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Lecture 1: Introduction Lecture Wed 31 Jan 11:19

1 Financial Time Series And Their Characteristics

1.1 Asset Returns
[Lecture 1] [Reading]

Financial studies involve returns, instead of prices of assets.

Returns :

• Is a complete and scale free summary of the investment opportunity

• Are easier to handle than price series

pt is the price of an asset at time index t. And assuming an asset pays no dividends.

Continuous Compounding
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Lecture 1: Introduction Lecture

One period Simple Returns

Holding the asset for one period from date t´ 1 to date t would result in a simple gross return :

1 `Rt “
Pt

Pt´1
or Pt “ Pt´1p1 `Rtq.

The corresponding one period simple net return or simple return is :

Rt “
Pt

Pt´1
´ 1 “

Pt ´ Pt´1

Pt´1
.

Multi period Simple Returns

Holding the asset for k periods between dates t-k and t gives a k-period simple gross return :

1 `Rtrks “
Pt

Pt´k
“

Pt

Pt´1
ˆ
Pt´1

Pt´2
ˆ . . .ˆ

Pt´k`1

Pt´k
.

“ p1 `Rtqp1 `Rt´1q . . . p1 `Rt´k`1q.

“

k´1
ź

j“0

p1 `Rt´jq.

That is, the k-period simple gross return is just the product of the k one period simple gross returns
involved. A compound return.

The actual time interval is important in discussing and comparing returns, if not given, it is implicitly
assumed to be one year.

If an asset is held for k years, then the annualized average return is defined as

AnnualizedRtrks “ p

pk´1q
ź

j“0

p1 `Rt´jqqp 1
k q ´ 1.

Which is a geometric mean of the k one period simple gross returns involved and can be computed by

“ expp
1

k

pk´1q
ÿ

j“0

lnp1 ` rt´jqq ´ 1

Where it is easier to compute the arithmetic average than the geometric mean and the one-period returns
tend so be small, one can use a first order Taylor expansion to approximate the annualized return and
obtain

«
1

k

pk´1q
ÿ

j“0

Rt´j .

Continuous Compounding

Assume the interest rate of a bank deposit is 10% per annul, and the initial deposit is $1
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Lecture 1: Introduction Lecture

If the bank pays interest once a year, then the net value of the deposit becomes 1.1$. If the bank pays
interest semi-annually, the 6-month interest rate is 5% and the net value is 1p1 ` 0.1

2 q2 = $1.1025 after
the first year.

In general if the bank pays interest m times a year, then the interest rate for each payment is 10% and
the net value of the deposit becomes 1p1 ` 0.1

m qpmq one year later.

Continuously Compounded Returns

The natural logarithm of the simple gross return of an asset is called the continuously compounded return
or log return :

Rt “ lnp1 `Rtq “ lnpPt{Pt´1q “ pt ´ pt´1 (1)

Where pt “ lnpPT q. Continuously compounded returns are advantageous since they are the sum of
continuously compounded multi period return.

Portfolio Return

Simple net return of a portfolio consisting of N assets is a weighted average of the simple net returns of
the assets involved, where the weight on each asset is the percentage of the portfolio’s value invested in
that asset. Where p is a portfolio that places weight wi on asset i. Then the simple return of p at time
t is

Rp,t “

N
ÿ

i“1

wiRit.

Where Rit is the simple return of asset i.

The continuously compounded returns of a portfolio, do not have this property. Instead,

Rp,tsim
N
ÿ

i“1

wirit.

Where rp,t is the continuously compounded return of the portfolio at time t

Dividend Payment

If an asset pays periodically. Let Dt be the dividend payment of an asset between dates t ´ 1 and Pt

be the price of the asset at the end of period t. The dividend is this not included in Pt The simple net
return and continuously compounded return at time t become

Rt “
Pt `Dt

Pt´1
´ 1 , rt “ lnpPt `Dtq ´ lnpPt´1q.

Excess Return

The difference between the asset’s return and return on some reference asset, often taken to be rissoles
such as short term US treasury bill. Simple excess return and log excess return of an asset are then
defined as

Zt “ Rt ´R0t , zt “ rt ´ r0t.

Where R0t and r0t are the simple and log returns of the reference asset (resp)

1 FINANCIAL TIME SERIES AND THEIR CHARACTERISTICS 3
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Distributional Properties of Returns

Review of Statistical Distributions And Their Moments

Joint Distribution
FX,Y px, y : θq “ P pX ď x, Y ď y : θq.

Where x P Rppq, y P Rpqq and the inequality ď is a joint distribution function of X and Y with parameter
θ. The behavior of X and Y is characterized by FX,Y px, y : θ

If the joint probability density function fx,ypx, y : θq exists then

FX,Y px, y : θq “

ż x

´8

ż Y

´8

fx,ypw; z; θqdzdw.

Where X and Y are continuous random vectors

Marginal Distribution

Given by
FXpX; θq “ FX,Y px,8, . . . ,8, θq.

Thus, the marginal distribution of X is obtained by integrating out Y. A similar definition applies to the
marginal distribution of Y If k “ 1 X is a scalar random variable and the distribution function becomes

FXpxq “ P pX ď x; θq.

Which is the CDF of X. The CDF of a random variable is nondecreasing and satisfies FXp´8q “ 0and
fXp8q “ 1 For a given probability p, the smallest real number xp such that p ď FXpxpq is called the 100
p th quantile of the random variable X

Conditional Distribution

The conditional distribution of X given y ď y is given by

FX|Y ďypx; θq “
P pX ď X,Y ď Y : θ

P pY ď Y : θq
.

Moments of a Random Variable

The l-th moment of a continuous random variable X is defined as

M 1
l “ ErX ls “

ż 8

´8

xlfpxqdx

Where E stands for expectation and fpxq is the probability density function of x. The first moment is
called the mean or expectation, measuring the central location of the distribution.

The l-th central moment of X is defined as

Ml “ ErpX ´ µxqls “

ż 8

´8

px´ µxqlfpxqdx

The second central moment, denoted σ2
x measures the variability of X and is called the variance of X.

The positive square root σx of variance is the standard deviation of X.
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Lecture 1: Introduction Lecture

The first two moments of a random variable uniquely determine a normal distribution.

The Third Central moment measures the symmetry of X with respect to its mean, whereas the fourth
central moment measures the tail behaviour of X.

