various time points during
the process. Figs. 11.9 and 11.10 show such visualization for case 1 and
case 2, respectively, showing how the metallic ions are released during the
biodegradation process, in which the surface of the degrading part is depicted
in light gray. From the biodegradation perspective, the biggest difference
between the two studied cases is the exposed surface area, which is higher for
case 1, as can be seen in these figures. This fact impacts the degradation rate
(Fig. 11.7), leading to a higher loss of material in case 1 in the same simulation
time period.However, another crucial aspect to consider is the saturation of the
holes disconnected from the bulk electrolyte, where the released materials get
accumulated since there is no way for them to spread away. This accumulation
prevents further corrosion in the developed biodegradation model because
the level-set formulation for the movement of the degradation front works
based on the gradient of the concentration of released materials. The absence
of gradient caused by the accumulation impacts the rate of degradation, as can
be seen in Fig. 11.7, in which the rate of materials loss tends to slow down for
case 1. This behavior is more dominant in the high diffusion regime, meaning
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that the effect can be observed in earlier stages. On the other side, the material
loss curve for case 2 shows a semi-linear behavior tending to increase and
achieve stability in later stages in comparison to case 1, due to bigger holes
in the optimized structure.

Figure 11.9: Visualization of the results of the biodegradation simulation for
case 1, showing the degradation of the infilled structure and release of Mg
ions over time. The colors depict the Mg ions concentration, and the numbers
(1) to (4) demonstrate the evolution of the simulation over time.

It should be noted that the impact of the saturated concentration in the holes
is highly dependent on the number of dimensions in Rd, meaning whether
it’s a 2D or 3D analysis. In a 3D study, the holes have more connections to
the bulk volume via the Z axis, whereas in 2D, as in the current study, the
isolated holes are themain source ofmaterial accumulationwhich slows down
the degradation rate. It emphasizes the necessity of continuing this study by
developing a 3D model, which could not be put into practice in the current
stage of model development due to technical difficulties in implementing the
parallelization of the coupling techniques. This will be the first consideration
in further development of the current coupled model.

As mentioned before, in order to increase the accuracy of the employed
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Figure 11.10: Visualization of the results of the biodegradation simulation for
case 2, showing the degrading infilled structure and release of Mg ions over
time. The colors depict the Mg ions concentration, and the numbers (1) to (4)
demonstrate the evolution of the simulation over time.

interface capturing method, the biodegradation model needs a refined mesh
on the metal-environment interface. A closer look at the results of Fig. 11.9,
depicted in Fig. 11.11, shows the mesh being refined on the interface. In this
figure, the colors show the concentration ofMg ions released from the interface,
and the biodegradation can be observed by the shrinkage of the light gray
surface representing the parts of the infilled object that are not degraded yet.

11.4 Conclusion

In this chapter, the biodegradation model was coupled with a topology
optimization code to investigate the effect of biodegradation on the change of
mechanical stiffness of porous structures. The development of the proposed
coupled model was motivated by the strong desire for biodegradable porous
implants for tissue engineering and orthopedic applications. As stated while
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Figure 11.11: Zoomed view of the visualization results of the biodegradation
simulation for case 1, showing the refined mesh, the concentration of
released ions, and shrinkage of the degrading object. The numbers (1) to (4)
demonstrate the evolution of the simulation over time.

discussing the results, the reported findings suggest that the biodegradation
behavior of these complex structures is not necessarily straightforward to
predict without using computer models. As a result, in silico studies become
crucial to help design the next generation of biomedical implants, in which the
structural behavior during the biodegradation process is considered as one of
the design objectives.

11.A Mathematical details of the employed topol-
ogy optimization procedure

This section provides a brief mathematical summary of the topology opti-
mization of feature-rich structures based on the reaction-diffusion equation-
driven (RDE-driven) level-set method mostly for readers familiar with TO
terminologies and concepts. The reader is encouraged to refer to the PhD
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work of Hao Li [247] for elaboration on the employed methodology and
implementation.

Section 11.A.1 introduces the basic concept of the RDE-driven TO method.
In section 11.A.2, the local volume constraint is introduced in this workflow.
The key idea here is to use a variational method to compute the local
volume fraction, which does not require the spatial information of the adjacent
elements. The optimum design problem is formulated in section 11.A.3.

11.A.1 Level-set-based topology optimization method

For the basic concept of the level-set-based TO method, we followed the
work of Yamada et al. [248]. A structural topology optimization problem
can be replaced by an optimum design problem to find the optimal material
distribution. In other words, this technique essentially answers the question of
where the material should be placed or where the hole should be nucleated.
Let the computational domain be denoted as Ω ⊂ Rd, where d = 2. A
solid subdomain is then defined as Ωs ⊆ Ω so that a void domain is as
the complementary domain Ω\Ωs. An implicit level-set function ϕ (x) can be
defined to have a piecewise profile as

0 < ϕ(x) ≤ 1 for x ∈ Ωs\∂Ωs
ϕ(x) = 0 for x ∈ ∂Ωs
−1 ≤ ϕ(x) < 0 for x ∈ Ω\Ωs,

(11.1)

in which the solid–void interface ∂Ωs can be represented by the zero level-set
iso-surface.

Next, using a Heaviside step function, the material field can be modeled using
a “1/0 binary structure” by the projection of the level-set function ϕ(x) to the
characteristic function χϕ as

χϕ :=
{

1 for ϕ (x) ≥ 0
0 for ϕ (x) < 0.

(11.2)

Using the Ersatz material approach, the material properties inside the com-
putational domain Ω can be expanded using the obtained χϕ. The level-set
function is obtained as the solution of a reaction–diffusion equation, which
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can be semi-discretized in a fictitious time-step ∆t, as follows:
1

∆t
(ϕn+1 − ϕn) = −

(
C̃F ′ − τ∇2ϕn+1

)
in Ω

∇ϕ · n = 0 on ∂Ω,
(11.3)

where n is the unit normal vector, F ′ is the topological design sensitivity, C̃
is the normalizer for the sensitivity, and τ is the regularization parameter,
which can be used to control the complexity of the optimal configuration. The
subscript n indicates the fictitious time step. For more details, the reader is
referred to the work of Li et al. [249].

11.A.2 Maximum length-scale constraint

A geometrical constraint is introduced to generate feature-rich structures
observed in a natural system such as the trabecular bone. Here, we adopt the
idea of Wu et al. [250] by imposing a maximum allowable volume fraction to
the local averaged value of the characteristic function, χ̄. To approximate the
maximum value of χ̄i, we use the p-norm function as

max
∀i

(χ̄i) ≈ ‖χ̄i‖p =

(
n

∑
i

χ̄
p
i

)1/p

≤
(

n

∑
i

V̄p
max

)1/p

, (11.4)

which can be rewritten as (
1
n ∑

i
χ̄

p
i

)1/p

≤ V̄max, (11.5)

where n is the total number of vertices and p = 10 in this chapter [249]. Note
that in FreeFEM [86], the software package used to solve the derived system,
the design variable, i.e. the characteristic function, is defined on the nodes of
each element. V̄max is the maximum allowable local volume fraction.

Then, we use a PDE-filter [251,252] to compute the local average value χ̄, as− r2∇2χ̄ + χ̄ = χ in Ω

∇χ̄ · n = 0 on ∂Ω,
(11.6)

where r is the filter radius. To clarify the concept of the aforementioned
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functions, Fig. 11.12 depicts the level-set (ϕ), characteristic (χ), and local
average characteristic (χ̄) functions for an optimized lattice structure.

Figure 11.12: Visualization of the level-set (ϕ), characteristic (χ), and local
average characteristic (χ̄) functions for an optimized lattice structure.

11.A.3 Optimum design problem for feature-rich structures

The underlying physics of the optimum design problem is the linear elasticity,
where the following assumptions are made: (1) small displacements and
deformations are observed (linear elasticity), and (2) the body force and
gravity are neglected. Furthermore, the context of interest here is to minimize
the mean compliance of the structure or, in other words, to maximize the
stiffness. Therefore, the topology optimization problem can be formulated as

inf
χϕ∈X

J(Ω) =
∫

∂ΩN
s

t · udΓ, (11.7a)
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so that



−div(Cχϕ : e(u)) = 0 in Ω
u = u0 on ∂ΩD

(C : e(u)) · ns = t on ∂ΩN

G1 =

∫
D χdΩ∫
D dΩ

− Vmax ≤ 0

G2 =

(
1
n ∑ χ̄p

)1/p
− V̄max ≤ 0

−r2∇2χ̄ + χ̄ = χ in Ω
∇χ̄ · n = 0 on ∂Ω,

(11.7b)

where Γ is the boundary, C the fourth-order elasticity tensor, t the surface
traction, e (u) the linearized strain tensor, u displacement, u0 the initial
displacement, ΩD the Dirichlet boundary, ΩN Neumann boundary, G1 the
global volume constraint, and G2 the local volume constraint. Using the
characteristic function χϕ, the elasticity tensor C can be expanded as

Cχϕ = χϕ (Cs − Cv) + Cv, (11.8)

where Cs and Cv are the constitutive tensors for solid and void materials,
respectively.

As it is well-known that the mean compliance problem is self-adjoint, the
topological design sensitivity can be derived as

F ′ = −
(

e(u) : Cχϕ

)
: e(u) + λ1 + λ2G ′, (11.9)

where λ1 and λ2 are the Lagrange multipliers associated with the global and
local averaging volume constraints, respectively. They can be updated using
the augmented Lagrange method [249].

The sensitivity associated with the local volume constraint (denoted by G ′) is
computed as the solution of the following system of equations:

− r2∇2G ′ + G ′ =
∂G2

∂χ̄
in Ω

∇G ′ · n = 0 on ∂Ω.

(11.10)
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MODEL APPLICATIONS:
MECHANICAL LOOSENING
OF MANDIBULAR PLATES

This chapter is based on a manuscript prepared to be submitted:
P. Ansoms, M. Barzegari, J. Vander Sloten, and L. Geris, “Coupling
biomechanical models of implants with biodegradation models: a case
study for biodegradable mandibular bone fixation plates.”

