
Booting with Caution
Dissecting Secure Boot’s

Third-Party Attack Surface

Bill Demirkapi

Who Am I?

 Security Engineer at the Microsoft Security

Response Center.

 Background in low-level OS internals and

cloud security.

 Worked with Secure Boot for over a year.

 Born in Berlin!

Intro to Secure Boot

What is Secure Boot?

 UEFI Secure Boot is a

security feature designed to

prevent malicious software

from loading when your PC

starts.

 TLDR: Make sure code

executed during boot is

signed and trusted.

Source: EDK2 Repository

What is Secure Boot?

 UEFI firmware exposes dozens of

crucial API functions that are

intended to provide basic,

universal functionality.

 Example: LoadImage allows you

to load a UEFI driver.
 With Secure Boot on, images must have a

valid signature.

 But how does the firmware know who to

trust?

Source: Eclypsium

What is Secure Boot?

 The DB and DBX variables control

what can and cannot load.

 Most common format for entries

is SHA256 (Authenticode) hashes

and X509 certificates.

 Updates can specify

allowed/denied.

Source: UEFI Specification

What is Secure Boot?

 The signature databases are stored as authenticated variables.

 They can always be read, but only written if the variable data is…
 Signed with the private half of a key exchange key (KEK variable)

 Or a platform key (PK variable).

 Every signed update payload also needs to specify an operation.
 This is typically an “append write” (merge with existing variable).

 Protects against rollback and empowers our patching capability.

What is Secure Boot?

 On machines that ship Windows, two common DB entries include…
 Microsoft Windows Production PCA 2011 = First-Party Images like bootmgr

 Microsoft Corporation UEFI CA 2011 = Third-Party Images like the Linux "shim"

 The UEFI CA is why Linux works out of the box, even with Secure

Boot enabled.

Source: Ubuntu Wiki, Secure Boot Testing

Secure Boot Threat Model

 When on, Secure Boot is responsible for the code integrity of your

boot environment.

 When off, you can already execute untrusted code “by design”.

 This is why MSRC calls them Security Feature Bypasses.

 There is no vulnerability without the security feature!

Secure Boot Threat Model

 There is often a high bar for abusing Secure Boot vulnerabilities.

 Secure Boot is still a critical feature for enabling a chain of trust.

Vector Attack Surfaces

Local EFI Partition, UEFI Runtime Services*

Physical Hardware, EFI Partition, etc.

Adjacent HTTP or PXE Boot

Remote (Man-in-the-Middle) HTTP Boot

A “local” attacker with Admin+ code execution

wants to persist in the boot environment.

A physical attacker wants to install a bootkit or

steal encrypted data.

An adjacent attacker wants to gain code

execution on machines that use HTTP/PXE boot.

A remote man-in-the-middle wants to gain code

execution on machines that use HTTP boot.

Example: Secure Boot in Practice

 Control over signature

databases is generally

exposed in the BIOS.

 Requires physical access.

 OS can only use signed

payloads* to update these

variables.
 * Unless Secure Boot is off.

Dissecting Secure Boot’s Attack Surfaces

Common Attack Surfaces

Attack Surface Description

OEM Firmware Firmware shipped with your device.

Custom OEM Certificates Images signed by a custom OEM certificate included in DB.

Third-Party Images Images signed by the third-party UEFI CA.

Third-Party Images, Linux Shim First-stage bootloader for most Linux distributions.

Third-Party Images, Linux Shim

“Second-Stage Images”

“Second-stage images” signed by custom Linux distribution

certificates.

Microsoft Images Images signed by the first-party Windows CA.

OEMs: Forking Hell

 The Embedded Development Kit 2 (EDK 2) is an open-source and

cross-platform firmware development environment.

 Many OEMs use a forked version for their devices.

Source: TianoCore Website

OEMs: Forking Hell

Read more: The Firmware Supply-Chain Security is broken: Can we fix it? by Binarly

Firmware

Dump &

Identify Version

Repository

Enumerate

Known Bugs

Attacker

OEMs: Custom Certificates

 OEMs will often ship custom certificates in DB to allow for their code

(outside of firmware) to run.

 Unfortunately, these certificates have been found to sign dozens of

vulnerable images.

OEMs: Custom Certificates, Case Study

 In October, I built a PC with an ASUSTeK motherboard.

 Let's dive into the attack surface introduced by my OEM

OEMs: Custom Certificates, Case Study

 Dump DB & focus on outliers.

 How do we find the images

allowed by these entries?
 Microsoft has logs for what is signed via the

UEFI and Windows CA, but not custom CAs or

hashes.

