Here is an example pattern if you want to stream your multiple results. Note that this is not supported for Hugging Face text completions at this time.
Import Semantic Kernel SDK from pypi.org
# Note: if using a virtual environment, do not run this cell
%pip install -U semantic-kernel
from semantic_kernel import __version__
__version__
Initial configuration for the notebook to run properly.
# Make sure paths are correct for the imports
import os
import sys
notebook_dir = os.path.abspath("")
parent_dir = os.path.dirname(notebook_dir)
grandparent_dir = os.path.dirname(parent_dir)
sys.path.append(grandparent_dir)
Let's get started with the necessary configuration to run Semantic Kernel. For Notebooks, we require a .env
file with the proper settings for the model you use. Create a new file named .env
and place it in this directory. Copy the contents of the .env.example
file from this directory and paste it into the .env
file that you just created.
NOTE: Please make sure to include GLOBAL_LLM_SERVICE
set to either OpenAI, AzureOpenAI, or HuggingFace in your .env file. If this setting is not included, the Service will default to AzureOpenAI.
Add your OpenAI Key key to your .env
file (org Id only if you have multiple orgs):
GLOBAL_LLM_SERVICE="OpenAI"
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
OPENAI_TEXT_MODEL_ID=""
OPENAI_EMBEDDING_MODEL_ID=""
The names should match the names used in the .env
file, as shown above.
Add your Azure Open AI Service key settings to the .env
file in the same folder:
GLOBAL_LLM_SERVICE="AzureOpenAI"
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_TEXT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
The names should match the names used in the .env
file, as shown above.
For more advanced configuration, please follow the steps outlined in the setup guide.
We will load our settings and get the LLM service to use for the notebook.
from services import Service
from samples.service_settings import ServiceSettings
service_settings = ServiceSettings.create()
# Select a service to use for this notebook (available services: OpenAI, AzureOpenAI, HuggingFace)
selectedService = (
Service.AzureOpenAI
if service_settings.global_llm_service is None
else Service(service_settings.global_llm_service.lower())
)
print(f"Using service type: {selectedService}")
First, we will set up the text and chat services we will be submitting prompts to.
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import (
AzureChatCompletion,
AzureChatPromptExecutionSettings, # noqa: F401
AzureTextCompletion,
OpenAIChatCompletion,
OpenAIChatPromptExecutionSettings, # noqa: F401
OpenAITextCompletion,
OpenAITextPromptExecutionSettings, # noqa: F401
)
from semantic_kernel.contents import ChatHistory # noqa: F401
kernel = Kernel()
service_id = None
if selectedService == Service.OpenAI:
from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion
service_id = "default"
oai_chat_service = OpenAIChatCompletion(
service_id="oai_chat",
)
oai_text_service = OpenAITextCompletion(
service_id="oai_text",
)
elif selectedService == Service.AzureOpenAI:
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
service_id = "default"
aoai_chat_service = AzureChatCompletion(
service_id="aoai_chat",
)
aoai_text_service = AzureTextCompletion(
service_id="aoai_text",
)
# Configure Hugging Face service
if selectedService == Service.HuggingFace:
from semantic_kernel.connectors.ai.hugging_face import (
HuggingFacePromptExecutionSettings, # noqa: F401
HuggingFaceTextCompletion,
)
hf_text_service = HuggingFaceTextCompletion(ai_model_id="distilgpt2", task="text-generation")
Next, we'll set up the completion request settings for text completion services.
oai_prompt_execution_settings = OpenAITextPromptExecutionSettings(
service_id="oai_text",
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
if selectedService == Service.OpenAI:
prompt = "What is the purpose of a rubber duck?"
stream = oai_text_service.get_streaming_text_contents(prompt=prompt, settings=oai_prompt_execution_settings)
async for message in stream:
print(str(message[0]), end="") # end = "" to avoid newlines
if selectedService == Service.AzureOpenAI:
prompt = "provide me a list of possible meanings for the acronym 'ORLD'"
stream = aoai_text_service.get_streaming_text_contents(prompt=prompt, settings=oai_prompt_execution_settings)
async for message in stream:
print(str(message[0]), end="")
if selectedService == Service.HuggingFace:
hf_prompt_execution_settings = HuggingFacePromptExecutionSettings(
service_id="hf_text",
extension_data={
"max_new_tokens": 80,
"top_p": 1,
"eos_token_id": 11,
"pad_token_id": 0,
},
)
if selectedService == Service.HuggingFace:
prompt = "The purpose of a rubber duck is"
stream = hf_text_service.get_streaming_text_contents(
prompt=prompt, prompt_execution_settings=hf_prompt_execution_settings
)
async for text in stream:
print(str(text[0]), end="") # end = "" to avoid newlines
Here, we're setting up the settings for Chat completions.
oai_chat_prompt_execution_settings = OpenAIChatPromptExecutionSettings(
service_id="oai_chat",
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
if selectedService == Service.OpenAI:
content = "You are an AI assistant that helps people find information."
chat = ChatHistory()
chat.add_system_message(content)
stream = oai_chat_service.get_streaming_chat_message_contents(
chat_history=chat, settings=oai_chat_prompt_execution_settings
)
async for text in stream:
print(str(text[0]), end="") # end = "" to avoid newlines
az_oai_chat_prompt_execution_settings = AzureChatPromptExecutionSettings(
service_id="aoai_chat",
max_tokens=150,
temperature=0.7,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
if selectedService == Service.AzureOpenAI:
content = "You are an AI assistant that helps people find information."
chat = ChatHistory()
chat.add_system_message(content)
chat.add_user_message("What is the purpose of a rubber duck?")
stream = aoai_chat_service.get_streaming_chat_message_contents(
chat_history=chat, settings=az_oai_chat_prompt_execution_settings
)
async for text in stream:
print(str(text[0]), end="") # end = "" to avoid newlines