In fracture fixation, biodegradable implant materials are an interesting alterna-
tive to conventional non-biodegradable materials as the latter require a second
implant removal surgery to avoid long-term complications. In this study, we
present an in silico strategy to biodegradable metal implants focusing on
mandibular fracture fixation plates ofWE43 (Mg-alloy). The in silico strategy is
composed of an orchestrated interaction between three separate computational
models. The first model simulated the mass loss of the degradable implant

203
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based on the chemistry of Mg biodegradation. A second model estimated
the loading on the jaw plate in the physiological environment incorporating
a phenomenological dynamic bone regeneration process. The third model
characterized the mechanical behavior of the jaw plate and the influence
of material degradation on the mechanical behavior. Multiple sensitivity
analyseswere performedonparameters related to choices regarding numerical
implementation and parameter dependencies were implemented to guarantee
robust and correct results. Different clinical scenarios were tested, related to
the amount of screws used to fix the plate. The results showed a lower initial
strength whenmore holes were left open, as well as a faster decrease over time
in strength due to the increased area available for surface degradation. The
combination of these three models facilitates the iterative design of patient-
specific biodegradable fixation implants able to deliver the desiredmechanical
behavior tuned to the bone regeneration process.

12.1 Introduction

In clinical bone regeneration applications, biodegradable implants have gained
in popularity over recent years. Themain advantage of biodegradable implants
over non-biodegradable implants is that no second surgery is needed to
remove the implant after successful healing of the bone [2]. The removal
of a non-biodegradable implant brings along an additional cost and risk of
infection but might be necessary to avoid complications associated in the long
term such as late thrombosis and chronic inflammation [253]. Late thrombosis
is the formation of blood cloths due to the presence of the metallic implant
[254]. Chronic inflammation is induced by the persistence of inflammatory
stimuli, being the physical presence of the implanted biomaterial or the ability
of the implant to slightly move at the implant site [255]. Permanent metallic
implants also distort diagnostic images of the body [256]. Both in the short
and long term, a biodegradable implant reduces stress shielding, which is
the resorption of bone as a result of a reduction in perceived load. The
reduction of stress shielding in the long term is obvious since the implant has
disappeared in case of a biodegradable implant. Besides obvious reduction of
long-term stress shielding due to the disappearance of the implant, there is
also a reduction of stress shielding in the short term resulting from the fact that
biodegradable metals often have a Young’s modulus that is considerably lower
than that of inert metals (e.g., 44.2 GPa forWE43 vs. 118 GPa for Ti6Al4V). The
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stress shielding effect is directly proportional to the E-modulus of the implant
material.

The use of biodegradablemetals to support tissue regeneration ismentioned in
various sources, describing different materials and applications [253,257,258].
The material of the implant determines the rate of degradation. The goal is
to provide stable mechanical support at the early stage of the tissue healing
process and then have the material gradually degrade with the restoration
of the defect tissue [258]. Fig. 12.1 qualitatively shows the degradation rate
of three common biomaterials (magnesium, zinc and iron) along with the
healing rate of different tissues (hard, soft and vascular) as an illustration. By
matching a material’s degradation rate and a tissue’s healing rate, a suitable
material can be found for a specific application. Studying the change of me-
chanical support of implants due to biodegradation has certain complexities.
This case-study aimed to gain insight into the change inmechanical behavior of
a biodegradable mandibular fixation plate. In order to do this, three different
models were combined: a biodegradation model to characterize the geometry
change as a result of biodegradation, a model to characterize the loading on
the jaw plate by considering the bone healing and a model to predict the
mechanical behavior of the plate. These are schematically shown in Fig. 12.2.

Figure 12.1: The change in mechanical integrity of the implant and tissue
strength over time (adapted from [253]).
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Figure 12.2: Coupling of the models and indication of software used.

The mandible is the second most frequently fractured bone of the face and
the tenth most frequently fractured bone of the body [259]. Common causes
for a mandible fracture are violence, car crashes and sports. It occurs more
frequently in males than females and most often between the ages of 16 and
30. The weakest section of the mandible is the angle because there is an
abrupt change in direction between the mandibular body and the ascending
ramus, both in the sagittal and transverse planes, resulting in the involvement
of the mandibular angle in up to 28.5% of jaw fractures [260]. The most
common treatment of mandible fractures is with a mandibular fixation plate
(further referred to as jaw plate) to stabilize the fracture and allow the healing
process to take place. Though the plate is traditionally made of an inert
implant material (e.g., titanium), biodegradable materials are explored to take
advantage of the aforementioned benefits.

Computational models provide useful tools for designing plates and studying
the implant-bone complex given their ability to simultaneously capture the
mechanics and mechanisms of both the plate degradation and bone regen-
eration. Multiple studies reported in the literature focus on the biological
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processes after mandibular surgery, the design of the implant or its degra-
dation separately and we refer to the reader to [261], [262], [263], [264]
and references within for an overview of those models. The combination of
concurrent implant biodegradation and bone regeneration has been developed
for long bones by Mehboob et al. [265] and by Ma et al. [266] while Vautrin
et al. developed a combined biodegradation and tissue regeneration model in
the context of orthognatic surgery [261]. The bone healing algorithm of the
latterwas based on themodel that Alierta et al. developed, butwas generalized
to be applicable to a larger fracture gap [267]. It modeled the growth of
the contribution of cartilage and bone to the mechanical properties of each
element within the fracture gap based on the principal element strains under
physiological loading. The biodegradation algorithm was limited to being
phenomenological to reduce the computational cost. It included only localized
corrosion by incorporating a random pitting corrosion algorithm.

In this study,we started froman in-house developed biodegradation algorithm
based on the chemistry of biodegradation of WE43 and combined it with a
phenomenological bone regeneration algorithm. We used this combination of
models to investigate the impact of biodegradation on the strength of the jaw
plate. Additionally, we looked into the effect of the number of plate holes left
unscrewed on the overall mechanics.

12.2 Materials and methods

12.2.1 Mandibular plate and fixation

The implant simulated in this study was a jaw plate, shown in Fig. 12.3b
(geometrical details discussed in section 12.2.3). This jaw plate is placed on top
of the manddibular body as shown in Fig. 12.4. This technique of mandibular
fracture fixation is called the “miniplate fixation technique”, also known as
“semi-rigid” or “functionally adequate fixation”. The loading on the plate in
this situation is purely tensile when a mastication load is applied. Different
scenarios for its fixation used in clinical practice (different amounts of screws)
were studied. Leaving holes open is a common occurrence due to proximity of
the screw to the fracture line or it being located in a section of the bone that
is simply too weak to carry the screw. Open holes are exposed to body fluids
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and hence might undergo a different degradation dynamic in that part of the
plate.

Figure 12.3: Jaw plate. a) Indication of inner (screw hole) radius Ri, outer
radius Ro, height H and length L and boundary conditions for the five-screw
case (red indicates the region where a fixed boundary condition is applied,
blue indicates the region where a displacement boundary condition is applied,
accompanied by arrows for direction). b) Different angle showing the depth
of the jaw plate. c) Indication of screw placement in the three different cases.

12.2.2 Biodegradation simulation

The biodegradation process was modeled as a set of partial differential
equations (PDEs), formulating the mass transfer phenomena as well as
tracking the location of the surface of the implant during degradation as
described in [131] (Chapter 3) and summarized below. For the mass transfer
model, a system of time-dependent reaction-diffusion PDEs was derived from
the underlying oxidation-reduction reactions in simulated body fluid (SBF)
solutions. This includes the oxidation of the metallic part, reduction of water
and oxygen, changes in pH, the effect of different ions in the medium, and
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Figure 12.4: Mandible with indication of fracture line, jaw plate, lever arm and
load

formation of a protective film on the surface of the scaffold, slowing down
the rate of degradation. Additionally, investigating the structural changes of
implants requires monitoring themorphological changes, which was achieved
by tracking themovement of the corrosion front. Thiswas done by constructing
an equation based on the Level Set formalism, capturing the movement of the
environment-implant interface by defining an implicit surface. So, the zero-
iso contour of this implicit Level Set function determines the surface of the
implant. The derived equations were coupled and solved implicitly using the
finite element method, implemented in FreeFEM [86]. Experimental data to
validate the developed biodegradation model were collected from immersion
tests of simple blocks. Details on model implementation and validation can be
found in [131].

Thematerial properties, including the diffusion coefficient of various contribut-
ing ions and reaction rates were set to mimic the degradation condition in
SBF solutions, which are buffered solutions designed to mimic the in vivo
environment of implants andmedical devices in vitro. The preferred values for
SBF solutions as well as the process for obtaining them is described in detail
in our previous work [131] (Chapter 3).
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The mesh was refined adaptively on the corrosion front to increase the numer-
ical accuracy of the interface tracking equation, leading to a computational-
intensive model. So, in order to increase performance and reduce the simu-
lation time, the code was parallelized in a way that the computation could
be distributed across several computing nodes. This was mainly achieved
using domain decomposition techniques and high-performance solvers. More
information about this efficient implementation as well as a performance
analysis of the model is presented in previous work [151] (Chapter 7). For the
biodegradation simulation in this study, the jaw plate was embedded into a
cubic container acting as the surrounding environment. The mesh refinement
on the metal bulk interface lead to a mesh comprising of 19,924,153 elements
and 3,316,135 degrees of freedom (DOF) for each PDE. The biodegradation
simulation was carried out using 170 computing cores on the Flemish Super-
computer VSC.

12.2.3 Mechanical behavior simulations

The finite elementmethodwas used to implement the equations characterizing
the mechanical behavior of the degrading jaw plate. The simulations reflected
tensile tests on plates with different amounts of degradation, corresponding
to different points in time in the biodegradation process. Force-displacement
curves were recorded during the analysis, from which the maximum bearable
force was extracted to characterize themechanical behavior. The analyses were
performed in Abaqus/CAE v6.11 (Dassault Systèmes, USA). The explicit dy-
namic (forward Euler) integrationmethodwas used to integrate the equations
of motion through time, calculatingmotion iteratively. In this method, the next
state of the system is based on the previous state. As a result, the system is not
unconditionally stable, in contrast to a standard analysis, requiring sufficiently
small time steps to ensure a stable calculation. Explicit dynamic analyses
are useful in problems with high-speed dynamics, but also in quasi-static
problemswith large non-linear deformations and in highly discontinuous post-
buckling and collapse simulations [268]. So, this is an ideal type of analysis
for the simulation of tensile tests, in which failure of the material occurs. The
simulations were performed on a machine with a 32-core AMD EPYC 7551
processor @2.00GHz and 64GB of RAM.