DB Entries

ASUSTeK MotherBoard SW Key

Certificate

ASUSTeK Notebook SW Key Certificate

Microsoft Corporation UEFI CA 2011

Microsoft Windows Production PCA 2011

Canonical Ltd. Master Certificate

Authority

4 Unknown SHA256 Hashes

OEMs: Custom Certificates, Case Study

 VirusTotal is a malware scanning platform that allows you to search

for submissions using filters.

OEMs: Custom Certificates, Case Study

 Unfortunately, the Canonical certificate was used to sign several

vulnerable shim boot loaders.

 Fun Fact: Canonical does not want their old certificate included.

OEMs: Custom Certificates, Case Study

 What about the 4 unknown SHA256 hashes?

 Turns out they hardcoded decade old Windows boot managers with

known vulnerabilities!

OEMs: Custom Certificates

 This is not just an ASUSTeK problem. This is an industry problem.

 Most OEMs ship custom certificates.

 Firmware has the same problem: lack of oversight from OEMs.

 With custom DB entries, it’s up to your OEM to decide what they

include, and what to revoke.

Third-Party UEFI Images

 Third-Party UEFI images are where the most security vulnerabilities

in UEFI drivers have been discovered.
 >90% of on-by-default revocations in DBX are for third-party drivers.

 Data Sources for Images include…
 VirusTotal search using signature filter with third-party CA thumbprint.

 Eventually, internal access to signed images.

Third-Party UEFI Images, Example

Read more: One Bootloader To Rule Them All by Eclyspium

Third-Party UEFI Images, Example

 Problem: We do not hunt for variants when revoking images.

 Variants can be found trivially by searching for unique strings.
 In this case, most variants are not on VirusTotal, but that’s not true for other revoked images.

 Want to find more bugs? Look for unrevoked variants of revoked EFI images.

Intro to the Linux Shim

 shim is a software package that

works as a first-stage Linux

bootloader.

 Microsoft signs shim builds from

Linux distros.

 The shim includes the Linux distro’s

self-signed certificate and manually

loads UEFI drivers signed with it.

Intro to the Linux Shim

 The shim has an interesting revocation mechanism known as “UEFI

Secure Boot Advanced Targeting” (SBAT).
 Images are built with an “.sbat” PE section that specifies version info and other metadata.

 SBAT revocations are stored in the “SBAT” UEFI variable.

 Example: GRUB2 has a vulnerability.
 Instead of adding every GRUB2 image hash to DBX, a single SBAT revocation can revoke all

GRUB2 images below a certain version.

sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
grub,2,Free Software Foundation,grub,2.04,https://www.gnu.org/software/grub/

Example SBAT Entry

Intro to the Linux Shim

 The Linux community has a repository known as shim-review.

 Practically any distribution of Linux can ask for their shim to be

signed.

 Distros fill out a questionnaire, like the UEFI CA signing process.
 Requires approval from trusted developers.

The Linux Shim: Governance Issues

 In 2020, there were major issues found in GRUB2 by Eclypsium.

Dubbed “BootHole”.

 GRUB2 is loaded by shim, so to revoke the secondary GRUB images,

you need to revoke the shim.

 Problem: Not all “pre-SBAT” shims were revoked in 2020.

 Problem: Linux vendors reused their certificates from past shim

builds that have signed vulnerable GRUB2 code.

The Linux Shim: Governance Issues, Example

 Found a few dozen forgotten pre-SBAT shim images that were not

revoked with nothing but VirusTotal.

Exclude revoked

images

Download files

signed with UEFI CA

Filter for “UEFI

SHIM”

Filter version and

SBAT support

Leftover images

are exploitable

.data.ident contains version & commit of build

The Linux Shim: Governance Issues, Example

 This is an example shim-review submission following SBAT’s

introduction in 2020 in response to “BootHole”.

 Question: Did the vendor revoke old vulnerable GRUB2 images or

are they using a new key?

 Vendor: We use the same key, but since old GRUB2s don’t have

SBAT, their shim won’t load them.

Example of a Shim-Review Response That Violates Policy

The Linux Shim: Governance Issues, Example

 Why does revoking old GRUB2s or using a new key matter?

 Shim does not require SBAT for “chain loaded” images.

Example of a Shim-Review Response That Violates Policy

New shim
No SBAT

Image
New shim

No SBAT

Image

New GRUB2

The Linux Shim: Second-Stage Images

 GRUB2 uses the “shim protocol” to

verify images.

 Executables that come after GRUB2

are “second-stage” images.

 No Microsoft involvement.

