Microsoft Security

Booting with Caution
Dissecting Secure Boot's
Third-Party Attack Surface

Bill Demirkapi

Who Am |?

- Security Engineer at the Microsoft Security
Response Center.

- Background in low-level OS internals and
cloud security.

- Worked with Secure Boot for over a year.
- Born in Berlin!

Intro to Secure Boot

What is Secure Boot?

- UEFI Secure Boot is a
security feature designed to
prevent malicious software
from loading when your PC
starts.

- TLDR: Make sure code
executed during boot is
signed and trusted.

Exposed 0S-Absent Previously
APT App exposed
/ Framework
i AFTs now
Transient OS limited
Environment
U
Transient OS
0S-Present
App
4
Final OS
g Environment
Security Pre-EF1 Driver Boot Transient Runtime After-
(SEC) | Initialization Execution Device System Load (RT) life
Environment | Environment | Selection (TSL) (AL)
(PEI) (DXE) (BDS)
Power on=p [. . Platform initialization . .]=——[.... OSboot....] + Shutdown

Figure 1-2. Framework Firmware Phases

Source: EDK2 Repository

What is Secure Boot?

Secure Boot Keys

Platform Key

P~

Update

Update h Update

Key Exchange Key

(@
(¢

If signed by key in db, If signed by key in dbx,
executable can be loaded executable load is forbidden

Source: Eclypsium

- UEFI firmware exposes dozens of

crucial APl functions that are
Intended to provide basic,
universal functionality.

- Example: Loadlmage allows you

to load a UEFI driver.

- With Secure Boot on, images must have a
valid signature.

- But how does the firmware know who to
trust?

What is Secure Boot?

- The DB and DBX variables control
what can and cannot load.

- Most common format for entries

Is SHA256 (Authenticode) hashes
and X509 certificates.

- Updates can specify
allowed/denied.

32.41.1 EFI_SIGNATURE_DATA

Summary

The format of a signature database.

Prototype
#p ma pd J
yped struct _EFI_SIGMATURE_DATA
EFI_GUID Signaturefuner;
UINTS SignatureData]

typedef struct EFI _SIGMATURE_LIST {
EFI_GUID SignatureTypes,
UINT32 SignaturelistSize;
UINT32 SignatureHeaderSize;
UINT32 SignatureSize,
UINTS3 SignatureHeader [SignatureHeaderSize];
EFT_STGMATURE _DATA Signatures [_][SignatureSize];

EFI_SIGNATURE_LIST;

_ .
#pragma pack()

Source: UEFI Specification

What is Secure Boot?

- The signature databases are stored as authenticated variables.

- They can always be read, but only written if the variable data is...

- Signed with the private half of a key exchange key (KEK variable)
- Or a platform key (PK variable).

- Every signed update payload also needs to specify an operation.
- This is typically an "append write” (merge with existing variable).

- Protects against rollback and empowers our patching capability.

What is Secure Boot?

- On machines that ship Windows, two common DB entries include...

- Microsoft Windows Production PCA 2011 = First-Party Images like bootmgr
- Microsoft Corporation UEFI CA 2071 = Third-Party Images like the Linux "shim"

- The UEFI CA is why Linux works out of the box, even with Secure
Boot enabled.

In order to boot on the widest range of systems, Ubuntu uses the following chain of trust:

1. Microsoft signs Canonical's 'shim’ 1st stage bootloader with their 'Microsoft Corporation UEFI CA'.
When the system boots and Secure Boot is enabled, firmware verifies that this 1st stage bootloader
(from the 'shim-signed' package) is signed with a key in DB (in this case 'Microsoft Corporation

UEFI CA")

Source: Ubuntu Wiki, Secure Boot Testing

Secure Boot Threat Model

- When on, Secure Boot is responsible for the code integrity of your
boot environment.

- When off, you can already execute untrusted code “by design”.
- This is why MSRC calls them Security Feature Bypasses.
- There is no vulnerability without the security feature!

Secure Boot Security Feature Bypass Vulnerability new

CVE-2024-29062
Security Vulnerability

Released: Apr 9, 2024

Assigning CNA: Microsoft

Secure Boot Threat Model

- There is often a high bar for abusing Secure Boot vulnerabilities.
- Secure Boot is still a critical feature for enabling a chain of trust.

Attack Surfaces

Local EFI Partition, UEFI Runtime Services*

Physical Hardware, EFI Partition, etc.

Adjacent HTTP or PXE Boot

Remote (Man-in-the-Middle) HTTP Boot

A "local” attacker with Admin+ code execution A physical attacker wants to install a bootkit or

wants to persist in the boot environment. steal encrypted data.
An adjacent attacker wants to gain code A remote man-in-the-middle wants to gain code

execution on machines that use HTTP/PXE boot. execution on machines that use HTTP boot.

Example: Secure Boot in Practice

Aptio Setup Utility - Copyright (C) 2019 American HMegatrends, Inc.