Skewness and kurtosis are normalised third and fourth central moments of X, are often used to summarise
the extent of asymmetry and tail thickness

1.2 Descriptive Statistics
Let Yt be a time-series of random variables with a history of realisations yt with t “ 1, . . . , T

Mean

ErYts “ µ , m̂u “
1

T

T
ÿ

t“1

yt

Variance

V rYts “ ErpYt ´ µq2s , σ̂2 “
1

T

T
ÿ

t“1

pyt ´ m̂uq2

Skewness

SrYts “ Er
pYt ´ µq3

σ3
s , Ŝ “

1

T

T
ÿ

t“1

r
pYt ´ µq3

σ3
srs

Kurtosis

KrYts “ Er
pYt ´ µq4

σ4
s , Ŝ “

1

T

T
ÿ

t“1

r
pYt ´ µq4

σ4
srs

Jargue-Bera test, tests H0 of normality of the series :

JB “
T

6
pŜ2 `

pK̂ ´ 3q2

4
q

Where k is the number of estimated parameters. This test statistic has a χ2 distribution with 2 degrees
of freedom (always). Tests 2 parameters jointly. Rejection when skewness is not 0 or kurtosis is not
3. Skewed or heavy tailed. Then use individual tests against 0 or 3 using WLLN and CLT. T test,
standardizing appropriately.

Quantile-Quantile plots : plot theoretical quantiles against the empirical ones

Stylized Facts

• Return series do not follow a normal distribution

• The normal distribution does not explain the occurrence probability of extreme events

• Better assumptions are student-t or stable distributions

• On higher frequencies (intraday) the deviation from normality is more pronounced than on lower
frequencies

• Aggregated return series, do however, tend to normality

1 FINANCIAL TIME SERIES AND THEIR CHARACTERISTICS 5



Lecture 1: Introduction Lecture

• Return series posses fat tails

• Return series are leptokurtic or posses an overkurtosis (kurtosis > 3)

• Large returns occur more often than expected

• Large returns are more often negative than positive which yields left skewed returns (skewness <
0)

• Intraday returns are subject to typical trading session effects (seasonality, opening and closing
issues)

• Returns are subject to volatility clustering, which is again more pronounced on higher frequencies

• Volatility is time varying

• Financial time series are correlated

• Correlations are also time varying

Standardized Return
p
rt ´ µ

σ̂
q.

Kurtosis is probably the most important, telling you about the number of extreme events. Say coca-cola
vs tesla (kurtosis of 50). Can be seen as number of outliers around mean

Plotting histogram, kurtosis is heavy tails, extreme distribution lands exactly to the tails.

1.3 Distribution of Returns
The most general model for the log returns is its joint distribution function Frpr11, . . . , rN : r12, . . . , rN2 :
. . . rIT . . . rNT : Y ; θq

Where Y is a state vector consisting of variables that summarise the environment in which asset returns
are determined and θ is a vector of parameters that uniquely determines the distribution funcion Frp¨q,
which governs the stochastic behaviour the returns rit and Y.

Often the state vector Y is treated as given and the main concern is the conditional distribution of trqitu
given Y.

Some financial theories (CAPM) focus on the joint distirbution of N returns at a single tome index t.
Whilst others look at the dynamic structure of individual asset returns

Since our main concern is the joint distribution of tritu
T
t“1 for asset i, it is useful to partition the joint

distribution as :

F pri1 , . . . , riT : θq “ F pri1qF pri2|ri1q . . . F priT |riT´1, . . . , ri1q

“ F pri1q

T
ź

t“2

F priT |rit´1, . . . , ri1q

Where the parameter θ is omitted for brevity.

This partition the temporal dependencies of the log return rit. With the main issue the specification
of the conditional distribution F prit|ri t´1q since different distributional specification lead to different
theories in finance.

1 FINANCIAL TIME SERIES AND THEIR CHARACTERISTICS 6
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For instance the random walk hypothesis in which one version entails the conditional distribution F prit|ri t´1, . . . ri1q

is equal to the marginal distribution F pritq meaning returns are temporally independent and thus not
predictable.

Normal Distribution

A traditional assumption is that the simple returns tRit|t “ 1, . . . , T u are independently and identi-
cally distributed as normal with fixed mean and variance.

However, this assumption encounters difficulties empirically,

• The lower bound of a simple return is -1, but the normal distribution may assume any value in the
real line and hence has no lower bound

• If Rit is normally distributed then the multi period simple return Ritrks is not normally distributed
because it is a product of one period returns

• The normality assumption is not supported by many empirical asset returns

Log normal Distribution

Another commonly used assumption is that he long returns rt of an asset are independent and identically
distributed (iid) as normal with mean µ and variance σ2. The simple returns are then iid lognormal
random variables with mean and variance given by

ErRts “ exppµ`
σ2

2
q ´ 1

And
V arrRts “ expp2µ` σ2qrexppσ2q ´ 1s

Stable Distribution

The stable distribution are a natural generalisation of normal in that they are stable under addition,
meeting the need of contionusly compounded returns rt. Furthermore, stable disributinos are capabale
of capturing excess kurtosis, shown by histroical stock returns

Hypothesis Test

Null H0 : s “ 0 vs H1 : S ‰ 0
t̂` CLT Ñpdq Np0, 1q.

Tells you distribution under the null, then 95% of probability mass is between critical values, then outside
of this, either suff evidence against the null or a type I error (5%) (at tails). Fundamentally, we cannot
trust the null hypothesis.

Whatever we want to test, we put into the alternative. NO conclusion can be made if we fail to reject
the null. If we collect evidence against the null then this is fundamentally different.

Na

Lecture 2: Second Lecture - Review of Time Series Fri 02 Feb 15:45
[Lecture 2] [Reading]
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Lecture 2: Second Lecture - Review of Time Series

2 Time Series Basics

Stationarity

A time series trtu is strict stationary if the joint distributing of prt1 , . . . , rtkq is identical to that of
prt1`t, . . . , rtk`tq for all t where k is an arbitrary positive integer and t1, . . . , tk is a collection of k positive
integers.

That is, strict stationarity requires that the joint distributing is time invariant under a time shift, but
of course this is hard to verify empirically and a very strong condition.

A weaker condition is that a time series trtu is weakly stationary if both the mean of rt and the covariance
between rt and rt´l are time invariant.

