<xarray.Dataset>
Dimensions: (time: 15341, lat: 585,
lon: 1386, crs: 1)
Coordinates:
* crs (crs) uint16 3
* lat (lat) float64 49.4 ... 25.07
* lon (lon) float64 -124.8 ... -67.06
* time (time) datetime64[ns] 1979-01-...
Data variables:
air_temperature (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
burning_index_g (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
dead_fuel_moisture_1000hr (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
dead_fuel_moisture_100hr (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
mean_vapor_pressure_deficit (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
potential_evapotranspiration (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
precipitation_amount (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
relative_humidity (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
specific_humidity (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
surface_downwelling_shortwave_flux_in_air (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
wind_from_direction (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
wind_speed (time, lat, lon) float32 dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
Attributes: (12/19)
Conventions: CF-1.6
author: John Abatzoglou - University of Idaho, jabatz...
coordinate_system: EPSG:4326
date: 02 July 2019
geospatial_bounds: POLYGON((-124.7666666333333 49.40000000000000...
geospatial_bounds_crs: EPSG:4326
... ...
geospatial_lon_units: decimal_degrees east
note1: The projection information for this file is: ...
note2: Citation: Abatzoglou, J.T., 2013, Development...
note3: Data in slices after last_permanent_slice (1-...
note4: Data in slices after last_provisional_slice (...
note5: Days correspond approximately to calendar day... Dimensions: time : 15341lat : 585lon : 1386crs : 1
Coordinates: (4)
crs
(crs)
uint16
3
GeoTransform : -124.7666666333333 0.041666666666666 0 49.400000000000000 -0.041666666666666 grid_mapping_name : latitude_longitude inverse_flattening : 298.257223563 long_name : WGS 84 longitude_of_prime_meridian : 0.0 semi_major_axis : 6378137.0 spatial_ref : GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]] lat
(lat)
float64
49.4 49.36 49.32 ... 25.11 25.07
axis : Y description : latitude long_name : latitude standard_name : latitude units : degrees_north array([49.4 , 49.358333, 49.316667, ..., 25.15 , 25.108333, 25.066667]) lon
(lon)
float64
-124.8 -124.7 ... -67.1 -67.06
axis : X description : longitude long_name : longitude standard_name : longitude units : degrees_east array([-124.766667, -124.725 , -124.683333, ..., -67.141667, -67.1 ,
-67.058333]) time
(time)
datetime64[ns]
1979-01-01 ... 2020-12-31
description : days since 1900-01-01 long_name : time standard_name : time array(['1979-01-01T00:00:00.000000000', '1979-01-02T00:00:00.000000000',
'1979-01-03T00:00:00.000000000', ..., '2020-12-29T00:00:00.000000000',
'2020-12-30T00:00:00.000000000', '2020-12-31T00:00:00.000000000'],
dtype='datetime64[ns]') Data variables: (12)
air_temperature
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily Minimum Temperature dimensions : lon lat time grid_mapping : crs long_name : tmmn standard_name : tmmn units : K
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
burning_index_g
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : BI-G dimensions : lon lat time grid_mapping : crs long_name : bi standard_name : bi units : Unitless
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
dead_fuel_moisture_1000hr
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : 1000 hour fuel moisture dimensions : lon lat time grid_mapping : crs long_name : fm1000 standard_name : fm1000 units : Percent
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
dead_fuel_moisture_100hr
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : 100 hour fuel moisture dimensions : lon lat time grid_mapping : crs long_name : fm100 standard_name : fm100 units : Percent
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
mean_vapor_pressure_deficit
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : mean vapor presure deficit dimensions : lon lat time grid_mapping : crs long_name : vpd standard_name : vpd units : kPa
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
potential_evapotranspiration
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily reference evapotranspiration (short grass) dimensions : lon lat time grid_mapping : crs long_name : pet standard_name : pet units : mm
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
precipitation_amount
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily Accumulated Precipitation dimensions : lon lat time grid_mapping : crs long_name : pr standard_name : pr units : mm
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
relative_humidity
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily Minimum Relative Humidity dimensions : lon lat time grid_mapping : crs long_name : rmin standard_name : rmin units : %
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
specific_humidity
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily mean specific humidity dimensions : lon lat time grid_mapping : crs long_name : sph standard_name : sph units : kg/kg
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
surface_downwelling_shortwave_flux_in_air
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily Mean downward shortwave radiation at surface dimensions : lon lat time grid_mapping : crs long_name : srad standard_name : srad units : W m-2
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
wind_from_direction
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily mean wind direction dimensions : lon lat time grid_mapping : crs long_name : th standard_name : th units : Degrees Clockwise from north
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
wind_speed
(time, lat, lon)
float32
dask.array<chunksize=(30, 585, 1386), meta=np.ndarray>
coordinate_system : WGS84,EPSG:4326 description : Daily Mean Wind Speed dimensions : lon lat time grid_mapping : crs long_name : vs standard_name : vs units : m/s
Array
Chunk
Bytes
46.34 GiB
92.79 MiB
Shape
(15341, 585, 1386)
(30, 585, 1386)
Count
513 Tasks
512 Chunks
Type
float32
numpy.ndarray
1386
585
15341
Attributes: (19)
Conventions : CF-1.6 author : John Abatzoglou - University of Idaho, jabatzoglou@uidaho.edu coordinate_system : EPSG:4326 date : 02 July 2019 geospatial_bounds : POLYGON((-124.7666666333333 49.400000000000000, -124.7666666333333 25.066666666666666, -67.058333300000015 25.066666666666666, -67.058333300000015 49.400000000000000, -124.7666666333333 49.400000000000000)) geospatial_bounds_crs : EPSG:4326 geospatial_lat_max : 49.40000000000000 geospatial_lat_min : 25.066666666666666 geospatial_lat_resolution : 0.041666666666666 geospatial_lat_units : decimal_degrees north geospatial_lon_max : -67.058333300000015 geospatial_lon_min : -124.7666666333333 geospatial_lon_resolution : 0.041666666666666 geospatial_lon_units : decimal_degrees east note1 : The projection information for this file is: GCS WGS 1984. note2 : Citation: Abatzoglou, J.T., 2013, Development of gridded surface meteorological data for ecological applications and modeling, International Journal of Climatology, DOI: 10.1002/joc.3413 note3 : Data in slices after last_permanent_slice (1-based) are considered provisional and subject to change with subsequent updates note4 : Data in slices after last_provisional_slice (1-based) are considered early and subject to change with subsequent updates note5 : Days correspond approximately to calendar days ending at midnight, Mountain Standard Time (7 UTC the next calendar day)