The Linux Shim: Second-Stage Images, Example

 Problem: We have no direct visibility into “secondary images”.
 Every Linux image is more attack surface for Windows customers (and vice-versa).

 Solution: Do our best with VirusTotal!

Enumerate Vendor

Certificates

Download UEFI

CA Images

Filter for “UEFI

SHIM”

Filter version and

SBAT support

Leftover images

are exploitable

Download

Secondary Images

.vendor_cert section uses DER format

The Linux Shim: Second-Stage Images, Example

 Until late 2023, Fedora used the same certificate created in 2012.

 Why is this a problem?
 You don’t need SBAT when chain-loading.

 An attacker can use a pre-SBAT GRUB2 image with the latest shim.

The Linux Shim: Recap

 There are still vulnerable shims built before SBAT that never got

revoked in DBX.

 Vendors reuse the same self-signed certificates across shim builds,

even when there is a security fix.

 Look for commits with security impact that weren’t handled as a

security issue.

 Sometimes revocations are done with SBAT only, leaving Windows

users exposed.

The Linux Shim: Recap

 Microsoft has a close relationship with several Linux distributions

that help developed the shim.

 How do we balance customer choice with customer security?

 To what extent should we put most customers at risk to support

minority use cases?

Microsoft Images

 While the third-party attack surface is large, we’re far from perfect.

 Problem: We often don’t revoke vulnerable Windows boot

managers because of compatibility.

 These are ecosystem challenges, not vendor-specific.

Secure Boot Architectural Challenges

Problem #1: Limited Response Capability

 Significant increase in vulnerabilities impacting Secure Boot in the

past five years.
 It’s not that we’re writing more vulnerable code.

 More people are looking at what we’ve distributed for years.

 There are already hundreds of revoked images, and our space is

running out…

Problem #1: Limited Response Capability

 DBX was only designed to revoke

roughly ~600 to ~800 unique hashes.
 Before Windows 10 1709 hardware requirements,

OEMs were only required to support 32 KB of

space for individual UEFI variables.

 DBX allows us to revoke by hash or certificate.

 One vulnerability can exist in thousands of

builds of the same driver.

 Defenders have their hands tied

behind their back.
0

2

4

6

8

10

12

14

16

10-Apr-18 10-Apr-19 10-Apr-20 10-Apr-21 10-Apr-22 10-Apr-23

Size of DBX in Kilobytes

Problem #1: Limited Response Capability

 Outside of limited space, DBX doesn’t work for everything.

 Great example is Option ROMs (OROMs).
 Firmware included with hardware designed to help the machine interact with the device.

 What happens when there is a vulnerability in an OROM?

 If we revoke, hardware with impacted OROM will likely not function.

 No one thought it would be a good idea to sign Option ROMs with a separate CA (until now).

 Tough balance between customer experience and security.

Problem #1: Limited Response Capability

 UEFI “Security Response Team” is designed to coordinate issues.
 Decentralized nature of OEMs substantially increases time-to-respond.

Source: Decoding UEFI Firmware

Problem #2: Substantial Attack Surface

The attack surface our customers are exposed to by default at the

boot stage is massive.

 We sign too much code.

 We lack proper governance over Secure Boot.

 We are often at the mercy of our partners.

Problem #3: Complexity

 Secure Boot has only been around for a little over a decade.
 Understanding how it works is challenging and has a steep learning curve.

 Impact is generally limited to privileged attackers.

 But… many of the issues we’ve discussed aren’t crazy vulnerabilities-

they come from fundamental process gaps.

Case Study of a Critical Linux Shim Vulnerability

Background

 While investigating the Linux shim for low hanging fruit, I began

assessing their threat model.

 What attack vectors were relevant to the shim?

 To start, let’s build a mental map about how the shim works.

Attack Surfaces

 GNU EFI Library Initialization

 Secure Boot Advanced Targeting

 Mok Initialization

 Load Options

 PE parsing for Authenticode

signatures

 Flexible file systems
 Shim supports local, PXE, and HTTP boot.

 PXE/HTTP use a “virtual file system” (UDP and

HTTP respectively).

Initialize GNU EFI

Library

Verify GRUB2

Authenticode

Signature

Update SBAT and

Check If Revoked

Initialize Mok State
Parse Options &

Install Protocol

“Manual Map”

GRUB2

Run “Fallback”

Module

Good Signature Bad Signature

Tangent: Fuzzing the Shim

 How do you fuzz an EFI boot loader?
 Start with unit tests. They’re typically designed to

run independently.

 Copy out the component into your project and

reimplement imports.

 SBAT: Copied out code.

 Authenticode Parsing: Replaced unit

test compiler with AFL++.