That is,
Errts “ µ a constant Covprt, rt´lq “ †l which only depends on l (2)

Where weak stationarity implies the time plot of the data would show that the T values fluctuate with
constant variation around a fixed level. Enabling one to make inference conceding future observations
But, implicitly we have assumed that the first 2 moments of rt are finite

Where the covariance †l “ Covprt, rt´lq is called the lag-↕ auto covariance of rt. With 2 important
properties :

1. †0 “ V arprtq J

2. †´l “ †l

Correlation And Autocorrelation Functions

The correlation coefficient between 2 random variables X and Y is defined as

ρx,y “
CovpX,Y q

a

V arpxqV arpY q
“

ErpX ´ µxqpY ´ µyqs
a

EpX ´ µxq2EpY ´ µyq2
(3)

Where µx and µy are the mean of X and Y resp, assuming the variances exist also. This measures the
strength of linear dependence between X and Y, and it can be shown that ´1 ď ρx,y ď 1 and ρx,y “ ρy,x.
Where the two RV are uncorrelated if ρx,y “ 0, which occurs iff X and Y are independent.

Autocorrelation Function (acf) For a weakly stationary return series rt when the linear dependence
between rt and its past values rt´i, we can generalise the correlation concept to autocorrelation.

The correlation coefficient between rt and rt´i is called the lag-ℓ autocorrelation of rt and is commonly
denoted by ρe, which under the weak stationarity assumption is a function of ℓ only

We define
ρℓ “

Covprt, rt´ℓq
a

VarprtqVarprt´ℓq
“

Covprt, rt´ℓq

Varprtq
“
yℓ
y0

Where Varprtq = Varprt´ℓq for a weakly stationary series

For a given sample of returns trtu
T
t“1 let r̄ be the sample mean (r̄ “

řT
t“1 rt{T ). Then the lag-1 sample

autocorrelation of rt is

p̂1 “

řT
t“2prt ´ r̄qprt´1 ´ r̄q

řT
t“1prt ´ r̄q2

2 TIME SERIES BASICS 8



Lecture 2: Second Lecture - Review of Time Series

Which, under some general conditions is a consistent estimator of p1 IE, if trtu us an iid sequence and
E

“

r2t
‰

ă 8, then p̂1 is asymptotically normal with mean zero and variance 1
T .

In practice we can use this to test the null hypothesis H0 : p1 “ 0 vs Ha “: p1 ‰ 0 With the test stat the
t ratio which is

?
T p̂1 and follows asymptotically the standard normal distribution.

The null hypothesis is rejected if the t ratio is large in magnitude or (equivalently) the p value of the t
ratio is small (<0.05)

lag - ℓ sample autocorrelation of rt is defined as

p̂ℓ “
prt ´ r̄qprt´ℓ ´ r̄q

řT
t“1prt ´ r̄q2

(4)

where 0 ď ℓ ă T ´ 1

Testing Individual Acf For the previous result, we can test H0 : pℓ “ 0 vs Ha : pℓ ‰ 0 using test stat

t ratio “
p̂ℓ

c

´

1 ` 2
řℓ´1

i“1 p̂
2
i

¯

{T

Then, if trtu is a stationary Gaussian series satisfying ρj “ 0 for j ą l the t ratio is asymptotically
distributed as a standard normal RV. And hence the decision rule of the test

Reject H0 if |t ratio| ą Z a
2

where Z a
2

is the 100(1´a{2)th percentile of the standard normal distribution.

In finite samples, p̂ℓ is a biased estimator of pℓ, of the order 1
T which is substantial with a small sample

size (although large samples in financial so OK).

Portmanteau Test

Portmanteau statistic

Q ˚ pmq “ T
m
ÿ

i“1

p̂2t

to test jointly that several autocorrelations of rt are zero. Null hypothesis Ha : pi ‰ 0 for some i P

t1, . . . ,mu. Under the assumption that trtu is an iid sequence, Q*(m) is asymptotically topically a
chi-squared RV with m degrees of freedom.

Ljung and Box (1978) modify this to increase the power of the test in finite samples

Qpmq “ T pT ` 2q

m
ÿ

l“1

p̂2ℓ
T ´ ℓ

where the decision rule is to redirect H0 if Qpmq ą χ2
α where χ2

a χ
2
α denotes the 100(1 ´ α)th percentile

of a chi squared distribution (m dof). The decision rule to to reject H0 if the p value is less than or equal
to α

The choice of m may affect performance of the statistic, several values of m are often used.

The statistics p̂1, p̂2, . . . in eq. (4) are the sample autocorrelation functions (ACF) of rt.

A linear time series model can be characterised by its ACF, and linear time series modelling makes use
of the sample ACF to capture the linear dynamic of the data.

2 TIME SERIES BASICS 9
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Figure 1: Sample Autocorrelation Functions of Monthly Simple And Log Returns

Indeed, the two sample ACFs are very close to eachother, and suggest the serial correlations of monthly
IBM stock returns are very small. The sample ACFs are all within their two SE limit, indicating they are
not significantly different from zero at the 5% level. Additionally, the Ljung-Box stats give Qp5q “ 3.37
and Qp10q “ 13.99, corresponding p values o 0.64 and 0.17 based on chi-squared distributions.

Often, a version of the CAPM theory is that the return trtu of an asset is not predictable and should
have no autocorrelations. Thus, testing for zero autocorrelations has been used as a tool to check the
efficient market assumption

Jjk

Stochastic Processes

• Chronologically ordered equidistant observations

• Generated by stochastic process

• Stochastic process - collection of RV (each Yi is generated by different member of stochastic pro-
cesses)

• assumption time series data has been generated by stochastic process

Definition 1. stochastic process is a family of random variables defined on a probability space

Definition 2. time series is a realisation of a stochastic process

Definition 3. time series analysis - only one history Ytpwq, one state of the world w P ω is available,
but the goal is to derive the properties of Ytp¨q for a given t for different states of the world

Idea - how can we understand what is driving omegas? Different states of the world, since we observe yt.
So place some structure on yt

Should be able to recognise :

• Non-stationary time series

• Autoregressive time series

2 TIME SERIES BASICS 10
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• Kurtosis time series

Definition 4. Auto Covariance

Time series often show correlation between successive observations, this feature is called serial correlating
or autocorrelation

Dependencies over time are described by auto covariance and autocorrelation functions

