Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.
import numpy as np
np.zeros(10)
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
np.ones(10)
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
np.ones(10)*5
array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])
np.arange(10,51)
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50])
np.arange(10,51,2)
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50])
np.arange(9).reshape(3,3)
array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
np.eye(3,3)
array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
np.random.rand(1)
array([0.21583671])
np.random.randn(25)
array([-0.39344792, 1.52013611, -1.18768351, -0.9827006 , -1.46939512, 1.32498892, -0.39663186, 0.85490399, 0.42723513, -1.51332761, 0.39637203, 0.11058796, -1.01900223, -0.6089908 , 0.47295978, -2.10033323, -1.49908175, -0.74565204, 0.24846951, -0.78763842, -0.65721393, 1.26161763, -0.63824932, -2.1883971 , 1.73655173])
np.arange(0.01,1.01,0.01).reshape(10,10)
array([[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ], [0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 ], [0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 ], [0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ], [0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 ], [0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 ], [0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 ], [0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8 ], [0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 ], [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])
np.linspace(0,1,20)
array([0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632, 0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421, 0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211, 0.78947368, 0.84210526, 0.89473684, 0.94736842, 1. ])
Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:
mat = np.arange(1,26).reshape(5,5)
mat
array([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])
mat[2:,1:]
array([[12, 13, 14, 15], [17, 18, 19, 20], [22, 23, 24, 25]])
array([[12, 13, 14, 15], [17, 18, 19, 20], [22, 23, 24, 25]])
mat[3,4]
20
20
mat[:3,1:2]
array([[ 2], [ 7], [12]])
array([[ 2], [ 7], [12]])
mat[4,:]
array([21, 22, 23, 24, 25])
array([21, 22, 23, 24, 25])
mat[3:,0:]
array([[16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])
array([[16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])
mat.sum()
325
mat.std()
7.211102550927978
mat.sum(axis = 0)
array([55, 60, 65, 70, 75])