- Control over signature
data bases iS genera”y Factory Key Prowvision [Enabled]
exposed in the BIOS.

- Requires physical access.

- OS can only use signed

payloads* to update these
variables.
* Unless Secure Boot is off.

Dissecting Secure Boot's Attack Surfaces

Common Attack Surfaces

OEM Firmware Firmware shipped with your device.

Custom OEM Certificates Images signed by a custom OEM certificate included in DB.
Third-Party Images Images signed by the third-party UEFI CA.

Third-Party Images, Linux Shim First-stage bootloader for most Linux distributions.
Third-Party Images, Linux Shim “Second-stage images” signed by custom Linux distribution
“Second-Stage Images” certificates.

Microsoft Images Images signed by the first-party Windows CA.

OEMs: Forking Hell

- The Embedded Development Kit 2 (EDK 2) is an open-source and
cross-platform firmware development environment.

- Many OEMs use a forked version for their devices.

Background

In June of 2004, Intel announced that it would release the “Foundation Code” of its Extensible
Firmware Interface (EFI), a successor to the 16-bit x86 “legacy” PC BIOS, under an open
source license. This Foundation Code, developed by Intel as part of a project code named
Tiano, was Intel's “preferred implementation™ of EFI. This evolved into EDK, EDK Il, and other
open source projects under the TianoCore community.

Source: TianoCore Website

OEMs: Forking Hell

Enumerate
|dentify Version Known Bugs

Firmware Repository Attacker

> > @; 0:
Dump & v

Read more: The Firmware Supply-Chain Security is broken: Can we fix it? by Binarly

OEMs: Custom Certificates

- OEMs will often ship custom certificates in DB to allow for their code
(outside of firmware) to run.

- Unfortunately, these certificates have been found to sign dozens of
vulnerable images.

OEMs: Custom Certificates, Case Study

Items Quantity

ASUS ASUS X670E-AROG
STRIX GAMING WIFI ATX 1
Mother...

- In October, | built a PC with an ASUSTeK motherboard.
- Let's dive into the attack surface introduced by my OEM (&

OEMs: Custom Certificates, Case Study

- Dump DB & focus on outliers.

- How do we flnd the |mages ASUSTeK MotherBoard SW Key

[d bv th e Certificate
allowe y these entries: ASUSTeK Notebook SW Key Certificate
- Microsoft has logs for what is signed via the

UEFI and Windows CA, but not custom CAs or Microsoft Corporation UEFI CA 2011
hashes. Microsoft Windows Production PCA 2011

Canonical Ltd. Master Certificate
Authority

4 Unknown SHA256 Hashes

OEMs: Custom Certificates, Case Study

- VirusTotal is a malware scanning platform that allows you to search

for submissions using filters.

signature:"76 A092065800BF376901C372CD55A90E1FDED2EQ" metadata:"EFI application”

FILES - 20 / 41

ah Certificate X

First seen asc X

F561349C18C9F277E1B6DT113FADT12D852589E638FACB29D4A46027878811F6E3
® @ © C:\Users\user\Desktop\bdrescue\data\shimx64.efi

92521F64545F81F1AE78D9810633CB9E265B8AF@81AE7DCTCA35@ETD4CAFFE58

% Help Q 1
G
Sortby ~ - FieT
Detections
0 /69
peexe overlay revoked-cert signed efi 6é4bits invalid-signature known-distributor
0 /69

® @ © /[Volumes/LDiagBootable/EFI/BOOT/BO0Tx64.EFI

peexe overlay revoked-cert signed efi 6é4bits invalid-signature known-distributor

General Detalls Certification Path

Show: <Al W

Field Value

Dlssuer Canonical Ltd, Master Certifica. ..

=] valid from Thursday, April 12, 2012 7:12...

B'I.n'alid to Friday, April 11, 2042 7:12:51...

DSubject Canonical Ltd, Master Certifica. ..

[=]Public key RSA (2048 Bits)

EBasic Constraints Subject Type=CA, Path Lengt...
76a092065300bf376901c372¢. ..

76a092065800bE376901c372cd55a%0el{ded 20

dit Properties... Copy to File...

OEMs: Custom Certificates, Case Study

- Unfortunately, the Canonical certificate was used to sign several
vulnerable shim boot loaders.

- Fun Fact: Canonical does not want their old certificate included.

signature:"} 3-50 PM - 10 Jan lapi n
right, the asustek one was also the grub signing one and they got a CVE out of that.

(and nobody at asustek had teld canonical about it initially, wooooops)

bdemirkapi 251 FM - 10 J: Ip ~
fascinating. they just chose to include canonical’s cert for fun? | suspected Canonical had some special [
agreement where they paid $%$$ for the privilege of being included. st seen

F561 F;?f:'.'-':-:"

P0-01-06
© ¢ several hardware vendors have had employees come to the conclusion that they should include distro certs|g.31.44
pee in the past. Several of them have asked me which RH certs to include and I've convinced them not to.