The material model for the simulations was based on WE43, which is a
magnesium alloy with yttrium, zirconium, and rare earth elements added.
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A density of 1800 kg/m3, E-modulus of 44.2 GPa and Poisson’s ratio of 0.27
were used [236]. In order to simulate yielding behavior and material failure, a
fracture strain of 0.04 and yield stress of 160 MPa were used. The true stress-
strain relationship in the plastic region was specified based on [269].

Sensitivity analyses were performed on various parameters of the explicit
dynamic analysis as well as on the mesh density. The first parameter was
the maximum degradation, corresponding to the point at which an element
is removed from the analysis as its load-bearing capacities have diminished
due to plastic deformation. The second was mass scaling, being the artificial
increases of the mass of the system in order to increase its predictability. As a
result of mass scaling, the time steps (size of the increments in the loading/dis-
placement step) can be increased without divergence of the solution (the non-
linear solution path can be traced) and the computation time is decreased.
Since the simulation was quasi-static, the behavior of the material could be
considered as rate-independent, so the real time scale was not important. The
third parameter was the number of processors used for calculation (parallel
computing). The final parameter investigated was the displacement at failure
(DAF), which is a material parameter that specifies the evolution of damage
with relative plastic displacement after one or more of the damage initiation
criteria (fracture strain, stress triaxiality, or strain rate) are met [270, 271].
The global mesh size was chosen to result in four elements spanning the
thickness of the plate with adjusted values of the displacement at failure.
Table 12.1 contains the exact dimensions of the models of the jaw plate at five
different time points during the biodegradation process. Fig. 12.3a shows how
the dimensions were measured. Further degradation after the 120th day was
calculated by assuming a linear degradation rate. Equations for the conversion
of mass loss to dimensional changes can be found in the appendix. Linear (4-
node) tetrehadral elements were used. Mass scaling was set to 1000, distortion
control was enabled with a length ratio of 0.1 and the maximum degradation
for element deletion (Abaqus setting, not related to the degradation simulation
as discussed in section 12.2.2) was set to 0.95.

12.2.4 Bone healing and implant load models

According to Reina et al., the body of the mandible behaves like a long bone
[272]. Also, Korioth et al. mentioned that the jaw behaves as a beam, with the
corpus (body) behaving as a hollow beam [273]. The simulated loading case is
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Time after im-
plantation[days] 0 28 77 124 170

Geometrical para- Depth[mm] 1 0.95 0.9 0.85 0.8
meters obtained H[mm] 4 3.95 3.9 3.85 3.8
from the degra- Ri(screw)[mm] 1 1 1 1 1
dation simulation Ri(no screw)[mm] 1 1.025 1.05 1.075 1.1
Parameters related Mass loss[%] 0 6.63 13.0 19.2 25.2
to the explicit Mesh size[mm] 0.25 0.238 0.225 0.213 0.2
dynamic analysis DAF[µm] 10 9.63 9.25 8.87 8.48

Table 12.1: Dimensions of the jaw plate (five-screw case) at different time
points during the biodegradation process. Ro evolves as H/2. Parameters
related to the explicit dynamic analysis (subjected to sensitivity analysis):mass
loss, mesh size and displacement at failure (DAF).

the physiological loading of the mandible when eating, with a maximal biting
force of 209 N applied at the central incisors [274] in a vertical manner [272].
More specifically, in this case study, the force exerted between the incisors was
placed such as to generate a large moment in the vicinity of the fracture (Fig.
12.4). With the fracture being just posterior to the third molar, the lever arm
is the distance between the central incisors and the back of the third molar,
projected onto the sagittal plane. The value of 50mmwas used for this analysis,
based on average values found in literature [275].

Fig. 12.5a shows a cross-section of the jaw plate at the location of a hole, which
is the weakest region of the jaw plate. It does not lie in the same plane as the
fracture, but, since failure occurred at the location of one of the holes, this
cross-section was considered to be the bottleneck in terms of strength and
therefore the focus point of this study. Fig. 12.5b shows the cross-section of
the mandibular body, consisting of an outer layer of cortical bone and an inner
core of trabecular bone. An approximation of this cross-section using only
rectangular shapes was used to ease the calculation of the area moment of
inertia of the cross-section. The relevant dimensions for the calculation, the
height and width of the outer (cortical) layer of bone as well as the thickness
of this layer, were selected from literature based on average values formales, as
they aremore common to havemandible fractures [259]. The height andwidth
of the mandibular body were taken to be 24.7 mm and 15.9 mm, respectively,
based on average values [276, 277] with an average cortical bone thickness of
2.06 mm, assumed to be equal all around the perimeter of the cross-section
[278]. In this study, the location of the jaw plate was simulated to be on top
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of the mandibular body to keep the neutral axis horizontal and to limit the
complexity of the approximation.

Figure 12.5: Cross-sections as used for the beam theory analysis. a) Cross-
section of the jaw plate (indicated with JP in the figure) around the third hole
(arbitrary, break does not always occur around this hole) with indication of
height (hJP) and width (wJP) as they are used in the beam theory equations
(merged to one rectangle with height hJP and width wJP). b) Cross-section
of the mandibular body and approximation of this cross-section with simple
geometries. wo,bone and ho,bone are the outer width and height of the cross-
section, respectively. tcortical is the thickness of the cortical bone.

The stiffness of the cortical and trabecular bone in the fracture area changed
over time to capture the bone healing process [279]. Two scenarios are possible
for cortical bone healing: one with direct contact between the broken bone
ends and one without [280]. If the broken ends are pressed against each other
and are rigidly fixed in place, direct bone healing occurs. This requires the gap
between the bone ends to be smaller than 0.001 mm and the interfragmentary
strain to be less than 2%. Cutting cones, consisting of osteoclasts, cross the
fracture line and leave behind cavities, which are later filled by osteoblasts.
In this way, the continuity of the bone is restored, along with the Haversian
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systems in the axial direction. If the gap between the bone ends is larger and
relative motion is possible between the bone ends, indirect healing occurs.
In this scenario, a number of different tissues (including fibrous tissue and
cartilage) are formed between the bone ends over time and the stability of
the fracture region is gradually enhanced. In the trabecular bone, osteoblasts
deposit newbone in the fracture gap by laying it on the existing bone trabeculae
and along the fibers of the fibrous tissue that forms prior to bone formation
[279].

In this study, the jaw plate was assumed to be able to sufficiently restrict
the relative movement of the bone ends of the mandible with respect to one
another for direct bone healing to be the most likely scenario to occur.

Lakatos et al. found the modulus of the trabecular bone in the mandible to
range from 6.9 MPa to 199.5 MPa [281]. The modulus of the trabecular bone
after fracture started from 0MPa and rose linearly, for the sake of simplicity, to
a value of 100 MPa over the course of 168 days. The cortical bone around the
fracture site was initially immature and had a modulus of around 1 GPa [282].
This immature bone was replaced by stronger, mature bone with a modulus
of around 6 GPa and later by compact bone [283]. Because the precise rate of
stiffening was not reported, a rough estimation was made here increasing the
bonemodulus to 1.3 GPa over the same time period of 168 days as reported for
trabecular bone.

To implement the bone regeneration on the simplified geometry shown in Fig.
12.5b, beam theory equations were used. Details about these can be found in
the appendix. The neutral axis was first calculated with a transformed-section
method to take the different materials into account. Then, the area moments
of inertia of the different sections were calculated. Finally, the stress in the
section that corresponds to the jaw plate was calculated and was converted to
a force with the use of integral expressions [284]. For this, the moment in the
mandibular body as a result of the biting force was used. The equations were
implemented in MATLAB (MathWorks, USA) and automated to loop over
different geometries of the cross-section of the plate and material properties
of the bone corresponding to the degradation of the plate and the healing of
the bone tissue, respectively.

Computing the force in the jaw plate as an integral of the stress over the area of
the jaw plate relies on stress being a linear function of y (the vertical distance
between a point in the cross-section and the neutral axis), meaning that if the
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neutral axis is within the jaw plate or very close to it, the force may not be very
high, while the maximal stress occurring is actually very high. If this stress is
higher than ultimate tensile strength (UTS), it causes problems that might not
necessarily be reflected in the total force. What this also reflects is a situation
in which the loading of the jaw plate is not predominantly tensile, but rather
bending. Using the force in the jaw plate, as computed by the integral in Eq.
12.1, is only valid if the neutral axis is sufficiently far away from the jaw plate.
To check this, the stress variation in the jaw plate and the location of the neutral
axis were studied in a sensitivity analysis. The derivation of Eq. 12.1 can be
found in the appendix. hJP and wJP are the height and the width of the cross-
section of the jawplate, respectively, and ho,bone is the height of the cross-section
of the outer (cortical) bone. EJP and Ecort.bone are the E-modulus of the jaw
plate and the cortical bone, respectively. Etrab.bone is implicitly present in this
equation due to use the transformed-section method as discussed in section
12.2.4. Icort.bone, Itrab.bone and IJP are the area moment of inertia of the cortical
bone, trabecular bone and jaw plate, respectively. The formulas for these can
also be found in the appendix. M is the moment as a result of the loading and
y is the vertical distance from a point in the cross-section to the neutral axis.

FJP =
∫ ho,bone+hJP

ho,bone

y · M · EJP · wJP

Ecort.bone · (Icort.bone + Itrab.bone + IJP)
dy (12.1)

12.2.5 Coupling of the models

The biodegradation simulation results were used to derive the changes in
geometry on which both the mechanical characterization and the bone regen-
eration analyses relied. The output from the mechanical analysis delivered
the maximum force that the jaw plate could withstand while the output
from the beam theory calculations delivered the actual force occurring in the
jaw plate, both as a function of time. The comparison between both values
allowed to assess the mechanical behavior of the degrading plate during bone
regeneration.
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Figure 12.6: Simulation results. (a) A cross-section of the computational mesh
and simulation results of the degradation model of the jaw bone plate in
Simlated Body Fluid solution as well as (b) the mass loss graph over time.
(c) Degradation of the plate over time. The contours display the concentration
of magnesium ions on a cross-section view of the medium beside the moving
surface of the bone plate at days 1, 40, 80 and 120. The gray surface is the zero
iso-contour of the Level Set function, which corresponds to the surface of the
bone plate.

