import numpy as np
import random as random
import math as math
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
L = 10
def start(L):
'''create a vacant list of list '''
P = [[0 for i in range(L)]for j in range(L)]
'''put particle at center'''
P[int(L/2)][int(L/2)] = 1
return P
P =start(L)
P
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
plt.figure(figsize = [4,3])
sns.heatmap(P,annot=True,cmap='YlGn')
<matplotlib.axes._subplots.AxesSubplot at 0x7fc8fdae7790>
$ P[i,j] = P[i+1,j] + P[i-1,j] + P[i,j+1] + P[i,j-1] $
def diffuse_primitive(P,L):
'''create vacant list of list'''
PP = [[0 for i in range(L)]for j in range(L)]
for i in range(L):
for j in range(L):
'''diffuse one step'''
PP[i][j] = P[i+1][j] + P[i-1][j] + P[i][j+1] + P[i][j-1]
'''normalize'''
PP = PP/np.sum(PP)
return PP
L =10
P =start(L)
P[0-1,j] = P[L,j]
P[I,0-1] = P[i,L]
P[L+1,j] = P[o,j]
P[i,L+1] = P[i,0]
def diffuse(P,L):
'''create vacant list of list'''
PP = [[0 for i in range(L)]for j in range(L)]
'''diffuse 1-step over supplied configuration'''
for i in range(L):
for j in range(L):
'''set boundary condition at bottom and left'''
ni =0; nj =0
if i==0:ni = L
if j==0:nj = L
'''add modulo to control boundary at top and right'''
PP[i][j] = P[(i+1)%L][j] + P[(i-1) + ni][j]\
+ P[i][(j+1)%L] + P[i][(j-1)+nj]
'''normalize'''
PP = PP/np.sum(PP)
return PP
L =10
P =start(L)
plt.figure(figsize = [12,10])
plt.subplot(3,3,1)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,2)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,3)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,4)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,5)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,6)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,7)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,8)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.subplot(3,3,9)
P = diffuse(P,L)
sns.heatmap(P,annot=False,cmap='YlGn')
plt.show()
def run_diffuse(P,nrun,L):
run = 0
'''diffuse N times'''
while run < nrun:
P = diffuse(P,L)
run = run+1
return P
We can make a plot of arbitraty diffusion step by selecting irun
in function runner.
'''set parameters'''
L = 100 ; nrun = 1000 ; P = start(L)
'''run diffusion'''
P = run_diffuse(P,nrun,L)
plt.figure(figsize = [12,10])
sns.heatmap(P,annot=False,cmap='YlGn')
plt.axis(False)
plt.show()
L = 200
nrun = 1000
P = start(L)
'''run diffusion'''
P = run_diffuse(P,nrun,L)
plt.figure(figsize = [12,10])
sns.heatmap(P,annot=False,cmap='YlGn')
plt.axis(False)
plt.show()