First seg

9252 F JE AT e
o a @bdemirkapi | was told the cert ASUS is shipping isn't our current one and no one managed to make them 16-10-17

7:10:28
pee Stﬂlp.

OEMs: Custom Certificates, Case Study

- What about the 4 unknown SHA256 hashes?’

- Turns out they hardcoded decade old Windows boot managers with

known vulnerabilities!

authentihash:F58FBDF71BES8C37CBBD6944E472C450B1043817B972914487C221033F3079E43

= Help

FILES-2/2

Sortby ~

A73459794D52FBFF@6E6AF3C7552669533B5089045005@19FBFD841DA15348A1
@ @ © bootngr.exe

pedll overlay signed efi trusted é4bits known-distributor

D363B6E577D5F2D7D869E2D6EB65FEID739DDED59BES33EDCEBACZFBF679A904
& hootmgr.exe
pedll 64bits efi

Q

Filter by ~

Detections

0/69

1167

Export ~ Tools ~
Size First seen
2011-05-28
656.88 KB .
03:51:16
2015-10-25
650.00 KB
13:08:09

Bill Demirkapi 0

Help ~

Last seen

2023-10-1
12:01:13

2015-10-25
13:08:09

OEMs: Custom Certificates

- This is not just an ASUSTeK problem. This is an industry problem.
- Most OEMs ship custom certificates.
- Firmware has the same problem: lack of oversight from OEMs.

- With custom DB entries, it's up to your OEM to decide what they
Include, and what to revoke.

Third-Party UEFI Images

- Third-Party UEFI images are where the most security vulnerabilities
in UEFI drivers have been discovered.
-+ >90% of on-by-default revocations in DBX are for third-party drivers.

- Data Sources for Images include...

- VirusTotal search using signature filter with third-party CA thumbprint.
- Eventually, internal access to signed images.

Size: 12.4 GB (13,381,272 359 bytes)
Size on disk: 124 GB (13,415,784 448 bytes)

Third-Party UEFI Images, Example
* Signed UEFIL Shells

* 2 umque shells

CVE-2022-34301 " CVE-2022-34303 """

pedd B
L |r.9l'nmeh I

L | sha _Full.efi

=

-Ia L

- CryptoPro Secure Disk for BitLocker

Read more: One Bootloader To Rule Them All by Eclyspium

Third-Party UEFI Images, Example

- Problem: We do not hunt for variants when revoking images.

- Variants can be found trivially by searching for unique strings.
- In this case, most variants are not on VirusTotal, but that's not true for other revoked images.
- Want to find more bugs? Look for unrevoked variants of revoked EFl images.

Search results
Name Size Matches Path Ext Encoding Date modified
D Bootauth32_1.efi 397 KB 2 \. efi BINARY 8/6/2014 2:57:32 PM
D Bootauth32.efi 397 KB 2 \ efi ~ BINARY 8/8/2014 3:20:20 PM
D Bootauth.efi 1.00 MB 1 \. efi BINARY 10/22/2020 5:48:.00 PM
D Bootauth_1.efi 1.00 MB 1 \. efi BINARY 4/8/2020 8.09:02 PM
D Bootauth_2.efi 951 KB 1 \ efi ~ BINARY 7/3/2019 8:30:30 PM
D Bootauth_29.efi 1.34 MEB 1 \ efi BINARY 12/21/2012 2:46:46 PM
| I - . - ———— - . - s e s s — tam s s 4 e e s s
Searched 15430 files, skipped 0 files. Found 20 matches in 18 files.

Intro to the Linux Shim

- shim is a software package that
works as a first-stage Linux
bootloader.

- Microsoft signs shim builds from
Linux distros.

- The shim includes the Linux distro’s
self-signed certificate and manually
loads UEFI drivers signed with it.

UEFI

Disallow DB

Allow DB (DB) (DBX)

1010 1010 1010 QIO
Hnoir 1o HOII 1Ol

1010
1ol

kemel's signature

kernel

Intro to the Linux Shim

- The shim has an interesting revocation mechanism known as “UEF!
Secure Boot Advanced Targeting” (SBAT).

- Images are built with an “.sbat” PE section that specifies version info and other metadata.
- SBAT revocations are stored in the “SBAT" UEFI variable.

- Example: GRUB2 has a vulnerability.

- Instead of adding every GRUB2 image hash to DBX, a single SBAT revocation can revoke all
GRUBZ2 images below a certain version.

sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
grub,2,Free Software Foundation,grub,2.04,https://www.gnu.org/software/grub/

Example SBAT Entry

Intro to the Linux Shim

- The Linux community has a repository known as shim-review.
- Practically any distribution of Linux can ask for their shim to be
signed.

- Distros fill out a questionnaire, like the UEFI CA signing process.
- Requires approval from trusted developers.

& shim-review Public ® Watch 41 ~ ¥ l

¥ main ~) od O Go to file + <> Code ~

o .