The j-th autocovariance of Yt is given by

CovrYt, yt´js “ γt,t´j “ ErYt ´ ErYtsrYt´j ´ ErYt´js

Correspondingly the variance of Yt is defined as :

V rYT s “ γt,t “ ErYt ´ ErYtsq
2s

Definition 5. Autocorrelation

The j-th autocorrelation of Yt is given by :

ρt,t´j “
CovrYt, Yt´js

V rYtsp 1
2 qV rY

p 1
2 q

t´j

Definition 6. Covariance Stationary A time series tYtu
p8q

t“´8 is called covariance stationary, or weakly
stationary, if :

ErYts “ µY

V rYts “ γt,t “ γ0 “ σ2
Y ă 8

CovrYt, Yt´js “ γt,t´j “ γj ă 8

For a covariance stationary process the j-th autocorrelation is given by :

White Noise

Definition 7. white noise A time series is called white noise if it satisfies:

ErYts “ 0V rYts “ σ2
Y COvrYt, Yss “ ErYt, Yss “ 0

White noise is a weakly stationary process - all the ACFs are 0.

Particularly, if rt is normally distributed with mean 0 and variance = σ2 the series is a Gaussian white
noise

Definition 8. Autocorrelation Function Autocorrelation function of a covariance stationary process
tYtu

p8q

t“´8 is the sequence of autocorrelations ρj for all j “ 0, 1, 2, . . .

Definition 9. Empirical Autocorrelation Function

2 TIME SERIES BASICS 11
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The empirical (or sample) autocorrelation function of a time series Yt is the sequence of sample autocor-
relation coefficients ρ̂j for all j “ 0, 1, 2, . . . :

ρ̂j “
γ̂j
γ̂0

“

řT
t“j`1pYt ´ Ȳ pYt´j ´ Ȳ q

řT
t“1pYt ´ Ȳ 2

And

γ̂j “
1

T

T
ÿ

t“j`1

pYt ´ Ȳ qpYt´j ´ Ȳ q Ȳ “
1

T

T
ÿ

t“1

Yt

The graphical depictions of the empirical autocorrelation function is called an autocorrelogram

Definition 10. Partial Autocorrelation Function

Partial autocorrelation between Yt and Yt´j is the conditional correlation between Yt and Yt´j given
(holding fixed) Yt´1, . . . , Yt´j`1

Aj “ CorrYt, Yt´j |Yt´1, . . . , Yt´j`1s

Effects of in-between values are controlled for

Corresponding sample quantity âj is called sample partial autocorrelation and is obtained as the OLS
estimator of the coefficient aj in model

Yt “ a0 ` a1Yt´1 ` . . .` ajYt´j ` µt

Definition 11. Sample Autocorrelation Function

If data generating process is a white noise process, then for large T:

ρ̂j « Np0,
1

T
q, j “ 1, 2, . . .

Means : H0 : ρ̂j “ 0 is rejected, if zero does not fall within the approximate 95% confidence interval

r ˆrhoj ´
2

?
T
, ˆrhoj `

2
?
T

s

Equivalently, autocorrelations are not significant when ρ̂j is within the approximate two standard error
bound ˘2{

?
T

Linear Time Series A time series rt is said to be linear if it can be written as

rt “ µ `

8
ÿ

i“0

ψiαt´i (5)

Where µ is the mean of rt, ψ0 “ 1 and tαtu is a sequence of iid RV with mean zero and well defined
distributions (ii a white noise)

For this equation, the dynamic structure of rt is governed by the coefficients ψi which are called the ψ
weights of rt

2 TIME SERIES BASICS 12



Lecture 2: Second Lecture - Review of Time Series

If rt is weakly stationary, we can obtain its mean and variance easily by using the independence of tαtu

as
Errts “ µ Varprtq “ σ2

α

ż 8

i“0

ψ2
i (6)

Where σ2
u is the variance of at

Simple AR Models

If a monthly return of a value weighted index has a statistically significant lag-1 autocorrelation indicates
that the lagged return rt´1 may be useful in predicting rt, we can implement this in a model such as

rt “ φ0 ` φ1rt´1 ` at (7)

Where tatu is assumed to be a white noise series with mean zero and variance σ2
a

This is analogous to the simple linear regression model in which rt is the dependent variable and rt´1 is
the explanatory variable.

This is actually an autoregressive (AR) model of order 1 (AR(1))

Note. Conditional on the past return, the current return is centred around φ0 ` φ1rt´1 with CID σa
AR(1) model implies that conditional on past return rt´1, we have

Errt|rt´1s “ φ0 ` φ1rt´1 Varprt|rt´1q “ Varpatq “ σ2
a

This is a Markov property such that conditional on rt´1, the return rt is not correlated with rt´i for i ą 1

A straightforward generalisation of the AR(1) model is the AR(p) model

3 Arma Processes

Definition 12. AR(p)-Process A time series is called an autoregressive process of order p if it satisfies
a relationship of the type :

Yt “ c` φ1Yt´1 ` φ2Yt´2 ` . . .` ρpYt´p ` εt

Where εt is a white noise error term

AR(1) process : the simplest form of an AR(p) process is obtained for p “ 1 as

Yt “ c` φ1Yt´1 ` εt (8)

Ar(1) Model

Starting with the sufficient and necessary condition for weak stationarity of the AR(1) model, assuming
that the series is weakly stationary, we have E rrts “ µ, Varprtq “ γ0 and Covprt, rt´jq “ γj where µ and
γ0 are constant and yj is a function of j, not t. To obtain he mean variance and autocorrelations of the
series,

Taking the expectation of eq. (8) (with slightly different notation), and since E rats “ 0, we obtain

Errts “ φ0 ` φ1Errt´1s
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Then, under the stationarity condition E rrts “ E rrt´1s “ µ and hence

µ “ φ0 ` φ1µ or E rrts “ µ “
φ0

1 ´ φ1

Which has two implications for rt

1. The mean of rt exists if φ1 ‰ 1

2. The mean of rt is zero iff φ0 “ 0

Thus, for a stationary AR(1) process, the constant term φ0 is related to the mean of rt via φ0 “ p1 ´ φ1qµ
and φ0 “ 0 implies that E rrts “ 0

Then, using φ0 “ p1 ´ φ1qµ, the AR(1) model can be rewritten as

rt ´ µ “ φ1 prt´1 ´ µq ` αt

Which, using repeated substitutions implies

rt ´ µ “ at ` φ1at´1 ` φ2at´2 ` . . .