12.3 Results

12.3.1 Biodegradation results

The simulation of 120 days of the degradation of the jaw bone plate took
18 hours to run using 170 computing cores. Fig. 12.6 shows the visualized
interface and magnesium ions release during the corrosion process. It also
depicts the mass loss of the bone plate in the SBF solution over time as well
as the geometries used to perform the mechanical analysis at predefined time
points.

12.3.2 Sensitivity analyses

All models for the tensile tests had a mesh size chosen to ensure presence
of four elements fitting into the depth of the plate. The relative difference
between the maximal force for four elements compared to five elements fitting
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into the plates depth was only 3.4%. The computation time for four elements
scenario was over 4 hours already and further refining the mesh increased the
computation time to over 7 hours. So, in this study, the accuracy gained by
refining the mesh did not justify the increase in computation time.

The results from the sensitivity analyses showed that the mass scaling and
the use of multiple processors for computation had no impact on the force-
displacement curves. The maximum degradation (the point at which an
element is removed from the analysis as its load-bearing capacities have
diminished due to plastic deformation) only caused changes in the force-
displacement curve after the maximum force had been reached, and hence
did not impact the maximum bearable force. The displacement at failure
and the mesh size, however, did have a strong impact on the resulting force-
displacement curves. The maximum bearable force was drastically increased
with an increased value of the displacement at failure. Changing the mesh size
(i.e. size of the mesh elements) led to the opposite behavior: the maximum
force was lower with a larger value of the mesh size. The relationship between
both was identified and the numerical misbehavior could be eliminated
by adjusting the displacement at failure to the mesh size according to the
following general relationship:

XDAF = 0.6log0.5(Xmesh) (12.2)

XDAF is the factor with which the DAF value should be multiplied when the
global mesh size is multiplied with Xmesh.

The location of the neutral axis was analyzed for the base-line set-up (five-
screws) as a representative model for all simulated set-ups in this study. The
difference in stress between the top and bottom of the jaw plate was the largest
at day 0 and had a value 22.4 MPa at most, which is only 11.6% of the maximal
stress value in the jaw plate and therefore the presence of bending can be
disregarded.

12.3.3 Coupled models results

The force-displacement curves for the plate with five screws are shown in Fig.
12.7,with the caseswith four and two screws giving similar force-displacement
curves. The strength of the jaw plates was characterized by themaximal values
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Figure 12.7: Results of tensile test on jaw plate with five screws with different
amounts of corrosion

from the force-displacement curves. In Fig. 12.8, the strength-curves of the jaw
plate for the three cases are shown and compared to the loading on the jaw
plate, as calculated with beam theory. Comparing the three strength-curves, it
could be concluded that leaving more holes open led to a weaker part initially
and a faster deterioration of the strength over time as a result of corrosion.
In the five-screw case, the strength remained higher than the loading for the
simulated time period and hence no failure occurred. In the four- and two-
screw cases, failure did occur after about 170 and 20 days respectively.

12.4 Discussion

In this work, a coupled mechanical-degradation model was presented to
study the effect of biodegradation on the mechanical stability of implants for
biodegradable mandibular plates. Three different cases were considered, with
each a different number of implant holes left unscrewed. One aspect of the
difference between the three cases is the surface that was exposed to body
fluids as in the caseswith fewer screws the open screw holeswere also exposed
to body fluids. The corrosion inside the open screw holes had an impact on
the overall implant strength, as shown in Fig. 12.8. Additionally, the boundary
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Figure 12.8: Estimation of load occurrence as a function of time after
implantation (days) for five-screw set-up. Maximal force that can be carried
by the jaw plate in the different set-ups modeled in this study (same plate,
fixed with 5, 4 or 2 screws) calculated at days 28, 77, 124 and 170.

conditions representing the screws pulling on the jaw plate are responsible
for the differences in the maximal force observed at day 0 since the jaw plate
geometry was the same at this point in time for all three cases.

The use of a “universal” jaw plate with multiple holes allows the jaw plate
to be used in various situations involving mandible fractures. Depending on
the exact location of fracture lines and the presence of stronger and weaker
sections of bone, the amount and placement of screws can be decided upon by
the surgeon. The downside to this is that the differences inmechanical behavior
and the change thereof as a result of corrosion between the different cases
(5/4/2 screws) can lead to unexpected results if not anticipated correctly by
the jaw plate designer and the surgeon. The insertion of screws close to the
fracture line was found to be an independent predictive risk factor for implant
breakage [285]. Plates with additional (unused) holes were also found to have
an increased risk of breakage. A patient-specific jaw plate can be designed to
meet a specific mechanical behavior. As proposed by Lv et al. [285], plates
should be designed without holes close to the fracture line. The placement
of holes can then be a design element for obtaining the desired mechanical
behavior of the jaw plate (over time).
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The results of the strength simulations provided useful knowledge about the
limits in terms of themechanical strength of the jawplate and how that evolved
during the biodegradation process. Matchedwith an accurate characterization
of the loading, the point at which the jaw plate fails could be predicted. The
loading on the jaw plate was derived from the maximal biting force during
eatingwith plate failure occurring if thismaximal biting forcewould be exerted
after the point at which the strength curve falls below the loading curve.
In practice, the strength of the jaw plate and the way in which this evolves
during the biodegradation process are influenced by a range of parameters.
Most of these are related to the situation/patient: mandible dimensions, bone
properties, fracture line geometry, etc. Others are, however, free to be chosen
by the implant designer: the jaw plate material and geometry, the location, the
number of screws, etc. Certain restrictions on what food may be eaten by the
patient for a certain time period can be given to reduce themaximal biting force
and preventivemeasures should be implemented to avoid bruxism during this
period.

While looking at the relative change in force values led to interesting con-
clusions, the absolute values of the results obtained in this study were
not validated. Manufacturing real samples, immersing them in SBF, and
subjecting them to a tensile test would give in vitro results that can be
compared to the simulation predictions. However, the obtained results can
be effectively compared with similar studies in this regard. An example of
such a study is the Imwinkelried et al. work [286], in which they investigated
the biodegradation behavior of various designs of mandibular plates in vivo,
implanted in miniature pig models in multiple implantation sites. Although
the design dimensions and number of screws were slightly different from the
ones in the current study, the results and conclusion are comparable. In the
performed in vivo investigations for a rectangular plate inside a tissue pocket
in the absence of mechanical load, an estimated total amount of 15% mass
loss was observed within 24 weeks, the value of which is 25% in the current
study (Table 12.1). This difference is still reasonable due to the presence of
a coating layer and alloying elements in the mentioned study. Moreover, the
reported reduction in the bending strength for the mandibular plates is 20%
after 12 weeks, which is in good agreement with the obtained tensile strength
in the current study, being 16% and 19% for the 5-screw and 4-screw cases,
respectively (Fig. 12.8).

Another interesting finding of the study performed by Imwinkelried et al.
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[286] is related to the uniformity of biodegradation. According to their
findings, in animal studies, the biodegradation ofWE43 implants occurred uni-
formly in themajority of cases, and the implantation site appeared to have little
effect on the process based on the selected model. The results indicated that
neither the contact between the plate and screw nor the plastic deformation
during the implantation process caused localized corrosion of the tested alloy.
Moreover, although the presence of a coating layer delayed degradation, it did
not significantly alter the underlying behavior of the alloy during degradation.
This shows the applicability of the employed computational biodegradation
model in the current study, where the effect of non-uniform corrosion was
not taken into account for the sake of the mathematical model. However, the
effect of the alloying elements and the coating can be represented by tuning
the effective parameters of the model elaborated in [131] and Chapter 3.

This study has some limitations. First of, the separate analysis of mechanical
behavior of and loading on the implant are simplified compared to a structural
mechanics model of the entire mandible with jaw plate. This would more ac-
curately capture the loading on the bone-implant complex, including loading
modes that deviate from the purely tensile loading as assumed in this study.
Second, the results from the biodegradation simulation were simplified to
geometry changes based on mass loss data, instead of on its direct output.
Finally, the bone healing algorithm was also simplified to linear increases in
E-modulus of the bone in the fracture area, which can be developed further to
include more sophisticated tissue growth behavior.

12.5 Conclusion

In this chapter, the simulation results of the biodegradation model developed
in Chapter 3 were used in a structural analysis model to predict themechanical
loosening of biodegradable mandibular implants. The models were combined
with a simplified tissue growthmodel to predict the change in the load exerted
on the implant due to bone regeneration. The simulation results showed
the evolution of the mechanical strength of the studied jaw plate during
the biodegradation process, which was similar to findings of in vivo studies
performed on animal models.
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12.A Converting mass loss to jaw plate dimensions

The changes in dimensions were assumed to be determined by a ’thickness’
of the entire outer surface that was removed as a result of corrosion. If this
’thickness’ is represented by x, the dimensions of the jaw plate are written as:

depth = 0.001 − 2x (12.3)

H = 0.004 − 2x (12.4)

Ri = 0.001 (12.5)

Ro = 0.002 − x (12.6)

Note that Ri was constant, which means that these equations were for the five-
screw case. The five-screw case was the reference for the mass loss data from
the degradation simulation. So, the change in geometry was calculated for the
five-screw case, but could then be applied to all three cases. The volume of the
jaw plate was calculated as:

Volume = (TH − 5πR2
i + πR2

o) · depth (12.7)

with T the length of the straight edge of the jaw plate (T = L− 2Ro). The value
of the mass loss was converted to a volume with the formula:

Volume = InitialVolume · 100 − MassLoss(%)

100
(12.8)

with InitialVolume being the volume for x = 0. The combination of equations
12.3 to 12.8 lead to an equation with two unknowns, being x and MassLoss.
By solving this equation to x and filling in values of the mass loss, the
corresponding values of x were calculated.