&) aronowski and L

2 . Add clarifications suggested ... &3 effc7bc - 2 weeks ago XY 56 Commits
steve-mcintyre

docs

Add a note to explain that certificate... last month

The Linux Shim: Governance Issues

- In 2020, there were major issues found in GRUB2 by Eclypsium.
Dubbed “BootHole".

- GRUB2 is loaded by shim, so to revoke the secondary GRUB images,
you need to revoke the shim.

- Problem: Not all “pre-SBAT" shims were revoked in 2020.

- Problem: Linux vendors reused their certificates from past shim
builds that have signed vulnerable GRUB2 code.

The Linux Shim: Governance Issues, Example

- Found a few dozen forgotten pre-SBAT shim images that were not
revoked with nothing but VirusTotal.

5 Segment type: Pure data

5 Segment permissions: Read/Write

_data_ident segment para public 'DATA' usebd
assume cs: data_ident

;org 830088h
public shim version
shim_version db 'UEFI SHIM',@Ah ; DATA XREF: .data:off 9E@1@lo
db '$Version: 15.8 $',@Ah
db '$BuildMachine: buildhost $',@Ah
db "$Commit: 5914984a1ffeabB841f482c¢791426d7¢ca9935%a5%¢e6 $',0Ah,0

align 1@eeh

Download files _data_ident ends
signed with UEFI CA .data.ident contains version & commit of build

Exclude revoked

Filter version and Leftover images
Images

SBAT support are exploitable

The Linux Shim: Governance Issues, Example

If you are re-using a previously used (CA) certificate, you will need to add the hashes of the previous GRUB2 binaries
exposed to the CVEs to vendor_dbx in shim in order to prevent GRUB2 from being able to chainload those older GRUB2
binaries. If you are changing to a new (CA) certificate, this does not apply. Please describe your strategy.

We use previous post-boothole certificate. shim-15 without SBAT support was revoked (DBXed). Previous
grub2 image sighed with this key does not have .sbat and got rejected by this shim.

Example of a Shim-Review Response That Violates Policy

- This is an example shim-review submission following SBAT's
Introduction in 2020 in response to "BootHole".

- Question: Did the vendor revoke old vulnerable GRUB2 images or
are they using a new key?

- Vendor: We use the same key, but since old GRUB2s don't have
SBAT, their shim won't load them.

The Linux Shim: Governance Issues, Example

If you are re-using a previously used (CA) certificate, vou will need to add the hashes of the previous GRUB2 binaries
exposed to the CVEs to vendor_dbx in shimyin order to prevent GRUB2 from being able to chainload those older GRUB2
binaries. If you are changing to a new (CA) CETTITICATE, TS does NOT apply. Please describe Your strateqgy.

We use previous post-boothole certificate. shim-15 without SBAT support was revoked (DBXed). Previous
grub2 image sighed with this key does not have .sbat and got rejected by this shim.

Example of a Shim-Review Response That Violates Policy

- Why does revoking old GRUBZ2s or using a new key matter?
- Shim does not require SBAT for “chain loaded” images.

-0
oo~
-0 =
o~

-0
oo~
-0 =
o~

No SBAT New GRUBZ2 No SBAT

New shim

New shim Image Image

UEFI

The Linux Shim: Second-Stage Images
Allow DB ©8) | | P SHaN°
- GRUBZ2 uses the “shim protocol” to
verify images. V
- Executables that come after GRUB2 NS I
are "second-stage” images. J ekl
- No Microsoft involvement. r
['t be g
Ioaded‘ grub,LPj('j)
A ¢
\\}/,/
kernel
kemel's/s?iginature

The Linux Shim: Second-Stage Images, Example

- Problem: We have no direct visibility into “secondary images”.

Every Linux image is more attack surface for Windows customers (and vice-versa).
- Solution: Do our best with VirusTotal!

Download UEFI

CA Images

Enumerate Vendor
Certificates

Download

Secondary Images

POREEBEREEEBAR1E
PQ0oEREREEB4020
P@ooeoeeeeB4030
PooaooeteeaBA040
Poeoo0eeeeB4A050
Poe000eee00B4A060
PE0oEEeREEeBABT0
0EEEBEREOOBAB80
PoLooBeREEEBABS0
Bo0oEBEREOEBABAL
POROEBEREOEBABEE
P@ooeoeeeB40Co
P@ooooedeeeBABDE
PoeaeBeReeaBAOER
Poeoo0ee0eBAOF0

AB B3 B2 01 02 02 18 22
F3 77 ED BE 1A F7 86 3@
@D o1 @1 @B ©5 @@ 30 81
@4 96 13 82 55 53 31 16
@D 4D 61 73 73 61 63 68
30 10 @6 @3 55 @4 a7 13
67 65 31 16 3@ 14 @6 @3
20 48 61 74 2C 20 49 6E
55 04 @B 13 1E 46 65 64
72 65 20 42 6F 6F 74 20
37 30 39 31 11 30 ©F @6
64 6F 72 61 63 61 30 1E
31 37 33 31 31 36 5A 17
33 31 34 3@ 37 5A 30 81
@4 96 13 92 55 53 31 16

@...U....Massach
usettsi.e...U...
.Cambridgel.0...
U....Red-Hat, -In
c.1'e%..U....Fed
ora-Secure-Boot-
CA-2020070891.0..
.U....Tedoracae.
L 208713173116Z.
3701193148770,
d.@...U.. ..U,

.vendor_cert section uses DER format

Filter version and

SBAT support

Leftover images
are exploitable

The Linux Shim: Second-Stage Images, Example

- Until late 2023, Fedora used the same certificate created in 2012.
- Why is this a problem?

