import pandas as pd
import geopandas as gpd
import os
import osmnx as ox
import rasterio
from rasterio.plot import show as Show
import pylab as plt
data = os.getenv('data')
from rasterstats import point_query
from rasterio import mask as mask
import warnings
warnings.filterwarnings('ignore')
This demo shows how to do the following in Jupyter Notebooks:
# get points of interest directly OSM
%%time
ghana_schools = ox.pois.pois_from_place('Ghana',{'amenity':'school'})
#ghana_schools = ghana_schools[ghana_schools.element_type == 'node'][['name','geometry']]
UsageError: Line magic function `%%time` not found.
ghana_schools = gpd.read_file(data+'/energy/ghana_schools/ghana_schools.shp') # read from disk
print('number of schools: ', len(ghana_schools))
ghana_schools.head(3)
number of schools: 2055
name | geometry | |
---|---|---|
0 | Nsein Senior High School | POINT (-2.21922 4.87712) |
1 | Essiama Senior High Technical School | POINT (-2.34812 4.93584) |
2 | Living Stone Preparatory School | POINT (-2.36531 4.94724) |
# hazard layers
pluvial10_pth = data + '/energy/Ghana_pluvial_P_1in10.tif' # Fathom pluvial flood 1-in-10 yrs
landslide_pth = data + '/energy/LS_RF_Mean_1980-2018.tif' # ARUP landslide layer
flood_data = rasterio.open(pluvial10_pth)
landslide_data = rasterio.open(landslide_pth)
# administrative boundaries
boundaries = gpd.read_file(data+'/gadm36_GHA_shp/gadm36_GHA_1.shp')[['NAME_1','geometry']]
# plot the POIs together with the hazard layers and boundaries
f,ax = plt.subplots(figsize=[10,8])
Show(flood_data,ax=ax)
boundaries.plot(edgecolor='k',facecolor='blue',alpha=0.4,ax=ax)
ghana_schools.plot(ax=ax,color='r',markersize=0.3);
# query the raster at school locations
ghana_schools['10yr_depth'] = point_query(ghana_schools, pluvial10_pth)
ghana_schools.sort_values(by='10yr_depth',ascending=False, inplace=True)
ghana_schools.head()
name | geometry | 10yr_depth | |
---|---|---|---|
1940 | Asafoaky? M/A JHS | POINT (-2.69281 5.79158) | 1.023089 |
1818 | EP Schools | POINT (0.48348 6.69371) | 0.915423 |
895 | None | POINT (-0.62323 5.91391) | 0.643385 |
1115 | Apimpoa Islamic Basic School | POINT (-0.25811 6.10189) | 0.538578 |
1962 | C.A.C Primary School | POINT (-2.51064 6.79913) | 0.533018 |
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) # natural earth dataset used for country outlines
country = 'Ghana'
geom = world.geometry[world.name == country].reset_index(drop=True)[0]
geom
# load the landslide data for Ghana only
with rasterio.open(landslide_pth) as src:
maskData, maskTransform = mask.mask(src, [geom], crop=True, nodata=src.nodatavals[0])
#rasterio.plot.show_hist(maskData)
f,ax = plt.subplots(figsize=[10,8])
Show(maskData, transform=maskTransform,cmap='magma',ax=ax,vmax=0.01)
boundaries.plot(edgecolor='w',facecolor='None',alpha=0.25,ax=ax)
ghana_schools.plot(ax=ax,color='b',markersize=1)
plt.title('Landslide risk of schools in Ghana');
# query the raster at school locations
ghana_schools['landslide_risk'] = point_query(ghana_schools, landslide_pth)
ghana_schools.landslide_risk = ghana_schools.landslide_risk * 100
#ghana_schools.landslide_risk.hist()
ghana_schools.sort_values(by='landslide_risk',ascending=False).head()
name | geometry | 10yr_depth | landslide_risk | |
---|---|---|---|---|
1781 | None | POINT (0.45707 6.91587) | 0.0 | 2.205068 |
1697 | None | POINT (0.45588 6.91584) | 0.0 | 2.205068 |
1792 | None | POINT (0.47387 6.82539) | 0.0 | 2.187342 |
1684 | Have R. C Basic Schools | POINT (0.35353 6.74714) | 0.0 | 2.168775 |
1702 | RIJNBEEK School Complex | POINT (0.35188 6.74456) | 0.0 | 2.168775 |
f,ax = plt.subplots()
ghana_schools.sort_values(by='landslide_risk',ascending=False)[:50].plot(column='landslide_risk',legend=True,cmap='hot',vmax=1,ax=ax)
boundaries.plot(edgecolor='w',facecolor='b',alpha=0.25,ax=ax)
plt.title('50 schools with highest landslide risk');
ghana_schools.landslide_risk.fillna(0,inplace=True)
# spatial join: schools and admin boundaries
ghana_schools = gpd.sjoin(ghana_schools,boundaries).drop(columns=['index_right'])
ghana_schools.head()
name | geometry | 10yr_depth | landslide_risk | NAME_1 | |
---|---|---|---|---|---|
1940 | Asafoaky? M/A JHS | POINT (-2.69281 5.79158) | 1.023089 | 0.150057 | Western |