“

8
ÿ

i“0

φi
1at´i

(9)

Which expresses a AR(1) model in the form of a linear time series

rt “ φ0 ` φ1rt´1 ` . . .` φprt´p ` at

Where p is a non-negative integer and tatu is defined previously.

Essentially, this says that the past p variables rt´ii “ 1, . . . , p jointly determined the conditional expec-
tation of rt given the past data.

Ar(1) Properties

Considering an AR(1) process:
εt “ ρεt´1 ` ut ´ 1 ă ρ ă 1

where ut is a white noise process. This AR(1) process as the following properties

1. εt “
ř8

i“0 ρ
iut´i “ MAp8q

2. Erεts “ 0

3. V rεts “ γ0 “
σ2
u

1´ρ2 with V ruts “ σ2
u

4.

Covpεt, εt´1q “ γ1 “ ρ1
σ2
u

1 ´ ρ2

Covpεt, εt´sq “ γs “ ρs
σ2
u

1 ´ ρ2

Covpεt, εt´1q “ γ1 “ ρ1
σ2
u

1 ´ ρ2
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Example. AR(1) Process
8
ÿ

i“0

ρpiqut´i “pwaldq MAp8q

Autocorrelation function of an AR(1) model

Then, multiplying eq. (9) by αt, using the independence between at and rt´1, and taking expectations
we obtain

E ratprt ´ µqss “ φ1E ratprt´1 ´ µqss ` E
“

a2t
‰

“ Era2t s “ σ2
a

Identifying AR Models in Practice

In reality, the order p of an AR time series is unknown, it must be specified empirically, referred to as
the order determination

There are two approaches, either the PACF or information criteria.

Partial Autocorrelation Function (pacf) The PACF of a stationary time series is a function of its
ACF and is a useful tool for determining the order p of an AR model.

Considering AR models in consecutive orders

rt “ φ0,1 ` φ1,1rt´1 ` e1t (10)
rt “ φ0,2 ` φ1,2rt´1 ` φ2,2rt´2 ` e2t (11)

Where φ0,j , φi,j and tejtu are respectively, the constant term, coefficient of rt´i and the error term of an
AR(j) model. For a stationary Gaussian AR(p) model, it can be shown that the sample PACF has the
following properties:

• φ̂p,p converges to φp as the sample size T tends to infinity

• φ̂l,l converges to zero for all ℓ ą p

• The asymptotic varaince of ˆvarphil,l is 1/T for all l >p

Thus, fir an AR(p) series, the sample PACF cuts off at the lag p.

3.1 Arma
Definition 13. MA(q)-Process A time series is called a moving average process of order q if it
satisfies a relationship of the type

Yt “ µ “ εt ` θ1εt´1 ` θ2εt´2 ` . . .` θqεt´q

Where εt is a white noise error term

MA(1) Process: the simplest form of an MA(q) process is obtained for q “ 1 as

Yt “ µ` εt ` θ1εt´1

Often times the AR or MA models become cumbersome, so one may need a higher order model with
many parameters to describe the dynamic structure of the data.
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ARMA models are introduced essentially combining both AR and MA models, such that the number of
parameters is kept small. Importantly, the GARCH model can be regarded as an ARMA model.

A time series rt follows an ARMA(1, 1) model if it satisfies

rt ´ φ1rt´1 “ φ0 ` at ´ θ1at´1

where tatu is a white noise series. With the left and right giving the AR and MA part resp.

Lag operator let tYtu
p8q

t“´8 be a time series, then the lag operator L is defined by the relation

LpJq ” Yt´j

If tYt “ cu
p8q

t“´8 where c P R, then LpjqYt “ Lpjqc “ c

ARMA(p,q) is a time series tYtu
p8q

t“´8 of the following form

φppLqYt “ c` ΘpLqεtwhere

φppLq “ 1 ´ φ1L´ φ2L
p2q ´ . . . .´ φpL

ppq

ΘpLq “ 1 ` θ1L` θ2L
p2q ` . . .` θqL

pqq

With εt being a white noise and φp and Θq are called lag polynomials

Properties of Arma(1, 1) Models

[2.6] These are generalisation of those of AR(1) models with some modifications to handle the MA(1)
component.

Starting with the stationarity condition and taking expectation of the ARMA(1, 1) model :

Errts ´ φ1Errt´1s “ φ0 ` Erats ´ θ1Erat´1s

Because Erαis “ 0 for all I, the mean of rt is

Errts “ µ “
φ0

1 ´ φ0

provided the series is weakly stationary.

Then, assuming for simplicity that φ0 “ 0 we consider the autocovariance function of rt

Multiplying the model by at and taking expectations we have

Errtats “ Erα2
t s ´ θ1Eratat´1s “ Erα2

t s “ σ2
a (12)

Then rewriting the model as
rt “ φ1rt´1 ` αt ´ θ1at´1

and taking the variance of the prior equation, we have

Varprtq “ φ2
1Varprt´1q ` σ2

a ` θ21σ
2
a ´ 2φ1θ1Errt´1at´1s

Where we make use of the fact that rt´1 and at are uncorrelated, then using 7 we obtain

Varprtq ´ φ2
1Varprt´1q “

`

1 ´ 2φ1θ1 ` θ21
˘

σ2
a

Therefore if the series is weakly stationary, then Varprtq “ Varprt´1q and we have

Varprtq “
p1 ´ 2φ1θ1 ` σ2

1qσ2
a

1 ´ φ2
1
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3.2 Arma Estimation
ARMA(p, q) process:

Yt “ c` φ1Yt´1 ` φ2Yt´2 ` . . .` φpYt´p ` εt ` θ1et´1 ` θ2εt´2 ` . . .` θqεt´q

• Estimation via conditional Max likelihood

• conditional : derive the likelihood function under the assumption that the initial values of Yt and
εt are available

• assume : εt „piidq Np0, σ2q

• ML parameter estimators are derided under the assumption of normality are quasi ML estimators

• Our goal is to estimate the vector θ “ pc, φ1, φ2, . . . , θ1, θ2, . . . , θq, σ
2q1

ARMA estimation

Conditional log likelihood

Estimation is done under assumption that error term is normal.

LBJ test

Whether p is sufficiently long, if model specified correctly, then residuals shouldn’t be correlated with
each other.

