The second class of the ipychart API is the ChartDataFrame class. It allows you to create charts directly from your pandas dataframe.
In this notebook you will find examples of how to create charts from your data loaded in a pandas dataframe with ipychart. All types of charts that can be created with the ChartDataFrame classs are implemented below. You can also find these examples in the official documentation of the package: https://nicohlr.gitlab.io/ipychart/
import pandas as pd
import ipychart as ipc
titanic = pd.read_csv('titanic.csv')
titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())
titanic.head()
ipc.countplot(data=titanic, x='Embarked', hue="Survived")
ipc.distplot(data=titanic, x='Age')
datalabels_arguments = {'display': True, 'borderWidth': 1, 'anchor': 'end',
'align': 'end', 'borderRadius': 5, 'color': '#fff'}
ipc.lineplot(data=titanic, x='Pclass', y='Age', hue='Sex',
dataset_options={'fill': False, 'datalabels': datalabels_arguments},
colorscheme='office.Parallax6')
ipc.barplot(data=titanic, x='Pclass', y='Fare', hue='Sex', colorscheme='office.Parallax6')
ipc.radarplot(data=titanic, x='Title', y='Fare', colorscheme='office.Yellow6')
ipc.doughnutplot(data=titanic, x='Title', y='Fare', colorscheme='brewer.SetThree5')
ipc.pieplot(data=titanic, x='Title', y='Fare', colorscheme='brewer.SetThree5')
ipc.polarplot(data=titanic, x='Title', y='Fare', colorscheme='brewer.SetThree5')
ipc.scatterplot(data=titanic, x='Age', y='Fare', hue='Survived',
colorscheme='tableau.ColorBlind10')
ipc.bubbleplot(data=titanic, x='Age', y='Fare', r='Pclass', hue='Survived',
colorscheme='office.Headlines6')