1937 | None | POINT (-2.77263 5.73586) | 0.304821 | 0.301530 | Western |
385 | None | POINT (-1.72334 4.96101) | 0.287871 | 0.000000 | Western |
1938 | Asafoaky? M/A Basic School | POINT (-2.69324 5.79129) | 0.241537 | 0.150243 | Western |
1916 | Prince of Peace Int. School | POINT (-2.82596 5.82362) | 0.191243 | 0.000000 | Western |
# summarize asset risk by region
regional_summary = ghana_schools.groupby('NAME_1').mean().sort_values(by='landslide_risk',ascending=False)
regional_summary
10yr_depth | landslide_risk | |
---|---|---|
NAME_1 | ||
Volta | 0.011910 | 0.167265 |
Eastern | 0.019385 | 0.051941 |
Western | 0.019131 | 0.013622 |
Greater Accra | 0.002068 | 0.004846 |
Central | 0.007729 | 0.003027 |
Ashanti | 0.000483 | 0.000000 |
Brong Ahafo | 0.004327 | 0.000000 |
Northern | 0.002238 | 0.000000 |
Upper East | 0.001858 | 0.000000 |
Upper West | 0.001851 | 0.000000 |
# join back with boundaries and visualize mean values
boundaries = boundaries.merge(regional_summary,left_on='NAME_1',right_on = regional_summary.index)
boundaries.rename(columns = {'landslide_risk':'mean_landslide_prob_at_schools'},inplace=True)
boundaries.plot(column = 'mean_landslide_prob_at_schools',legend=True)
plt.title('Ghana: Mean landslide risk for schools by region');
# read energy facility data directly from ECOWREX through WMS
# http://www.ecowrex.org/mapView/index.php?lang=eng
generation_facilities = gpd.read_file('http://www.ecowrex.org/geoserver/ecreee/wfs?service=WFS&version=1.1.1&request=GetFeature&typename=ecreee%3Aecreee_v_energy_generators_simple&outputformat=SHAPE-ZIP&srsName=EPSG%3A4326')
generation_facilities = generation_facilities[generation_facilities.country == 'Ghana']
generation_facilities.head()
nid | country | title | eg_type_id | eg_type | initiative | initiativ0 | ree_cat_id | ree_cat | size | current_st | current_ca | lon | lat | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18 | 2399 | Ghana | Bui | 98.0 | Large Hydro | None | None | 298,197 | Hydropower,Large Hydropower (including dam, pu... | Large | Operational | 400.0 | -2.235203 | 8.277185 | POINT (-2.23520 8.27719) |
27 | 5242 | Ghana | The Nzema Project | 92.0 | PV Solar | None | None | 203 | Photovoltaic Power Plants Grid-Connected | None | Planned | 155.0 | -0.197754 | 5.615980 | POINT (-0.19775 5.61598) |
31 | 13668 | Ghana | Navrongo Solar | 92.0 | PV Solar | None | None | 203,203 | Photovoltaic Power Plants Grid-Connected,Photo... | None | Operational | 2.5 | -1.055031 | 10.923460 | POINT (-1.05503 10.92346) |
54 | 86133 | Ghana | Oyandze | 92.0 | PV Solar | None | None | 300,203 | Photovoltaic,Photovoltaic Power Plants Grid-Co... | None | Operational | 20.0 | -0.703704 | 5.345947 | POINT (-0.70370 5.34595) |
107 | 86508 | Ghana | Effasu Power Barge | 102.0 | Gas | None | None | None | None | None | Operational | 125.0 | -3.037574 | 5.080076 | POINT (-3.03757 5.08008) |
f,ax = plt.subplots(figsize=[8,6])
Show(flood_data,ax=ax)
boundaries.plot(edgecolor='k',facecolor='blue',alpha=0.4,ax=ax)
generation_facilities.plot(ax=ax,color='r');
generation_facilities['10yr_depth'] = point_query(generation_facilities, pluvial10_pth)
plt.barh(generation_facilities.title, generation_facilities['10yr_depth']);
suggested strategy: rasterize and count flooded pixels
transmission = gpd.read_file('https://development-data-hub-s3-public.s3.amazonaws.com/ddhfiles/145121/ghanafinal.geojson')
transmission.head()
voltage_kV | year | status | source | country | length_km | geometry | |
---|---|---|---|---|---|---|---|
0 | 161 | 2000.0 | Existing | ECREEE | Ghana | 70 | LINESTRING (0.55247 6.26034, 0.71815 6.22811, ... |
1 | 161 | 2000.0 | Existing | ECREEE | Ghana | 13 | LINESTRING (-0.20408 5.60745, -0.20391 5.60772... |
2 | 161 | 2000.0 | Existing | ECREEE | Ghana | 13 | LINESTRING (0.00234 5.69562, 0.00198 5.69653, ... |
3 | 161 | 2000.0 | Existing | ECREEE | Ghana | 60 | LINESTRING (-1.65830 4.97354, -1.65834 4.97389... |
4 | 161 | 2000.0 | Existing | ECREEE | Ghana | 13 | LINESTRING (-1.73567 4.96059, -1.73508 4.96077... |
f,ax = plt.subplots(figsize=[6,6])
Show(flood_data,ax=ax)
boundaries.plot(edgecolor='k',facecolor='b',alpha=0.5,ax=ax)
transmission.plot(ax=ax,color='r');