Tells whether white noise property is plausible assumption

Critical values is from chi-squared dost, we test for absence of autocorrelation upto chosen lag order,
leading into next weeks lecture of conditional heteroskedacity.

ARCH-ML test

Tests for conditional heteroskedacity in regression residuals

Pick ARMA based on this, if modelled successfully then null of LBJ test shouldn’t be rejected and there
shouldn’t be any conditional heteroskedacity

Lecture 3: ARCH Models Mon 12 Feb 09:01
[Lecture 3] [Reading]

Review

Week 1

Leptokurtic Property - How to measure a lot of outliers? Kurtosis. The kurtosis of our distribution is
larger than 3 (4th moment of distribution). Since Krrts ą 3 where e „ N pµ, σ2q

Left-Skewness - more negative returns than positive ones. Srrts ă 0

Volatility clustering - periods of high volatility are followed by periods of high volatility. The volatile
periods on the markets (across S of return distribution) they cluster. Market volatility is persistent.

Shape of daily returns - Compared to say a normal bell curve, is this a good distribution? Weekly more
normal then daily, monthly more normal than weekly. Thus aggregate returns tend to normality

• Should know these by heart
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• And be able to apply them and tell graphically

Week 2

Time series analysis

ARMA Models (ARMAp1, 1q yt “ c` ρ1 ` yt´1 ` εt ` θεt´1

Stationarity ADF test

Model selection ACF /DACF

Information criteria - Bayesian information criteria helps to choose whether ARMA(1, 2) or MA(1) is
better for data.

At the end we estimate by quasi-likelihood since εt „ N p0, σ2q, which is key to today’s material.

It is important to realise this assumption is quite strong, the shortcut for this type of estimator is quasi-
likelihood.

Θ “ pc, ρ1, θ1, σ
2q, in empirical terms the maximum likelihood estimators minimise the negative log-

likelihood, we can only find the minimum using gradient descent, hence minimising the negative.

θ̂QML “ argmin
Θ

Autoregressive process order 1

Log likelihood - maximises function to find combination of parameters of model such that our εt’s are
normal

For Financial Econometrics, once plot ACF and PCF, once looking at squared residuals, we have seen a
lot of significant lags in the squared residuals. LBQ test and ARCH-LM test whether there is remaining
autocorrelation within the squares residuals.

These tests tell us that σ̂2 tell us there is autocorrelation across time within the residuals, only problem
of model misspecification comes from squared residuals, variance of error term.

3.3 Conditional Heteroskedacity
In any ARMA model there is some expectation

Yt “ Eryt|Ft´1s ` εt

c` ρyt´1 ` θεt´1. F is filtration, past information and εt is new information/shock today.

White noise (DSA) :

εt „ WN

Erεts “ 0

V rεts “ σ2

Covpεt, εtq “ 0

Conditional vs Unconditional Variance

V εt|Ft´1 “ σ2
t V rztFt´1s “ σ2

t V rzts “ σ2
t “ σ2

t pFt´1q
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Conditional : V rεts and Unconditional V rεt|Ft´1s. σ2
t is hence the conditional variance of εt, ie εt is

conditional heteroskedatic. σt “
a

σ2
t gives the conditional variance of εt

Where V rεt|Ft´1s depends on past filtration.

The unconditional variance of εt is
σ2
ε “ V rεts

Yt “ c` ρyt´1 ` εt

Eryts “ Erc` ρyt´1 ` εts

“ c` ρEryt´1s

Eryts “ Eryt´1s

Eryts “
c

1 ´ ρ

That is,
c

1 ´ ρ
vs c` φyt´1 p˚q

Eryt|Ft´1s

Erc` ρyt´1 ` εt|Ft´1s

C ` ρEryt´1|Ft´1s ` Erεt|Ft´1s

C ` ρyt´1 ` 0

White Noise

• Erεts “ 0

• V rεts “ σ2

• covrεt, εts = 0

The unconditional moment in (*) is more important.

White noise assumption, assumes both conditional and unconditional are constant over time, that is

V rεts “ V rεt, |Ft´1s “ σ2

V rεts “ σ2 but V rεt, Ft´1s is time varying (conditional second moment).

We start with εt “ Lt ¨ σt where Lt „ N p0, 1q and ARCH (1) : σ2
t “ w ` αεt´1

As we have just done with AR1, now look at conditional and unconditional second moment of ARCH(1).

V rεts and

Erεts “ ErLtσts “

ErLtsErσts

0 ¨ Erσts “ 0

V rεts “ Erεts
2ErL2

t ¨ σ2
t s “

ErL2
t s ¨ Erσ2

t s “ Erσ2
t s
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V rεt|Ft´1s (not right yet)

Erεt|Ft´1s “

ErLtsErσts

0 ¨ Erσts “ 0

V rεts “ Erεts
2ErL2

t ¨ σ2
t s “

ErL2
t s ¨ Erσ2

t s “ Erσ2
t s

General Settings

So far we have focused on the estimation of the conditional mean function ErYt|Ft´1s :

Yt “ ErYt|Ft´1s ` εt

Where εt is a weak white noise, that is, εt is serially uncorrelated : Covrεt, εt´js “ 0 @j ‰ 1

Although, the weak white noise assumption does not say anything about serial dependency in the higher
moments of εt, eg Covpε2t , e

2
t´jq ‰ 0 for some j ‰ 0 But so far we have assume that εt is conditionally

and unconditionally homoskedatic:

V rεts “ V rεt|Ft´1s ” σ2
ε@t

Garch-type Models

If we relax the conditionally homoskedatic assumption and assume the following decomposition of the
error term :

εt “ zt

b

σ2
t

where zt is an iid error term with zero expectation and unit variance. The function σ2
t is assumed to be

a function only of past information σ2
t ” σ2

t pFt´1q

Arch(1) Processes

A process σ2
t is called an ARCH(1) process if

σ2
t ` w ` αε2t´1

With w>0 and α ě 0

Properties of Arch(1)

• Arch (!) Conditional variance σ2
t is strictly positive if w ą 0 and a ě 0

• Opposite to the historical volatility estimator, the arch 1 volatility is a weighted average of past
information that gives more weight to the recent information than to the distant one

• Arch 1 process can be written as an A(1) process in ε2t
• Consequently ε2t is stationary if |α| ă 1

• Given that both process εt and ε2t and Erεts “ 0 then the unconditional variance of εt, Erεts is
given by

σ2
ε “ V rεts “ Erε2t s “

w

1 ´ α
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• ARCH(1) captures the clustering effect : when volatility is high, it more probably stays high

• The kurtosis is always large t

Figure 2

Conditional variance moment, we observe a high persistence in daily log returns in order to cauterises
this lag persistence, this lag has to be large too. But the estimation of this A(50) model becomes very
cumbersome, likelihoods optimise numerically, once you start imposing Stationarity conditions this it rot
ensure generating something with a stationary second moments, these are some solutions to polynomial
equations so we run into large p issues.