 Unfortunately, only found out-of-

bounds reads

Network Boot

 Shim has a small footprint. Manually reviewed Network Boot code.

 UEFI specification includes HTTP support.
 Shim uses the device it was started with.

 Example: If you start shim with HTTP boot, it will load GRUB2 from the same HTTP server.

Initialize HTTP

Protocol

Configure

HTTP Protocol

Send a

Request

Receive a

Response

Store Headers

in Temporary

Stack Buffer

Allocate Buffer

using

Content-Length

Copy Sent Data

to Buffer

Can you spot the vulnerability?

CVE-2023-40547

 Content-Length is set by the untrusted server.

 Server has control over the buffer that the response is copied into…

OOB-W

Attacker

Controlled

Triggering the Bug

 How do we abuse control

over the receive buffer using

the Content-Length header?

 Wrote a Python HTTP server:
 Return a Content-Length of 1.

 Return well more than 1 byte of data.

Fixing the Bug

A “patch” was released in January 2024.

Are customers protected?

Fixing the Bug

 Fortunately, code comes after shim’s SBAT revocation checks.

 Unfortunately, we must revoke every shim built in almost a decade.

 This will break all Linux recovery media on updated machines.

 Windows: Targeting this summer with special compatibility checks.

 Linux: Unclear timeline.

Unique Attack Surface

 Remember: shim uses the device it was started with to load images.

 Can we trick shim into using HTTP boot?

Source: GRUB Manual

Unique Attack Surface

 You can use HTTP boot from the local, adjacent, and remote vectors!

 This means that the vulnerability can be abused from almost

every vector Secure Boot is exposed to!

Shim (Local) GRUB2 (Local) Shim (HTTP)

HTTP Device

Syntax

Attacker Server

Shim (PXE) GRUB2 (PXE) Shim (HTTP)

HTTP Device

Syntax

Attacker Server

Content Length

Exploit

Content Length

Exploit

Review

 This code is not new. It was committed 8 years ago.

 Trivial vulnerability. Significant impact.

 Challenging to fix. Rollback vector strikes again.

Thanks to the Shim maintainers who patiently answered questions!!

Where Do We Go From Here?

Shifting Security Left

 Before MSRC invested in Secure Boot, Engineering implemented a

“Secure Version Number” (SVN) revocation mechanism.
 Early self-revocation check in first-party images that used a custom UEFI variable.

 Like SBAT, no reliance on DBX.

 Problem: It was not enforced across all first-party images.

 Problem: There was substantial attack surface before the SVN check.

 Problem: Like SBAT, it can be bypassed “by design”, because the SVN

variable is unauthenticated.

Shifting Security Left

 Revocation via Embedded Secure Version Information (REVISE)

 REVISE was a proposal by MSRC to combine SVN with DBX.
 How? We can revoke any hash we want via DBX.

 SHA-256 hashes have 32 bytes of space.

 What if we “smuggled” version data through a “fake hash” that only our code recognized?

 We still run into DBX space limitations, but with one hash entry, we

can revoke thousands of images by version.

Use special GUID to mark entries

containing version data.

Fake hash with version data.

Shifting Security Left

 REVISE was released in

April 2024!

 We are exploring

opportunities to bring REVISE

to Shim’s SBAT.

 Combine security and

subject-matter experts early

in development.

Source: Decompiled Bootmgr from April 2024

Mitigating Secure Boot

Leverage Intentional

Fragmentation of

DB(X)

Be Transparent About

All Changes

Recommendations to Address Third-Party Risk

2 - 4 Year Timeframe

Improve UEFI CA

Review Pipeline

Revisit “By Design”

Bypasses (e.g., Mok)
Provide SB Visibility &

Control to End-Users

Revisit Minority Use

Cases & Customer

Impact

Be Firm, But Listen

Deprecate Most UEFI

CA Use Cases

Invest In Secure &

Measured Boot

Deliver Firmware

Updates via OS

Mitigating Secure Boot

 There may be more third-party UEFI CA modules with vulnerable

code than there is space in DBX.

 How do we address this?
 Medium- to long-term: revoke the UEFI CA. It is already being rolled in the next two years.

 But this breaks old Option ROMs.

 Our best bet in the short-term is measured boot.

What Can You Do To Protect Your Organization?

 Windows Users: Enable BitLocker to kill every UEFI CA vulnerability

discussed.
 Still vulnerable to other issues from firmware bugs or first-party images.

 Working on improving BitLocker to address first-party downgrade attacks.

 Using Group Policy, you can enable a stricter level of measurements to kill even first-party downgrade attacks.