 You don’t need SBAT when chain-loading.
- An attacker can use a pre-SBAT GRUB2 image with the latest shim.

— Fedora Secure Boot CA

Name Fedora Secure Boot CA

Issuer Fedora Secure Boot CA

Valid From 2012-12-07 16:25:54

Valid To 2022-12-05 16:25:54

Algorithm sha256RSA

Thumbprint TE6EE51D526B5FTBFS8EADLIDTE4D2FS0D3F40F0A

Serial Number 9976 F2 F4

The Linux Shim: Recap

- There are still vulnerable shims built before SBAT that never got
revoked in DBX.

- Vendors reuse the same self-signed certificates across shim builds,
even when there is a security fix.

- Look for commits with security impact that weren't handled as a
security issue.

- Sometimes revocations are done with SBAT only, leaving Windows
users exposed.

The Linux Shim: Recap

- Microsoft has a close relationship with several Linux distributions
that help developed the shim.

- How do we balance customer choice with customer security?

- To what extent should we put most customers at risk to support
minority use cases?

Microsoft Images

- While the third-party attack surface is large, we're far from perfect.

- Problem: We often don't revoke vulnerable Windows boot
managers because of compatibility.

- These are ecosystem challenges, not vendor-specific.

ESET RESEARCH

BlackLotus UEFI bootkit: Myth
confirmed

The first in-the-wild UEFI bootkit bypassing UEFI Secure Boot on fully updated UEFI systems
Is now a reality

Q Martin Smolar

01 Mar 2023 « 40 min. read

Secure Boot Architectural Challenges

Problem #1: Limited Response Capability

- Significant increase in vulnerabilities impacting Secure Boot in the

past five years.

- It's not that we're writing more vulnerable code.
- More people are looking at what we've distributed for years.

- There are already hundreds of revoked images, and our space is
running out...

Problem #1: Limited Response Capability

- DBX was only designed to revoke
roughly ~600 to ~800 unique hashes.

Before Windows 10 1709 hardware requirements,
OEMs were only required to support 32 KB of 14
space for individual UEFI variables. 12

- DBX allows us to revoke by hash or certificate. N

8
- One vulnerability can exist in thousands of ‘
builds of the same driver. 4

2

0

0-

- Defenders have their hands tied
behind their back. |

Size of DBX in Kilobytes

-Apr-18 10-Apr-19 10-Apr-20 10-Apr-21 10-Apr-22 10-Apr-23

Problem #1: Limited Response Capability

- Qutside of limited space, DBX doesn’t work for everything.
- Great example is Option ROMs (OROMs).

- Firmware included with hardware designed to help the machine interact with the device.

-+ What happens when there is a vulnerability in an OROM?

- If we revoke, hardware with impacted OROM will likely not function.

- No one thought it would be a good idea to sign Option ROMs with a separate CA (until now).

- Tough balance between customer experience and security.

Problem #1: Limited Response Capability

- UEFI “Security Response Team” is designed to coordinate issues.
- Decentralized nature of OEMs substantially increases time-to-respond.

It was mentioned that there is a customary 90-day public embargo for vulnerabilities. Now, since
readers have a basic understanding of the UEFI supply chain, let’s look at the feasibility of the

90-day embargo for this supply chain.

In this illustration, the SiP receives the vulnerability sighting on February 1st.

Sip PReleac b Relogce o (P Releace 3
ODM | i "nm ' .ﬂ Vi Relegee — X' =00 Relooec ' ilm
OEM | | : OEM Module Maintenance — =
i i 9 L @
CSP : . Fleet maintenance in Data Center :
Jan Feb Mar Apr May Jun Jul Aug Sep Aug Sep et

Source: Decoding UEFI Firmware

Problem #2: Substantial Attack Surface

The attack surface our customers are exposed to by default at the
boot stage is massive.

- We sign too much code.
- We lack proper governance over Secure Boot.
- We are often at the mercy of our partners.

Problem #3: Complexity

- Secure Boot has only been around for a little over a decade.
- Understanding how it works is challenging and has a steep learning curve.

- Impact is generally limited to privileged attackers.

- But... many of the issues we've discussed aren’t crazy vulnerabilities-
they come from fundamental process gaps.

Case Study of a Critical Linux Shim Vulnerability

Background

- While investigating the Linux shim for low hanging fruit, | began
assessing their threat model.

- What attack vectors were relevant to the shim?
- To start, let's build a mental map about how the shim works.