12.B Beam theory equations

The formulas in this appendixwere based on the book ’AdvancedMechanics of
Materials andApplied Elasticity’ byUgural and Fenster [284]. Themandibular
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body behaved as a beamand as a result themoment M in the fracture as a result
of the load was given by:

M = leverarm · load (12.9)

12.B.1 Neutral axis

The neutral axis is an axis in the cross-section where the stress is zero.
Taking the loading situation into account, everything above the neutral axis is
under positive (tensile) stress and everything below the neutral axis is under
negative (compressive) stress. Since the approximation of the cross-section
was symmetricalwith respect to the vertical line through the center of the cross-
section, the neutral axis was horizontal. Because different materials were used,
with different E-moduli, an extra step was taken before calculating the neutral
axis. The width of the cross-sections of different materials was multiplied with
a factor that took the E-modulus of the material into account. The E-modulus
of the cortical bone was taken as a reference here. This method is called the
transformed-sectionmethod. ho,bone and wo,bone indicated the height andwidth
of the cortical (outer) bone and tcortical indicated the thickness of the cortical
bone layer. hi,bone and wi,bone indicated the height and width of the trabecular
(inner) bone and are calculated based on the outer dimensions of the bone and
the thickness of the cortical bone layer:

hi,bone = ho,bone − 2tcortical (12.10)

wi,bone = wo,bone − 2tcortical (12.11)

The relevant dimensions of the jaw plate (abbreviated as JP) cross-section
were the height (hJP) and the width (hJP). The two individual rectangles were
treated as one, since this made no difference in the calculations. As mentioned
above, the widths of the trabecular bone and the jaw plate were adjusted:

w′
i,bone = wi,bone ·

Etrab.bone
Ecort.bone

(12.12)

w′
JP = wJP ·

EJP

Ecort.bone
(12.13)
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The areas of the trabecular bone, cortical bone and jaw plate, as used for the
calculation of the neutral axis, were:

Acort.bone = ho,bonewo,bone − hi,bonewi,bone (12.14)

Atrab.bone = hi,bonew′
i,bone (12.15)

AJP = hJPw′
JP (12.16)

The accented widths were the E-modulus-adjusted widths. The height of the
neutral axis with respect to the lowest point of the bone cross-section was
calculated as:

ymid =
Atrab.boneytrab.bone + Acort.boneycort.bone + AJPyJP

Atrab.bone + Acort.bone + AJP
(12.17)

with ytrab.bone,ycort.bone and yJP the height of the center of mass of the different
sections, which were (relative to the lowest point of the bone cross-section):

ycort.bone = ytrab.bone = ho,bone/2 (12.18)

yJP = ho,bone + hJP/2 (12.19)

12.B.2 Area moment of inertia

The area moment of inertia of the different materials in the cross-section were
calculated with equations 12.20 to 12.22. The total area moment of inertia was
the sum of those (equation 12.23).

Icort.bone =
wo,boneh3

o,bone

12
−

wi,boneh3
i,bone

12
+ (ymid − ycort.bone)

2 · Acort.bone

(12.20)

Itrab.bone =
w′

i,boneh3
i,bone

12
+ (ymid − ytrab.bone)

2 · Atrab.bone (12.21)

IJP =
w′

JPh3
JP

12
+ (ymid − yJP)

2 · AJP (12.22)
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I = Icort.bone + Itrab.bone + IJP (12.23)

12.B.3 Stress, strain and force

The moment that was created by the load caused the beam to bend and
this induced stresses in the cross-section. The radius of curvature ρ was first
calculated and used to calculate the strain ϵ. For that, the distance with respect
to the neutral axis y was also used.

ρ = −Ecort.bone I
M

(12.24)

ϵ = −y
ρ

(12.25)

The strain depended on y, but there is no difference betweendifferentmaterials.
When calculating the stress σ, however, the incorporation of the E-modulus did
make a distinction between the different materials. The stress in the jaw plate
was:

σJP = ϵ · EJP (12.26)

Finally, the stress in the jaw plate was integrated over the area of the jaw plate
to find the total force in the jaw plate:

FJP =
∫ ho,bone+hJP

ho,bone

σJP · wJP dy (12.27)

It was important to use wJP here, which represented the non-adjusted width
of the jaw plate, since the calculation of the stress in equation 12.26 used the
E-modulus of the jaw plate.
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CHAPTER

13

CONCLUSION

Each chapter of this thesis consists of an independent scientific study and
includes its own discussion. Consequently, this chapter provides a general
summary and overall conclusions of the PhD research. Moreover, it includes
an overview of the limitations and challenges we needed to tackle during the
project, as well as suggested future directions and contributions to continue
this line of research.

13.1 Thesis summary

This PhD thesis presented a mechanistic model of the biodegradation process
ofmetallic biomaterials, focusing on the in vitroMgbiodegradation. To achieve
this goal, the PhD project was divided into several objectives, each containing
a specific goal, as described in Chapter 2. The research carried out in this
PhD thesis lies at the interface of biomedical engineering, chemistry, materials
science, mathematics, and computational sciences. The relevant elements of
these disciplines were employed in a multidisciplinary manner to deliver a

229
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multiphysics model of the chemistry of biodegradation by considering the
effect of the environment determined by the final application. After developing
the model, it has been used in multiple case studies to demonstrate its
integration and application capabilities, which was one of the project’s initial
goals.

As stated in Chapter 1, building a mechanistic model of the biomaterials
biodegradation for any arbitrary shape in 3D can be challenging. Despite the
technical challenges, such a model can provide more accurate predictions
of the underlying processes in comparison to data-driven and stochastic
models. In order to build the core computationalmodel, the chemical reactions
occurring at the interface ofMg during the biodegradationwere converted to a
set of reaction-diffusion PDEs. Since studying the change in themorphology of
the implants andmedical devices can be beneficial for the design optimization
processes, it was essential for the model to capture the morphological changes
in the shape of the simulated 3D objects. To do this, an interface tracking
technique, formulated using the level-set method, was integrated into the
biodegradation model, enabling to capture the movement of the corrosion
front due to the loss of material. This model was capable of reproducing the
basic biodegradation behavior of commercially-pureMg in saline and buffered
solutions, typical test environments to evaluate the corrosion behavior of
metallic materials.

Due to the complexity of the derived mathematical model, it was most
convenient to implement it in an in-house code with full control of the
details of the numerical solution and computational implementation. More
elaboration on this choice will be discussed in section 13.2.3. The resulting
coupled equations were solved using the finite element method implemented
in the open-source domain-specific language FreeFEM, in which a wide
range of relevant scientific computing libraries was employed to perform sub-
tasks such as mesh generation, mesh refinement, iterative solution of linear
systems of equations, and preconditioning the models. The implementation
and validation details of the basic biodegradation model are elaborated in
Chapter 3, where the evolved hydrogen gas during the corrosion process was
used to calibrate the model, and global pH measured in immersion tests was
used for validating it, for which a good agreement between the experimental
and computational results was observed.

Various options were considered to extend the model in order to capture more
complex forms of the biodegradation phenomenon, like adding the effect of
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alloying elements or modeling other types of localized corrosion, such as
pitting. However, instead of doing this, we decided to further develop the
models capacity to deal with more complex chemistry of the surrounding
environments, such as electrolytes containing more chemical components.
Doing this required having two extensions on the model: 1) adding the
physics of fluid flow tomake it possible tomodel more advanced experimental
setups such as hydrodynamics and perfusion conditions, and 2) adding more
contributing chemical components to the core computational model. For the
former, efficient CFD codes for simulating the behavior of the circulating
fluid flow were developed and coupled with the core biodegradation model,
the details of which are discussed in Chapter 4. For the latter extension, a
thermodynamics-based code was coupled with the biodegradation model to
predict the concentration of contributing chemical species according to the
computed pH on the corrosion interface. Such coupling resulted in accurate
predictions of local pH changes, which is elaborated in Chapter 5. Although
the developed biodegradation model predicts uniform corrosion for pure Mg
only, the elaborated 3Dmodel and various developed couplingworkflowmake
it easy to extend the models to consider alloying elements and more complex
forms of corrosion.

For increasing the accuracy of the employed level-set formalism, correlating
the rate of material loss to the biodegradation velocity at which the interface
shrinks, the generated mesh used for simulations has been adaptively refined
on the corrosion front, resulting in computationally intensive models usually
comprising of ∼ 10 − 20M tetrahedral elements. Consequently, efficient HPC
techniques, including partitioning the mesh and distributing the computa-
tional load among available computing resources, were employed in all the
developed models. This reduced the simulation time by orders of magnitude.
The details of this parallelization, as well as the results of scaling tests
to evaluate the behavior of the parallel model in HPC environments, are
presented in Chapters 7 and 10.

The computational models andworkflows developed as part of this PhD thesis
were assembled together in a standalone software called BioDeg, which is
available to download as an open-source tool for biodegradation simulation
of any arbitrary 3D geometry. The software features a graphical user interface
and a basic pre-processor, helping non-technical users to take advantage of its
functionality in a user-friendly manner. Various aspects of the development
of BioDeg are detailed in Chapter 8. Furthermore, the details and workflow
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developed for the calibration and parameter estimation of the developed
biodegradation model were separately published as open-source educational
material. This was done using the Jupyter notebooks and open science princi-
ples, the details of which can be found in Chapter 9.

In the end, the developed biodegradation model was used in a couple of case
studies in order to demonstrate its capabilities in real-world applications and
scenarios related to biomedical engineering. The biodegradation model was
coupled or integratedwith othermodels in these case studies to simulatemore
comprehensive phenomena. The case studies selected to present in this PhD
thesis include biodegradation of personalized printed porous implants (Chap-
ter 10), mechanical integrity of infilled structures during the biodegradation
process (Chapter 11), and investigating the mechanical loosening of jaw bone
plates after implantation (Chapter 12).

13.2 General discussion, challenges and limitations

13.2.1 Representing the chemistry in mechanistic models

The core of this PhD research was related to capturing the chemistry of
the biodegradation process in mathematical forms as realistically as possible.
There is a wide variety of different approaches for doing so [97]. The available
methods can be classified in different ways, but one of the most representa-
tive classifications is to divide them into mechanistic and phenomenological
approaches. In mechanistic models, also called physical models, the model
captures the physical rules. In contrast, in phenomenological modeling, the
underlying physics is represented by simplified empirical relationships of the
phenomena to each other.