In tutorial we look at arch’s in simulation study

Lecture 4: GARCH Mon 19 Feb 09:00
[FE-L4] [3.5, 3.6, 3.8,3.9]

Recap

ARMA

1. Erεts “ 0

2. V εt “ σ2

3. Cov(εt, εs) = 0 that is no serial correlation

Tutorial 2 : S&P 500 Daily log returns Ñ ARMA(p,q) Ñ BIC then use residual diagnostics

@t “ yt ´ Êryt|Ft´1s Ñ MApLq

Week 3
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NP / Rob Engel 2003

εt “ σtLt

Lt „ N p0, 1q

σ2
t “ w ` αε2t´1 ă ´

1. a ě 0 and ω ą 0 - to ensure positivity of conditional variance

2. |α| ă 1 Stationarity of conditional variance

ARCH(1)
$

’

’

’

&

’

’

’

%

σ “ w ` αεt´1 ă ´

εt ` Ltσt

rewrite σ2
t “ w ` αε2t´1 ` ε2t ´ ε2t

ARp1q in ε2t Ñ ε2t “ w ` αε2t´1 `
`

ε2t ´ σ2
t

˘

V ideo

$

’

&

’

%

ErVts “ 0

V rvts ă 8vt “ σ2

Covpvt, vt´sq “ 0

Pros

• Volatility clustering (video)

• Rise persistence at the cost of ARCH (p)

• Leptokurtic property α2 P p0, 13 q

Cons

• Leverage effect : ErL3
t s “ 0

• Long memory (ACF)

What can we do with our Garch models to capture all remaining things in ACF?

3.4 Garch

A process σ2
t is called an GARCH(1, 1) process if

σ2
t “ ω ` αε2t´1 ` βσ2

t´1

With ω ą 0, α ě 0 and β ě 0

Properties

• ε2t is stationary if α ` β ă 1

• Both processes εt and ε2t are stationary and Erεts “ 0 then the unconditional variance of εt V rεts
which is equal to the unconditional mean of ε2t

• No leverage effects as in the ARCH

•

Left α “ 0.01 and β “ 0.8. Right α “ 0.08 and β “ 0.9 If allow close to 1 then can generate longer
persistence, usually the memory of the daily log returns is us more persistent. Most have very low
memory, thus people came up with GARCH(p, q)

M1 GARCH(1, 1)
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Figure 3: Simulated GARCH Models

• It takes into account / able to model more persistent conditional volatility processes

• Mitigating the tradeoff between generating a leptokurtic distribution of εt and the persistence iof
the ACF if ε2t as compared to ARCH(1)

M2 ARCH(1)

GARCH captures over kurtosis, even if we could like sum of α ` β to 1, we still have an opportunity to
generate a over kurtosis (>3)

We can also show GARCH reveals larger excess kurtosis than the arch model, we can compare which is
larger than the other, 6α2

1´2a2´pα`βq2q

Can show A(1) is equal to MAp8q, same applies for GARCH for ARCHp8q

α ` β providers the necessary information on the degree of volatility clustering

Garch(p, q)

Just extension of GARCH(1, 1), key notation is polynomial for lag operator, lags shift an observation 1
period ahead (power 2 = 2 period ahead). But except for notation, nothing fundamental changes.

To lie outside of the root circle, in practice to estimate such a model, ensure positivity constraints,
then also have to ensure process modelling is stationary - the constraints on stationary on highly non
linear. This very quickly becomes a complicated non linear constraint, thus a numerical issue driven by
Stationarity constraint (non linear) imposed by IRMA (p, q), but if allow for more p and q lags, then
model is able to generate over kurtosis then the persistence of the series, the properties become better
but at the cost of optimising over something with highly non-linear constraint.

Further Types of Garch Models

ARCH providers an exponential decay, have to know GARCHS for risk modelling.

Integrated GARCH(1, 1)

• Specific to high frequency time series

• Describes a very large persistence in the conditional variance

• Is strictly stationary

• Propose α and β sum upto 1, GARCH STRUCTURE there to ensure non stationary process
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• Risk metrics assumes that daily log returns follows process with infinite variance, that is we are not
dealing with well defined statistical processes in real life, as seen by lack of first 2 moments

RiskMetricsTM

A special case of the IGARCH(1, 1) process

• From estimating the

• Gives forecast

• λ calibrates on loads of different stocks in the 90s

• Fix the β with λ

Exponential GARCH

Aimed at capturing asymmetric shocks, now modelling ht´1 log transformation of σ2
t , assuming it follows

GARCH looking process, and modify the ARCH part

• Modelling logs of variance because we want to get rid of parameter constraints, if modelling logs
can be positive, negative, get rid of these issues by modelling logs

•

Threshold GARCH

TGARCH (1, 1) with indicator function, if shock was negative, bit easier to look at, if γ is positive, then
...

Tgarch, E garch if model left skewed

Tgarch(1,1) GJR-Garch

Usual garch(1, 1) : σ2
t “ w ` αε2t´1 ` βσ2

t´1

Tgarch(1, 1) : σ2
t “ w ` αε2t´1 ` βσ2

t´1

News impact curve : NICpεt|σ
2
t´1 “ σ2

t´2, . . . ,“ σ2
t q

GARCH(1, 1) : w ` βσ2
t ` αε2t´1 TGARCH(1, 1) =

#

W ` βσ2
t ` αε2t´1εt´1 ă 0

W ` βσ2
t ` α ` δε2t´1, εt´1 ă 0

NIC : Egarch(1,1)

Ht “ lnpσ2
t q “ w`αLt´1`γp|zt´1|´

c

2

a
q expphtq “ σ2

t “ expw ¨ expαzt´1 ¨ expγp|zt´1|´
?