Attack Surfaces Initialize GNU EF| Update SBAT and
Library Check If Revoked

- GNU EFI Library Initialization
- Secure Boot Advanced Targeting

YEURT . s Parse Options &
- Mok Initialization Initialize Mok State install Protocol

- Load Options
- PE parsing for Authenticode

signatures Verify GRUB2
. . Authenticode
- Flexible file systems Signature

- Shim supports local, PXE, and HTTP boot. Good Signature Bad Signature

- PXE/HTTP use a "virtual file system” (UDP and
HTTP respectively).

“Manual Map” Run “Fallback”

GRUB2 Module

Tangent: Fuzzing the Shim

e - How do you fuzz an EFI boot loader?
- e - Start with unit tests. They're typically designed to
Yeve run independently.
iy - Copy out the component into your project and
FUEESSATY reimplement imports.
1 pemager - SBAT: Copied out code.
sbath .
- Authenticode Parsing: Replaced unit
Jem test compiler with AFL++.
® uin - Unfortunately, only found out-of-

bounds reads &=

("FuzzSBAT")

(CMAKE_C_COMPILER "afl-clang-fast")
(CMAKE_CXX_COMPILER "afl-clang—fast™)

Network Boot

- Shim has a small footprint. Manually reviewed Network Boot code.

- UEFI specification includes HTTP support.

+ Shim uses the device it was started with.
- Example: If you start shim with HTTP boot, it will load GRUB2 from the same HTTP server.

Initialize HTTP Configure Send a Receive a
Protocol HTTP Protocol Request Response

Store Headers Allocate Buffer

:) Copy Sent Data
in Temporary using ‘o Buffer
Stack Buffer Content-Length

Can you spot the vulnerability?

CVE-2023-40547

- Content-Length is set by the untrusted server.
- Server has control over the buffer that the response is copied into...

/* Check the length of the file */
for (1 = @; 1 < rx _message.HeaderCount; i++) {
if (!strcmpa(rx message.Headers[i].FieldName, (CHAR8 *)"Content-Length"))

*buf_size = ascii_to_int(rx_message.Headers[i].FieldValue);

, ih--.__--~.
if (*buf size == 0) { —~ Attacker
perror(L"Failed to get Content-Lenght\n"); I contro"ed

goto error;

¥

*buffer = AllocatePool(*buf_size);

if (!*buffer) {
perror(L"Failed to allocate new rx buffer\n");
goto error;

} — 00B-W

downloaded = rx_message.Bodylength;

<
L s

CopyMem(*buffer, rx_buffer, downloaded);

Triggering the Bug

- How do we abuse control
over the receive buffer using
the Content-Length header?

- Wrote a Python HTTP server:

Return a Content-Length of 1.
Return well more than 1 byte of data.

If we see "bootx64.efi”, it's the firmware requesting the shim.
No exploit for this path.

if

in self.path.lower():

self.send header(, 0s.path.getsize()
self.end headers()
with open(,) as f:
self.wfile.write(f.read())
print(f)
return

If we see "grubx64.efi”, that's the shim asking for the secondary payload.
This is when we return the fake content-length header.

elif

in self.path.lower():
print(f)
We provide a duplicate header value.
The first one 1is used by EDK2/firmware (second is ignored).
The second is used by shim to allocate *buffer.
The '1' value causes the *buffer pool to be 1 byte.
self.send header(,)
self.send header(,)
self.end headers()
Return 9213 bytes, based on constant 9216 size of rx buffer.
self.wfile.write((*9213) .encode ())
return

Attacker Victim

>>Start HITP Boot over IPud..
M~ root@test-Virtual-Machine: /home/test/HTTPBOOT Q = = | b

root@test-virtual-Machine: /home/test/HTTPBOOT# python3 mycoolbadserver.py

Capturing From virbro

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

— e : ON S 2 B ol | ==

dhcp or http

No. Time Source Destination Protocol Length Info
10.000000000 ©0.0.0.0 255.255.255.255 DHCP 382 DHCP Discover - Transaction ID ©x8d18ee9f
2 0.00 847¢ 168.100.1 . 255.255 DHCP 346 DHCP Offer - Transaction ID di8eesf

Fixing the Bug

CVE-2023-40547 - avoid incorrectly trusting HTTP headers

When retrieving files via HTTP or related protocols, shim attempts to
allocate a buffer to store the received data. Unfortunately, this means
getting the size from an HTTP header, which can be manipulated to
specify a size that's smaller than the received data. 1In this case, the
code accidentally uses the header for the allocation but the protocol

metadata to copy it from the rx buffer, resulting in an out-of-bounds
write,

This patch adds an additional check to test that the rx buffer is not
larger than the allocation.

Resolves: CVE-2823-48547

Reported-by: Bill Demirkapi, Microsoft Security Response Center
Signed-off-by: Peter Jones <pjones@redhat.com>

A "patch” was released in January 2024.
Are customers protected?