The model developed in this PhD (in all variations presented in the different
chapters) falls in the category of mechanistic models, describing the underly-
ing chemistry by a set of PDEs. Although thesemodels providemore insightful
information about the occurring phenomena compared to phenomenological
models, they bring another challenge into play: the phenomena should bewell-
known and investigated so that they can be converted to mathematical forms.
Mapped to the chemistry that the current model tries to capture, this challenge
can be divided into two independent issues: 1) obtaining numerical values for
all chemical parameters, some of which are difficult to get in experiments, and
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2) lack of certainty in chemical experiments. These challenges are elaborated
below.

Converting the chemical reactions of the biodegradation process to a mecha-
nistic computational model results in a model with multiple parameters. In
a reaction-diffusion system, such as the one developed in this PhD, these
parameters are related to the diffusion coefficient of the transport of con-
tributing components and the reaction rates at which the chemical reactions
are taking place. Measuring the exact value of these parameters is almost
impossible in experimental studies, especially for complex systems like Mg
degradation in SBF solutions, where there are a lot of interactions between the
different components of the system. This measurement is more complicated
for the reaction rates since it is difficult to isolate a single reaction among
all the correlated reactions occurring in a complex phenomenon like the
biodegradation process and measure its rate. The common solution to this
problem is the so-called parameter estimation or model calibration process,
in which the model parameters are optimized using an appropriate routine
so that the model reproduces the experimentally-obtained output. Depending
on the number of parameters and the chemistry that the mechanistic model
is representing, this process can become complex soon, losing part of its
efficiency to yield correct values for the physical and chemical coefficients. This
issue is detailed in Chapter 3. Moreover, an overview of the necessity of the
parameter estimation process can be found in Chapter 9.

The uncertainty in chemical reactions can be a big challenge in mechanistic
modeling. An example of a lack of certainty in the chemistry of the biodegra-
dation process is the unknown composition of the precipitation layer forming
in complex electrolytes such as SBF and HBSS. The absence of a known
composition makes it impossible to construct a mechanistic computational
model of the precipitation process because it needs the stoichiometry of
the reactions as the coefficients of the derived reaction-diffusion differential
equations. Another example of this issue can be the high variability of the
experimental results to the composition of the testedmaterials. As presented in
Chapter 5, even with a slight change in the alloying composition, like by going
from highly-pure Mg to commercially-pure Mg, the results obtained for local
pH profiles change significantly. These observations, which do not have a solid
theoretical description from the chemical perspective, are extremely difficult
to capture and mimic in mechanistic models such that the computational
predictions reproduce the experimentally-obtained results. This problem is
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elaborated in Chapter 5, where a solution is proposed for tackling it in which a
thermodynamics-based code is coupled with the mechanistic biodegradation
model to provide more information on the concentration of involved chemical
components on the biodegradation surface.

13.2.2 Moving interface problems

Although the interface trackingmethod used in the developed biodegradation
model had prominent advantages, from the implementation perspective, it
was one of the biggest challenges in all aspects of the modeling work carried
out in this research. The challenge was boosted by considering the necessity
of parallel computing and partitionedmeshes. Moreover, integrating interface-
coupled problems such asmass transfer andfluid flow can be quite challenging
in the presence of an interface tracking scheme.

In this PhD, a level-set formalismwas employed to track the moving corrosion
front, making it possible to investigate the morphological changes of the
desired 3D degrading object. This was one of the unique aspects of the current
model compared to other degradation and corrosion models, which usually
deal with a simplified representation of geometries in 2D [70]. However, some
implementation hurdles were inevitable to achieve this uniqueness, not only
from a technical perspective but also from the perspective of computational
resource consumption. Some of the arising challenges are already elaborated
in Chapter 7 (section 7.3.3).

In the developed level-set formalism, an implicit distance function was used
such that its zero iso-surface represents the interface. This implicit functionwas
calculated as a solution of the level-set PDE, in which the interface shrinkage
velocity was correlated to the gradient of the released ion concentrations. This
PDE was solved in each time step along with the other PDEs derived from the
chemistry of biodegradation and other coupled physics. The main challenge
emerges due to the way that the boundary conditions of the coupled problems
are defined. The boundary conditions are related to the mass transfer problem
and should be defined on the biodegradation interface, which moves as the
level-set implicit function evolves. All in all, this means that the BCs of the
system are defined on the solution of one of the governing equations, which
makes the implementation and debugging complex, especially in 3D.

Two other factors can make this challenge even more complex: 1) the necessity
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of HPC and partitioning the mesh, and 2) adding more physics to the
core problem, such as the presence of fluid flow affecting the mass transfer
problem, based on which the level-set formalism is constructed. The current
research faced these challenges in all the chapters of this thesis, which required
spending time fixing the behavior of the developed interface tracking model
by tuning the way that various transport mechanisms, such as diffusion and
convection, affect the interface shrinkage velocity. This required even more
timewhen an addition to the underlying physicswas under development, such
as the works presented in Chapters 4, 5, and 11.

The employed HPC and mesh partitioning techniques, including the mesh
decomposition preconditioners in the HPDDM library and parallel computing
features of PETSc toolkit elaborated in Chapter 7, are capable of handling
the solution of the level-set equation in parallel without any major problem.
However, a well-known problem of the level-set method causes a big issue
here. Since advecting the implicit distance function causes a perturbation in
its numerical solution, the function should be re-initialized after several time
steps. Yet, due to the difficulties of re-initialization on a partitioned mesh, it is
necessary to gather the distributed partitions back into a global mesh before
the re-initialization. Doing this decreases the overall parallel efficiency in large-
scale models, more details of which can be found in section 7.3.3.

Another relevant challenge worth mentioning here is related to coupling
multiple interface tracking methods. An example of this is presented in Chap-
ter 6, where the final goal was to couple the level-set-based biodegradation
model with a developed phase-field model of tissue growth. As mentioned
above, defining BCs on the solution of one of the governing equations (the
level-set PDE in this case) can be quite challenging. For coupling multiple
moving interface models, one model should be declared on the solution of
another, which is an even more intricate problem than the one described
for the BCs. More details of this issue are elaborated in section 6.8. Another
example presented in this thesis can be found in Chapter 11, in which
the biodegradation model was coupled with the level-set-based mechanical
integrity model, meaning that two separate level-set functions were defined to
describe different phenomena.
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13.2.3 Role of open-source tools and open science

Open-source paradigm and open science principles played an important role
in the research carried out in this PhD.Without the added value of open-source
tools, itwould not have beenpossible to build amultiphysicsmoving boundary
model, which was later used to perform a simulation with over 45M elements
on 7000 CPU cores (as presented in Chapter 10). The added value of open-
source comprises the potential flexibility required by computational science
projects, open standards and exchange formats required for integration and
interoperability ofmodels, availability of tools for almost every aspect ofmodel
development, responsive support provided by open-source communities, and
increasing transparency. These advantages will be elaborated in this section.

Implementing themathematicalmodel derived from the chemistry of biodegra-
dation, which was also coupled with other physical problems such as the
perfusion effect, needed flexibility and full control of numerical details. As
a result, doing such an implementation in commercial tools with pre-built
models such as ANSYS, Abaqus, and COMSOL would have been inefficient
and in some cases even impossible. Even though certain customization features
such as user subroutines in Abaqus and weak form interface in COMSOL are
available to provide some flexibility in model implementation, the possible
modification level does not meet our requirements and would decrease work
productivity and efficiency of models. Instead, we decided to opt for a
different approach, bringing freedom in the development of the intended large-
scale mechanistic model of the biodegradation behavior for any arbitrary 3D
shape. To do this, a broad range of relevant open-source tools and libraries
were leveraged in various aspects of this PhD to obtain desired numerical
accuracy in high-performance computational models. These aspects included
mesh generation and refinement, geometry construction, preconditioning,
weak form implementation, solution of derived linear systems, parameter
estimation, and postprocessing. An overview of these tools is presented in Fig.
13.1.

One of the most significant advantages of most open-source tools in the
scientific computing community is the openness of standards and exchange
formats, meaning a custom adapter, application programming interface (API),
or converter can be developed to import the output of a program into another
in case a proper one does not exist. Combined with the flexibility provided
by these tools for doing any desired customization, this characteristic makes
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Figure 13.1: An overview of tools and libraries used in this research, which are
all free and open-source.

almost any coupling or exchange possible among various tools. This means
that no matter if it is officially supported by the developers, the output of any
tool can be used as the input of another. This flexibility was a big advantage for
the research performed in this PhD at different levels, for each of which there
are many examples to mention from all the chapters. The mesh generation
done in Chapter 10 is a good large-scale example, which was executed using
a combination of the FreeFEM internal mesh engine, Mmg, GMSH, and
MeshLab on the output of a CGAL-based code. Another relevant example can
be the geometry processing and mesh preparation performed in Chapters 3, 4,
and 5, where an orchestration of various tools, like SALOME, GMSH, meshio,
and FreeFEM, made it possible to generate a high-detailed large-scale multi-
material mesh for the biodegradation and fluid flow simulations.

The flexibility level provided by open-source tools is not comparable to
commercial software programs. This brings two main benefits into play:

1. Easier customization to adapt to the target application and usage, which
can be observed at various levels. The most-known flexibility in this
regard is related to the availability of source codes, making it possible
for any researcher to modify the tool to work in the desired manner.
Suchmodifications were useful in some stages of the current PhD, where
slight changes were made to some of the interfaces of FreeFEM to behave
differently. However, this level is not the only flexibility useful for com-
putational projects. Another prominent possibility is the customization
during the build process of the software,meaning that various features of
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the employed tools can be customizedwhile compiling them from source
codes. This is also beneficial from the performance perspective, where
building the software from the source codes allows optimizing it to the
specific software and hardware configuration of the target system, which
leads to increasing the performance and efficiency of the tool. This will
be discussed in more details in section 13.2.4.

2. More responsive community formed around the tool, providing different
levels of help and support for solving users’ issues and developing new
features. These communities are unique for open-source paradigm as
the contributors are not necessarily the main software developers. This
relies on the open nature of the software, making it possible for anyone to
contribute with different forms of support. This is extremely important
and beneficial for more complex tools like the ones typically used in
scientific computing and computational science projects.