 Linux Users: It depends.
 Canonical Users: Enable TPM-based Full Disk Encryption (when released)

 No easy mechanism like BitLocker exists from the OS itself

 A gap Linux can improve on in the long-term.

Areas for Further Research

 If you want to target third-party code…
 Review old signed binaries. Hundreds of unrevoked modules with obvious vulnerabilities.

 Example: Try to find variants of binaries revoked in DBX.

 Example: Look at second-stage images signed with Linux vendor certificates.

 Fuzz GRUB2. Guaranteed low hanging fruit.

 Look at interesting ways of abusing signed modules to enter an unexpected state.

 Example: Did you know you can chain shim -> GRUB2 -> shim?

 If you want to target first-party code…
 Maybe I’ll have time in another talk

 If you have a specific target in mind…
 Look at everything that is on the OEM to manage, including firmware and custom certificates.

The Elephant in the Room

 We keep focusing on short-term fixes.

 Secure Boot needs an overhaul to

remain defensible.

 We must work together.

pov you work for microsoft

Questions?

Massive thank you to the Engineering teams across Microsoft and
Linux for their support.

	Main
	Slide 1: Booting with Caution Dissecting Secure Boot’s Third-Party Attack Surface
	Slide 2: Who Am I?
	Slide 3: Intro to Secure Boot
	Slide 4: What is Secure Boot?
	Slide 5: What is Secure Boot?
	Slide 6: What is Secure Boot?
	Slide 7: What is Secure Boot?
	Slide 8: What is Secure Boot?
	Slide 9: Secure Boot Threat Model
	Slide 10: Secure Boot Threat Model
	Slide 11: Example: Secure Boot in Practice
	Slide 12: Dissecting Secure Boot’s Attack Surfaces
	Slide 13: Common Attack Surfaces
	Slide 14: OEMs: Forking Hell
	Slide 15: OEMs: Forking Hell
	Slide 16: OEMs: Custom Certificates
	Slide 17: OEMs: Custom Certificates, Case Study
	Slide 18: OEMs: Custom Certificates, Case Study
	Slide 19: OEMs: Custom Certificates, Case Study
	Slide 20: OEMs: Custom Certificates, Case Study
	Slide 21: OEMs: Custom Certificates, Case Study
	Slide 22: OEMs: Custom Certificates
	Slide 23: Third-Party UEFI Images
	Slide 24: Third-Party UEFI Images, Example
	Slide 25: Third-Party UEFI Images, Example
	Slide 26: Intro to the Linux Shim
	Slide 27: Intro to the Linux Shim
	Slide 28: Intro to the Linux Shim
	Slide 29: The Linux Shim: Governance Issues
	Slide 30: The Linux Shim: Governance Issues, Example
	Slide 31: The Linux Shim: Governance Issues, Example
	Slide 32: The Linux Shim: Governance Issues, Example
	Slide 33: The Linux Shim: Second-Stage Images
	Slide 34: The Linux Shim: Second-Stage Images, Example
	Slide 35: The Linux Shim: Second-Stage Images, Example
	Slide 36: The Linux Shim: Recap
	Slide 37: The Linux Shim: Recap
	Slide 38: Microsoft Images
	Slide 39: Secure Boot Architectural Challenges
	Slide 40: Problem #1: Limited Response Capability
	Slide 41: Problem #1: Limited Response Capability
	Slide 42: Problem #1: Limited Response Capability
	Slide 43: Problem #1: Limited Response Capability
	Slide 44: Problem #2: Substantial Attack Surface
	Slide 45: Problem #3: Complexity
	Slide 46: Case Study of a Critical Linux Shim Vulnerability
	Slide 47: Background
	Slide 48: Attack Surfaces
	Slide 49: Tangent: Fuzzing the Shim
	Slide 50: Network Boot
	Slide 51: CVE-2023-40547
	Slide 52: Triggering the Bug
	Slide 54
	Slide 55: Fixing the Bug
	Slide 56: Fixing the Bug
	Slide 57: Unique Attack Surface
	Slide 58: Unique Attack Surface
	Slide 59: Review
	Slide 60: Where Do We Go From Here?
	Slide 61: Shifting Security Left
	Slide 62: Shifting Security Left
	Slide 63: Shifting Security Left
	Slide 64: Mitigating Secure Boot
	Slide 65: Mitigating Secure Boot
	Slide 66: What Can You Do To Protect Your Organization?
	Slide 67: Areas for Further Research
	Slide 68: The Elephant in the Room
	Slide 69: Questions? Massive thank you to the Engineering teams across Microsoft and Linux for their support.