Fixing the Bug

- Fortunately, code comes after shim's SBAT revocation checks.
- Unfortunately, we must revoke every shim built in almost a decade.
- This will break all Linux recovery media on updated machines.

- Windows: Targeting this summer with special compatibility checks.
- Linux: Unclear timeline.

Unique Attack Surface

- Remember: shim uses the device it was started with to load images.
- Can we trick shim into using HTTP boot?

The device syntax is like this:

(device[,partmap-namelpart-numl[,partmap-nameZpart-num2[,...111)

Supported protocols are ‘http’ and “tftp’. If server is omitted, value of environment variable
‘net_default_server’ is used. Before using the network drive. you must initialize the network. See

Network, for more information.

(http,grub.example.com:31337)
(http,192.8.2.1:339)
(http, [2001:db8::1]:11235)

Source: GRUB Manual

Unique Attack Surface

- You can use HTTP boot from the local, adjacent, and remote vectors!

- This means that the vulnerability can be abused from almost
every vector Secure Boot is exposed to!

HTTP Device Content Length
> Syntax Exploit

Shim (Local) GRUB2 (Local) Shim (HTTP) Attacker Server

HTTP Device Content Length
> Syntax Exploit

Shim (PXE) GRUBZ2 (PXE) Shim (HTTP) Attacker Server

Review

0 Commits on Sep 6, 2016

Add the optional HTTPBoot support =2

3d79bcb (0 &Y O
M Icp authored and vathpela committed 8 years ago

- This code is not new. It was committed 8 years ago.
- Trivial vulnerability. Significant impact.
- Challenging to fix. Rollback vector strikes again.

Thanks to the Shim maintainers who patiently answered questions!!

Where Do We Go From Here?

Shifting Security Left

- Before MSRC invested in Secure Boot, Engineering implemented a

"Secure Version Number” (SVN) revocation mechanism.

- Early self-revocation check in first-party images that used a custom UEFI variable.
- Like SBAT, no reliance on DBX.

- Problem: It was not enforced across all first-party images.
- Problem: There was substantial attack surface before the SVN check.

- Problem: Like SBAT, it can be bypassed “by design”, because the SVN
variable is unauthenticated.

Shifting Security Left

- Revocation via Embedded Secure Version Information (REVISE)
- REVISE was a proposal by MSRC to combine SVN with DBX.

- How? We can revoke any hash we want via DBX.
-+ SHA-256 hashes have 32 bytes of space.
- What if we “smuggled” version data through a “fake hash” that only our code recognized?
- We still run into DBX space limitations, but with one hash entry, we
can revoke thousands of images by version.

#pragma pack (1)

typedef struct EFI_SIGNATURE DATA { Use special GUID to mark entries
EFI_GUID SignatureOwner; 4— containing version data.
UINTS SignatureDatal...|; . .
7 -} «—— Fake hash with version data.

} EFI_SIGNATURE DATA;

Shifting Security Left

- REVISE was released in = DbxFetchSvn((EFT_GUID *)& , 8SvnData);

if (>= 8)

Apl"il 2024! { HIWORD();

.MinorSvn;

. We are eXplorlng 1F (HIWORD(j) < MajorSvn)
Opportunltles to brlng REVISE DbevnEﬁ}ConDut—>Clear“5cr.“een(DbevnEfiLﬁonOut);

DbxSvnEfiConOut->SetAttribute(DbxSvnEfiConOut, 4uiéd);

DbxSvnPrintf(
to Shlm S SBAT L"Security Error: Secure boot version check failed.\r\n"

"Your system security may be compromised!irin"
I'|',"~r_|','\r‘ll'|

. Combine Secu rity and "Current version: %lu.%lu - Minimum allowed version: %lu.®%lu’rin"

"Wisit https://aka.ms/secure-boot-version-vioclation for more information.rin"

subject-matter experts early

in development. ajorsun,

Source: Decompiled Bootmgr from April 2024

Mitigating Secure Boot

Recommendations to Address Third-Party Risk
2 - 4 Year Timeframe

Leverage Intentional
Fragmentation of
DB(X)

Be Transparent About Revisit Minority Use Invest In Secure &
Cases & Customer

All Changes Measured Boot
Impact

Provide SB Visibility & Improve UEFI CA Revisit “By Design”

Be Firm, But Listen Control to End-Users Review Pipeline Bypasses (e.g., Mok)

Deliver Firmware Deprecate Most UEFI
Updates via OS CA Use Cases

Mitigating Secure Boot

- There may be more third-party UEFI CA modules with vulnerable
code than there is space in DBX.

- How do we address this?

-+ Medium- to long-term: revoke the UEFI CA. It is already being rolled in the next two years.
- But this breaks old Option ROMs.

- Our best bet in the short-term is measured boot.

What Can You Do To Protect Your Organization?

- Windows Users: Enable BitLocker to kill every UEFI CA vulnerability

discussed.

- Still vulnerable to other issues from firmware bugs or first-party images.