Another added value of using open-source tools is related to the transparency
and reproducibility of the research, a bonus that opens the stage for more
efficient science outreach as well. Constructing research using freely available
tools means that anyone can re-run the codes and models to reproduce
the results, an action that can dramatically increase the transparency of the
research and trust in the obtained results. This is still possible in research
studies done with proprietary software programs, but the users who want
to reproduce the results need to pay for the licenses first. Moreover, the
tendency to share the codes, models and workflows is more likely in the open-
source community. Asmentioned above, this added value has amutual benefit
for both the transparency and science outreach, meaning that sharing the
developed models and workflows can be treated as efficient project outreach
in addition to increasing trust and transparency. In other words, open-source
tools can help project outreach activities meet open science principles. An
example of these activities are presented in Chapters 8 and 9. In Chapter 8, the
developed models are encapsulated into a standalone open-source software
that relies on open-source tools to work, implying that the users do not need
any additional license to run biodegradation simulations. This software was
reviewed and published in the Journal of Open-Source Software (JOSS) [287].
In Chapter 9, the details of the utilized parameter estimation process, an
important building block of the carried out research, was represented as a self-
teaching educational material in the format of Jupyter notebooks. This work
was published in the Journal of Open-Source Education (JOSE) [288].
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A possible advantage of using proprietary codes in the development of
medical devices comeswith the assistance provided in the regulatory approval
process. Digital evidence used in the regulatory dossier requires credibility
assessment, following verification, validation and uncertainty quantification
(VVUQ) guidelines (discussed in section 13.3.3). A big part of the verification
is related to the software code itself, and companies owing proprietary codes
have often already prepared extensive documentation. However, as open
source codes are maturing, also their developers are developing this sort of
verification documentation. An example is FEBio [289], a finite element code
primarily developed for applications in biomechanics, funded bypublicmoney
from the NIH in the USA.

As a summary, we should emphasize that this PhD was not possible without
the freedomandflexibility available in open-source scientific computingworld.
The open-source paradigm also helped us to increase the outreach of the
project using open science principles. Additionally, it is worth mentioning that
in line with the project outreach activities, the obtained knowledge is getting
published as a YouTube project called TuxRiders1, in which the power of open-
source scientific computing tools are discussed in details and demonstrated
using practical use cases coming from real-world projects, which encompasses
the research carried out in this PhD as well.

13.2.4 High-performance computing and scaling

Parallelization of the models has been one of the main objectives of this PhD,
making the models run faster to get the predictions and output in less time
in large-scale simulations. Achieving this goal has involved various challenges
across the project, which can be divided into two main categories: implemen-
tation and performance tuning issues. The implementation perspective was
discussed in details in Chapters 3, 4, 7, and 10. The main implementation
strategy was based on high-performance mesh decomposition, partitioning
and distributing the mesh among available computing resources, and then
utilization of high-performance preconditioners and iterative solvers tailored
for different systems and physics. For example, the FieldSplit preconditioner
and blocking approach was used for dealing with the Stokes and Navier-
Stokes equations in the fluid flow system, and the BoomerAMGpreconditioner

1https://www.youtube.com/TuxRiders

https://www.youtube.com/TuxRiders
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was opted for the reaction-diffusion systems after evaluating various available
options.

Although it might not appear so, the performance tuning aspect can be as
complicated as the implementation [290, 291]. Running the model using 10
CPU cores with an accepted performance and speedup does not mean that
one can increase the number of cores to 100 and still get the same speedup. The
same problem appears by moving from the order of hundreds to the order of
thousands, and so on. Entering a new order of magnitude for the number of
CPU cores requires dealing with new issues [292–294].

This section briefly summarizes various issues one can facewhile tacklingHPC
and performance-tuning challenges. These experienceswere obtained bywork-
ing in HPC environments on the VSC supercomputer in Belgium, the Snellius
supercomputer in the Netherlands, and the ARCHER2 supercomputer in the
UK. The order in which the items are sorted does not imply their importance.
All the mentioned points should be taken into account for optimizing a code
to get better performance.

• Building tools with different MPI implementations and toolchains:
Running codes in an HPC environment is quite different from a local
machine, where all the software and hardware configurations made by
the system maintainers can affect the performance of the code. Among
various software-related aspects, the chosen compiler toolchain (GNU,
Intel, Cray, etc.) andMPI implementation (MPICH, OpenMPI, Intel MPI,
etc.) used to build and run a code can play an important role. In most
cases, the computational tools should be built with all the available
toolchains and MPI implementations to check which one offers better
performance on the specific HPC environment.

• Inter-node communication: Communications taking place between the
computing nodes are the source of most of the problems happening in
parallelization and performance tuning of codes. The first step towards a
faster model is to check the code to remove unnecessary inter-node com-
munications, especially for large-scale simulations. For example, there
are usually redundant collectiveMPI calls in themodel initialization that
can be replaced by encapsulating more work in the main process and
performing the collective operations at the end of it. These collective calls
usually appear during the first round of parallelization of the code as a
result of direct translation from sequential procedures.
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• Running parallel version of tools and codes: This point is actually a
combination of the two previous points from a practical point of view.
When a computational tool is built in HPC environments, it may fail
to run in more than one node due to an inappropriate configuration
during the build process. For example, FreeFEM may fail to execute
when the job is supposed to run in more than a single node, implying
that the inter-node communication does not work due to the used MPI
or compiler toolchain. This scenario frequently occurs, showing the
importance of employing correct toolchains and MPI implementations.
The proper configuration differs from environment to environment, so
the best recommendation would be to check the HPC documentation
provided by vendors or system maintainers.

• Mesh generation for large-scale models: The mesh of the acetabular
cup presented in Chapter 10 had more than 45M tetrahedral elements.
Besides the technical aspects of the computational part, generating such
a mesh can be quite challenging and time consuming. Some of the
common tools used for mesh generation have a parallel version aimed
to work with a couple of CPU cores to reduce the time needed for mesh
generation. For example, Mmg has a parallel version called ParMmg,
andCGAL supports shared-memory parallelization for volumetricmesh
generation. However, these tools are not very reliable and may cause
further problems. In our tests on ParMmg, the tool showed major issues
with inter-node communication on large-scale mesh generation, leading
us to use sequential mesh generation principles for making the mesh in
some cases (Chapter 10).

• Mesh partitioning for large-scale models: Choosing a proper mesh par-
titioner plays an essential role in the initialization of the simulations but
can also be the source of some failure at this stage. The commonly-used
partitioner in this research was METIS software. However, in particular
cases and contrary to the previous point for mesh generators, it was ob-
served that its parallel version, called ParMETIS, has significantly better
performance. Switching between the sequential and parallel version of
this partitioner, as well as using other tools such as SCOTCH, should be
considered in the performance tuning of computational models.

• Memory issues in each node: Memory-related issues are one of themost
common problems one can face while tuning computational models for
better scaling behavior. Reviewing code for fixingmemory-related issues
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can reduce memory usage, especially in the initialization stage, helping
overcome part of these memory bottlenecks. The memory issues can be
debugged in a single node execution first with the maximum memory
available. In some cases, one needs to reduce the number of employed
CPU cores in a node so that more memory is available to each core.
Although this action can help remove memory-related errors, it reduces
the efficiency of the whole computational task, leaving some CPU cores
unused in each node due to memory problems.

• Storage and IO bottlenecks: There are usually different storage volumes
available in HPC environments, which differ in various aspects such as
the speed of access, space limitations, and backup policies. Choosing a
proper location for file IO can particularly impact the performance of
the codes. In more advanced HPC environments, the user does not have
direct access to high-speed storage, so explicit file operations should be
defined in the job batch file describing how the files should be copied
to the high-speed volumes and moved back to the home directories.
Another storage-related performance bottleneck is the known issue of
slowed down reading speed of a large number of small files, which
exists in some HPC environments. This problem usually impacts remote
postprocessing and visualization tasks, in which a large number of files
should be processed on an HPC node.

• Remote visualization: In large-scale simulations, where the model pre-
dictions result in tremendous output files, remote postprocessing and
visualization can be a more efficient option compared to conventional
local processing.Moreover, doing this can be beneficial for the debugging
and performance tuning of computational models, where it saves a lot
of time needed to transfer the files to a local machine for analysis. For
the simulation presented in Chapter 10, the results comprise of 95,000
files with a total size of 148 GB. The visualization was done on a node
featuring a GPU using the ParaView server on the remote node and
the ParaView client on the local machine. Configuring such remote
processing requires extra steps in HPC environments, such as making
secure tunnels and setting up offscreen rendering,which are unnecessary
to perform normal computational tasks.
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13.3 Future perspectives

The research carried out in this PhD can be seen as the first steps for
constructing a comprehensive biodegradation model capable of working in
3D for any arbitrary shape and being integrated into other relevant modeling
workflows. At its current stage, the model has been calibrated mainly for
commercially-pure Mg and has been tested in immersion and hydrodynamics
setup for aggressive corrosion environments and buffered solutions. Conse-
quently, different lines of development can be considered to extend the model
in the future. These lines can be classified into either developing the coremodel
to improve its methodological aspects or combining it with other models for
various use cases and applications.

The future perspective can be seen as an attempt to address the mentioned
limitations we faced in various stages and aspects of this research, allowing
the developed model to capture more chemical and biological processes and
improve its credibility. It is worth mentioning that in addition to improved
numerical and computational methodologies, these perspectives require more
sophisticated experimental approaches for validation purposes. This aspect of
future development is not discussed in this thesis.

13.3.1 Other materials and effect of alloying elements

As stated several times throughout this thesis, biodegradable metals include
magnesium, zinc, and iron, among which magnesium is the most studied
material. However, zing and iron have been gaining attention in recent years
for various applications. As a result, the model can be further developed
to capture the biodegradation of iron and zinc as well. Doing this does not
need development from scratch since the biodegradation mechanisms of zinc
and iron are similar to magnesium, meaning that the underlying reduction-
oxidation reactions can be easily converted to the forms of the mathematical
model developed in this thesis.

Another factor limiting the applicability of the model developed in this thesis
is related to its lack of support for different types of biodegradation other
than uniform corrosion. The developed mathematical model, including the
reaction-diffusion-convection equations coupled with the level-set formalism
for tracking the moving corrosion front, is currently capable of simulating
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homogeneous corrosion only. Capturing localized corrosion behavior, such
as pitting and galvanic corrosion, requires adding the effect of alloying
elements and impurities. This needs further development on the core of the
mathematical formulation such that it allows the inclusion of active zones in
which the rate of degradation is higher.

