<xarray.Dataset>
Dimensions: (time: 744, lat: 721, lon: 1440)
Coordinates:
* lat (lat) float32 90.0 89.75 ... -89.75 -90.0
* lon (lon) float32 0.0 0.25 ... 359.5 359.8
* time (time) datetime64[ns] 1980-01-01 ... 1...
Data variables:
air_pressure_at_mean_sea_level (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
air_temperature_at_2_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
dew_point_temperature_at_2_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
eastward_wind_at_100_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
eastward_wind_at_10_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
northward_wind_at_100_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
northward_wind_at_10_metres (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
sea_surface_temperature (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
surface_air_pressure (time, lat, lon) float32 dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
Attributes:
institution: ECMWF
source: Reanalysis
tilte: ERA5 forecasts Dimensions: time : 744lat : 721lon : 1440
Coordinates: (3)
lat
(lat)
float32
90.0 89.75 89.5 ... -89.75 -90.0
long_name : latitude standard_name : latitude units : degrees_north array([ 90. , 89.75, 89.5 , ..., -89.5 , -89.75, -90. ], dtype=float32) lon
(lon)
float32
0.0 0.25 0.5 ... 359.2 359.5 359.8
long_name : longitude standard_name : longitude units : degrees_east array([0.0000e+00, 2.5000e-01, 5.0000e-01, ..., 3.5925e+02, 3.5950e+02,
3.5975e+02], dtype=float32) time
(time)
datetime64[ns]
1980-01-01 ... 1980-01-31T23:00:00
array(['1980-01-01T00:00:00.000000000', '1980-01-01T01:00:00.000000000',
'1980-01-01T02:00:00.000000000', ..., '1980-01-31T21:00:00.000000000',
'1980-01-31T22:00:00.000000000', '1980-01-31T23:00:00.000000000'],
dtype='datetime64[ns]') Data variables: (9)
air_pressure_at_mean_sea_level
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : Mean sea level pressure nameCDM : Mean_sea_level_pressure_surface nameECMWF : Mean sea level pressure product_type : analysis shortNameECMWF : msl standard_name : air_pressure_at_mean_sea_level units : Pa
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
air_temperature_at_2_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 2 metre temperature nameCDM : 2_metre_temperature_surface nameECMWF : 2 metre temperature product_type : analysis shortNameECMWF : 2t standard_name : air_temperature units : K
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
dew_point_temperature_at_2_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 2 metre dewpoint temperature nameCDM : 2_metre_dewpoint_temperature_surface nameECMWF : 2 metre dewpoint temperature product_type : analysis shortNameECMWF : 2d standard_name : dew_point_temperature units : K
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
eastward_wind_at_100_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 100 metre U wind component nameCDM : 100_metre_U_wind_component_surface nameECMWF : 100 metre U wind component product_type : analysis shortNameECMWF : 100u standard_name : eastward_wind units : m s**-1
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
eastward_wind_at_10_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 10 metre U wind component nameCDM : 10_metre_U_wind_component_surface nameECMWF : 10 metre U wind component product_type : analysis shortNameECMWF : 10u standard_name : eastward_wind units : m s**-1
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
northward_wind_at_100_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 100 metre V wind component nameCDM : 100_metre_V_wind_component_surface nameECMWF : 100 metre V wind component product_type : analysis shortNameECMWF : 100v standard_name : northward_wind units : m s**-1
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
northward_wind_at_10_metres
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : 10 metre V wind component nameCDM : 10_metre_V_wind_component_surface nameECMWF : 10 metre V wind component product_type : analysis shortNameECMWF : 10v standard_name : northward_wind units : m s**-1
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
sea_surface_temperature
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : Sea surface temperature nameCDM : Sea_surface_temperature_surface nameECMWF : Sea surface temperature product_type : analysis shortNameECMWF : sst standard_name : sea_surface_temperature units : K
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
surface_air_pressure
(time, lat, lon)
float32
dask.array<chunksize=(372, 150, 150), meta=np.ndarray>
long_name : Surface pressure nameCDM : Surface_pressure_surface nameECMWF : Surface pressure product_type : analysis shortNameECMWF : sp standard_name : surface_air_pressure units : Pa
Array
Chunk
Bytes
2.88 GiB
31.93 MiB
Shape
(744, 721, 1440)
(372, 150, 150)
Count
101 Tasks
100 Chunks
Type
float32
numpy.ndarray
1440
721
744
Attributes: (3)
institution : ECMWF source : Reanalysis tilte : ERA5 forecasts