- Working on improving BitLocker to address first-party downgrade attacks.
- Using Group Policy, you can enable a stricter level of measurements to kill even first-party downgrade attacks.

- Linux Users: |t depends.
- Canonical Users: Enable TPM-based Full Disk Encryption (when released)
- No easy mechanism like BitLocker exists from the OS itself
- A gap Linux can improve on in the long-term.

Areas for Further Research

- If you want to target third-party code...

- Review old signed binaries. Hundreds of unrevoked modules with obvious vulnerabilities.
- Example: Try to find variants of binaries revoked in DBX.
- Example: Look at second-stage images signed with Linux vendor certificates.

- Fuzz GRUB2. Guaranteed low hanging fruit.

- Look at interesting ways of abusing signed modules to enter an unexpected state.
- Example: Did you know you can chain shim -> GRUB2 -> shim?

- If you want to target first-party code...
- Maybe I'll have time in another talk &

- If you have a specific target in mind...
- Look at everything that is on the OEM to manage, including firmware and custom certificates.

The Elephant in the Room

- We keep focusing on short-term fixes.

- Secure Boot needs an overhaul to
remain defensible. ﬂ:
o [e——

- We must work together. fixa secure (K\J

r boot bypass l

bypass secure fix a secure
boot fix

boot bypass .
Anuokl‘r - -, ':".".'.- _ B
ﬁx bypass ".'- .:.- > f et | just nee
secure boot IR to fix this secure
g Y

i just need

to fix this secure
boot bypass

Questions?

Massive thank you to the Engineering teams across Microsoft and
Linux for their support.

	Main
	Slide 1: Booting with Caution Dissecting Secure Boot’s Third-Party Attack Surface
	Slide 2: Who Am I?
	Slide 3: Intro to Secure Boot
	Slide 4: What is Secure Boot?
	Slide 5: What is Secure Boot?
	Slide 6: What is Secure Boot?
	Slide 7: What is Secure Boot?
	Slide 8: What is Secure Boot?
	Slide 9: Secure Boot Threat Model
	Slide 10: Secure Boot Threat Model
	Slide 11: Example: Secure Boot in Practice
	Slide 12: Dissecting Secure Boot’s Attack Surfaces
	Slide 13: Common Attack Surfaces
	Slide 14: OEMs: Forking Hell
	Slide 15: OEMs: Forking Hell
	Slide 16: OEMs: Custom Certificates
	Slide 17: OEMs: Custom Certificates, Case Study
	Slide 18: OEMs: Custom Certificates, Case Study
	Slide 19: OEMs: Custom Certificates, Case Study
	Slide 20: OEMs: Custom Certificates, Case Study
	Slide 21: OEMs: Custom Certificates, Case Study
	Slide 22: OEMs: Custom Certificates
	Slide 23: Third-Party UEFI Images
	Slide 24: Third-Party UEFI Images, Example
	Slide 25: Third-Party UEFI Images, Example
	Slide 26: Intro to the Linux Shim
	Slide 27: Intro to the Linux Shim
	Slide 28: Intro to the Linux Shim
	Slide 29: The Linux Shim: Governance Issues
	Slide 30: The Linux Shim: Governance Issues, Example
	Slide 31: The Linux Shim: Governance Issues, Example
	Slide 32: The Linux Shim: Governance Issues, Example
	Slide 33: The Linux Shim: Second-Stage Images
	Slide 34: The Linux Shim: Second-Stage Images, Example
	Slide 35: The Linux Shim: Second-Stage Images, Example
	Slide 36: The Linux Shim: Recap
	Slide 37: The Linux Shim: Recap
	Slide 38: Microsoft Images
	Slide 39: Secure Boot Architectural Challenges
	Slide 40: Problem #1: Limited Response Capability
	Slide 41: Problem #1: Limited Response Capability
	Slide 42: Problem #1: Limited Response Capability
	Slide 43: Problem #1: Limited Response Capability
	Slide 44: Problem #2: Substantial Attack Surface
	Slide 45: Problem #3: Complexity
	Slide 46: Case Study of a Critical Linux Shim Vulnerability
	Slide 47: Background
	Slide 48: Attack Surfaces
	Slide 49: Tangent: Fuzzing the Shim
	Slide 50: Network Boot
	Slide 51: CVE-2023-40547
	Slide 52: Triggering the Bug
	Slide 54
	Slide 55: Fixing the Bug
	Slide 56: Fixing the Bug
	Slide 57: Unique Attack Surface
	Slide 58: Unique Attack Surface
	Slide 59: Review
	Slide 60: Where Do We Go From Here?
	Slide 61: Shifting Security Left
	Slide 62: Shifting Security Left
	Slide 63: Shifting Security Left
	Slide 64: Mitigating Secure Boot
	Slide 65: Mitigating Secure Boot
	Slide 66: What Can You Do To Protect Your Organization?
	Slide 67: Areas for Further Research
	Slide 68: The Elephant in the Room
	Slide 69: Questions? Massive thank you to the Engineering teams across Microsoft and Linux for their support.