As part of the work performed in Chapter 11, we intended to develop a
multi-material biodegradation model capable of simulating the corrosion
in composite materials for particular fixation applications in orthopedics.
The work lacked a certain theoretical foundation, and as a result, it was
not presented in this thesis. However, due to the interesting applications
it may have, it should be considered as a worthwhile addition for future
developments.

13.3.2 Biodegradation in complex electrolytes and environ-
ments

The work presented in Chapters 4 and 5 aimed to investigate the biodegrada-
tion process in a complex electrolyte in the presence of various contributing
chemical components. Doing such modeling combined with the prospective
development mentioned in section 13.3.1 would allow the model to mimic
the behavior of any metallic biomaterial in any desired environment. How-
ever, capturing the biodegradation behavior in complex electrolytes, such
as HBSS and SBF, can be pretty challenging in a mechanistic model, the
benefits of which are mentioned in section 13.2.1. In Chapter 5, the modeling
approach was the coupling of the mechanistic model of biodegradation
with a thermodynamics-based code being responsible for calculating the
concentration of involved chemical species on the corrosion interface. Even
though such coupling resulted in acceptable predictions of local pH changes,
the extensibility and generalizability of it can still be questionable. A fully
mechanistic model, in which the concentration of all components is tracked by
means of a set of PDEs, can facilitate the model’s credibility for such complex
environments. This can be considered as an important further development of
the model.

Another potential for future research exists in the chemical uncertainty men-
tioned in section 13.2.1. The uncertainty in various levels of the chemistry of
biodegradation, such as the stoichiometry of the precipitation layer in complex
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electrolytes, is a limiting factor for developing more detailed mathematical
models. However, it opens the stage for inverse problem formulations, where
the computational model can actually help demystify the complex reactions.
As the first step, since the formation of the hydroxyapatite-like precipitation
has an unknown stoichiometry (Eq. 5.10 in Chapter 5), an optimization
problem can be constructed to find the chemical coefficients such that the
simulation output matches the experimentally-obtained values. With such an
inverse problem formulation, the computational modeling of the biodegra-
dation process can help experimental research to understand the underlying
phenomena better.

13.3.3 Uncertainty quantification and model credibility

Oneof themost important limitations of computationalmodels of the biodegra-
dation process is that the majority of them are developed and calibrated for
certain systems and under certain conditions. This limitation applies to the
model developed in this PhD too. One of the best solutions to tackle this
problem is to take advantage of uncertainty quantification (UQ) approaches in
the context of VVUQ methods. Various methods and techniques provided by
UQ can help to assess the model’s generalizability, and as a result, enhance its
credibility for different biodegradation conditions. UQmay also accelerate the
efficient exploration of the effective factors and parameters, resulting in more
reliability for the developed model [70].

UQ is a methodology to characterize the uncertainty in the output of com-
putational models and measure their sensitivity to model parameters, which
results in finding the source of uncertainty in the model. An example of a
relevant study employing such an approach for building a computational
biodegradation model is Zeller-Plumhoff et al. work [144], in which they used
UQ techniques for the parameter estimation of a mechanistic biodegradation
model of pure Mg. As demonstrated by this study, employing UQ results
in reducing the computational load in the parameter estimation phase and
enhancing the generality of the model. Such an analysis should be performed
on the model developed in this PhD as further development.

Considering the importance of HPC in this PhD (as discussed in section
13.2.4), the UQ analysis of the developed biodegradationmodel should be per-
formed in VVUQ frameworks designed for HPC environments. The suggested
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framework for this purpose is VECMA2, an open-source toolkit (www.vecma-
toolkit.eu) aimed to provide awide range of tools to help facilitating theVVUQ
processes in developing multiscale and multiphysics computational models,
which is developed with scalability in HPC environments in mind [295].
VECMA has demonstrated it capabilities for a range of different applications -
including in silico medicine - in recently conducted studies [296–299].

13.3.4 Coupled models for a wide range of applications

As indicated in section 13.1, as well as section 2.2 in Chapter 2, one of the
objectives of the research carried out in this thesis was to utilize the developed
biodegradation model in various case studies for different applications. Being
facilitated by using open-source tools, this objective was demonstrated with
three sample studies presented inChapters 10, 11, and 12. In these chapters, the
biodegradation model was coupled with other mechanical integrity models
in order to deliver a more comprehensive representation of the underlying
processes in tissue engineering. As an output of these sample use cases, the
model showed a big potential from the integration point of view, meaning that
it can bring certain added values when being integrated into other modeling
workflows.

In addition to the mentioned samples, the model is being used in a few more
in-house studies at the time of writing this thesis. One example is the use
of the developed model for the evaluation of the biodegradation behavior
of different designs of cardiovascular stents in order to move towards an
optimal design. Another example is a similar usage of the model to assess and
compare the biodegradation rate of various designed screws for orthopedic
applications to use the most suitable one for further in vivo investigations. In
line with all the constructed studies, the developed biodegradation model
can be further employed in any other potential modeling use case in tissue
engineering and biomaterials science, where biodegradation plays a role that
needs to be taken into account. Moreover, further research can be carried
out to overcome the challenges mentioned in section 6.8, after which the
biodegradationmodel can be coupledwith sophisticated tissue growthmodels
to investigate the phenomenon of replacement of biodegradable implants with
neotissue happening inside the human body.

2https://www.vecma-toolkit.eu/

https://www.vecma-toolkit.eu/
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By considering the typical applications of biodegradable metallic materials,
the impact zone of the developed model will be mostly related to orthope-
dics and cardiovascular studies. Nevertheless, adding Nerst-Planck terms to
the mathematical model enables it to capture the electrochemical potential
changes. Doing this allows the model to act as an efficient tool in fundamental
research relevant to chemistry and chemical engineering, where the corrosion
of metals in aqueous solutions is being studied in the field of electrochemistry.
Consequently, it results in a model with a broader application in the field of
corrosion science.
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APPENDIX

A

MESH QUALITY PLOTS

This appendix aims to visualize some mesh quality metrics for various 3D
mesh geometries used throughout the current thesis. The mesh quality plots
show the uniformity of generated meshes considering the applied refinement
on the biodegradation interface.

A.1 Mesh quality metrics

In finite element simulations, the accuracy and reliability of results are heavily
dependent on the quality of the mesh. Mesh quality metrics are therefore used
to assess the quality of the mesh before analysis. Some common metrics used
to evaluate the quality of a mesh include aspect ratio, skewness, orthogonality,
and element size. Aspect ratio measures the ratio of the longest side of an
element to the shortest side, while skewness measures the deviation of the
element from an ideal shape. Orthogonality measures the angle between
adjacent element faces, and element size measures the minimum size of the
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element. A good mesh should have well-shaped elements, minimal skewness
and distortion, and uniform element size distribution.

For measuring the quality of various 3D meshes in the current thesis, two
metrics were selected to be measured: Gamma index and aspect ratio, both
plotted versus the number of elements sharing the same metric value. The
Gamma value, calculated using GMSH, is obtained by dividing the inscribed
radius of each element to it circumscribed radius. In GMSH, it is calculated
by dividing the volume of each element to the sum of the area of its faces,
multiplied by the maximum edge length.

Aspect ratiomeasures the ratio of the longest edge of an element to the shortest
edge length and is used to assess the distortion of the element. A high aspect
ratio indicates that the element is highly distorted and can cause inaccurate
results or numerical instability in the simulation. In contrast, a low aspect ratio
indicates a more regular shape and a better representation of the geometry
being simulated. Generally, a good mesh should have elements with an aspect
ratio as close to one as possible, which indicates that the elements are well-
shaped and do not deviate significantly from their ideal geometries.

The aspect ratio measurements were done using the SALOME platform. For a
tetrahedral element shown in Fig. A.1, the aspect ratio is calculated as:

Q =
hmax

2
√

6r
, (A.1)

inwhich hmax is themaximumedge length (hmax = max (hab, hac, had, hbc, hbd, hcd)),
and r is the inradius of the tetrahedron, which can be calculated as follows:

r =
|α|∥∥∥N{a,b,c}

∥∥∥+ ∥∥∥N{a,b,d}

∥∥∥+ ∥∥∥N{a,c,d}

∥∥∥+ ∥∥∥N{b,c,d}

∥∥∥ , (A.2)

where N{a,b,c} is a normal vector to the face defined by vertices {a, b, c}. α and
N can be calculated as follows:

α =
−→
ab · (−→ac ×

−→
ad) N{a,b,c} =

−→
ab ×−→ac . (A.3)
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Figure A.1: A simple tetrahedral element for demonstrating aspect ratio
calculation.

A.2 Mesh used for the core computational model

Fig A.2 shows the quality plots for the mesh used in the narrow cuboid
model in Chapter 3 for validating the model, containing 18,049,471 elements.
Similarly, Fig A.3 shows the quality plots for the screw mesh used as a sample
case study, containing 1,440,439 elements.

Figure A.2: Mesh quality plots for the narrow cuboid model (Fig. 3.3).
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Figure A.3: Mesh quality plots for the screw model (Fig. 3.6).

A.3 Mesh used for the extended model

Fig A.4 shows the quality plots for the mesh used in the chamber setup for the
extended model in Chapter 5, containing 290,997 elements.

Figure A.4: Mesh quality plots for the local pH model (Fig. 5.3).
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A.4 Mesh used for the performance analysis model

Fig A.5 shows the quality plots for the mesh used for the biodegradation
simulations performed in Chapter 7, containing 830,808 elements.

Figure A.5: Mesh quality plots for the cubic block model (Fig. 7.5).

A.5 Mesh used for the acetabular implant model

Fig A.6 shows the quality plots for the mesh used for the acetabular cupmodel
in Chapter 10, containing 45,870,053 elements.

A.6 Mesh used for the mandibular implant model

Fig A.7 shows the quality plots for the mesh used for the mandibular plate
model in Chapter 12, containing 19,924,153 elements.
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Figure A.6: Mesh quality plots for the patient-specific acetabular implant
model (Fig. 10.3).

Figure A.7: Mesh quality plots for the mandibular implant model (Fig. 12.6).
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