2
a q σ2

t “ expw ¨σ2

εt ą 0

εt ă 0

If shock positive then expα`γ ¨εt{σt
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NIC: once you write down NIC, then it becomes more evident what model parameters give you which
response, EGarch α ă 0, zt between 0 and 1

Figure 4: News Impact Curve

Model quality based on one picture, isn’t exactly true, in order to plot NIC. Plug in σ, γ, β (ω) , plot is
based on one set of parameters, can easily be reversed.

So has something to do with data rather than overall quality of model,

Recap ARCH, GARCH, IGARCH, EGARCH, TGARCH. Financial econometrics model conditional
second moment, but what about first moment?

• Conditional mean? (1st moment), why are we interested in the second moment?

• We are risk averse etc, but

• In week 2 we have talked about how to model, ARMA - expected value of yt then T2 we estimated
conditional mean models, but the returns are on average 0, there is very slight autoregressive
coefficients, but overall there is no time series structure in the conditional mean :

Errt|Ft´1s “ 0

• WE have compared the ACF for daily log returns rt, but in the actual return series, the history of
returns is completely uninformative of the future

• In autocorrelation function few squared return we see a lot going on, and it doesn’t die out, squared
return is a proxy of conditional variance

Why do we model conditional second moment?

There is no time series structure to first moment, but there is in conditional second moment. Then we
think how can we model our conditional variance of return process?

Nobel prize given for ARMA framework where εt can be white noise process. Then, even GARCH is not
enough.

Then RiskMetrics comes and assumes infinite variance of daily returns, albeit a popular way of thinking.
How much does turbulence persevere in market, how long after do we have to be conservative in our risk
approaches

EGARCH, TGARCH. TGARCH more intuitive, EGARCH model the log variances and so can relax the
positivity constraints, we don’t care whether shocks are negative. Essentially a philosophical introduction
to risk-modelling
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Lecture 5: Model Estimation and Forecasting Mon 26 Feb 08:58
[FE-L5] [Reading]

3.5 Recap
Week 1 : Leverage effects (skewness + testing whether neg) , volatility clustering (time series) , long
memory (ACF of squared returns series) , leptokurtic property (sample skewness testing against 3).
Properties (plots/ test)

Week 2 : limitations of ARMA modelling, which assume innovations are white noise - nothing about
conditional heteroskedacity). Unconditional - variance of innovations is constant over time, but evidence
empirically that conditional 2nd moment seems to be time variant.

Week 3 : Rob engles ARCH ARCH(1) model σ2
t “ fp{t´1q. Pro - volatility clustering, con - leverage of

{t, but long memory for very large p, kurtosis α2 P p0, 1s q

Week 4 : GARCH(1,1) - pro - volatility clustering and long memory and overkurtisis, con - leverage

TGARCH, EGARCH Ñ leverage. M (IGARCH) .

Maximum Likelihood

Quasi Maximum Likelihood

Maximum likelihood - have data x1, . . . , xt then assume this data follows some distribution.

Which is function of the parameters, say xt „ Npµ, σ2q and Θ “ pµ, σ2q

Then have PDF of data fpxt, µ, σ
2q “ ´ 1

?
2πσ2 expp´

px´µq2

2σ q
. If assume normal dist,then each and every

value of xt you know probability this data came from this distributing, then voter the entire sample you
can take the likelihood function

L|µ,σ2 “

T
ź

t“1

fpxtµ, σ
2q

“ fpx1|µ, σ2q ¨ fpx2|µ, σ2q . . .

So take log likelihood that is a function of data for given value of parameters µ, σ2

logLpxq, . . . , xt|µ, σ
2q “ lnp

T
ź

t“1

fpxtq, |µ, σ
2q

In any time series we work with quasi likelihood, in classical ML you must be able to evaluate likelihood
function at each and every point. At an autoregressive process of order 1 (AA(1)).

Have εt „ Np0, σ2q so εt “ yt ´ c´ φyt´1 which us Np0, 1q

Then we have

Why quasi-likelihood?

Likelihood for first population : fpe1|c, φ, σ2q, we assume y0 is . . .

3 ARMA PROCESSES 26

phd://open-paper?id=FE-L5&page=1
phd://open-paper?id=FE-TSAY&page=158


Lecture 5: Model Estimation and Forecasting

Now likelihood function becomes function of data and parameters, but also initial values depending on
how many autoregressive lags are there. Ñ it is not really a likelihood. The conditioning makes it a
quasi-likelihood

3.6 Estimation, Model Choice And Forecasting
Use knowledge of Max likelihood to ascertain which model fits the data best

Assume

Rt “ c` εt

Et “ Ltσtσ
2
t “ w ` αε2t´1 ` βσ2

t´1

Estimate with Max likelihood.

εt “ rt ´ cEt|Ft´1
„ Np0, σ2

t q

Erct|Ft´1s and V rεt|Ft´1s

Where σt “ fpFt´1q and εt|Ft´1
“ L|Ft´1σt|F⊔´∞

Where fpε|Ft´1, θq “ 1?
2πσ2

t

expp´
e2t
sσ2

t
q

And
θ “ pc, w, α, ρq

“
1

b

2πpw ` αε2t´1 ` βσ2
t´1q

¨ expp´
pvt ´ cq2

2pw ` αε2t´1 ` βσ2
t ´ 1q

q

σ2
0 “

w

1 ´ α ´ β
“

1

T
2prt ´ µ̂q2

Normally distributed innovations. From likelihood theory, the best is the one with the largest likelihood.

Estimation of GARCH Models

Model : Yt “ X 1
tγ ` εt

The conditional variance of εt follows a GARCH(p, q) model

• M = max(p, q) Numbers of initial observations t “ ´m` 1,´m` 2, . . . , 0

Conditional Maximum Likelihood

Normal Zt

Student t Zt
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Assume zt „ T pvq (std student t dist) , then :

ErZts “ 0

V rZts “
v

v ´ 2

Density Function
Γrpν ` 1q{2s

pπνq1{2Γrν{2s

„

1 `
z2t
ν

ȷ´pν`1q{2

Often estimated using standardised student t distribution, which is symmetric so expected value is 0, and

In PS1, there was ex on student t distribution with different degrees of freedom - the larger the dof, the
closer to normal RV, smaller the hevier the tails (more outliers). 1 dof - Cauchy distribution

3.7 Model Choice And Diagnostics
Verify if there are ARCH effects in

• The origunal series of intrest Yt

• The residuals froma mean regression ε̂t The residuals standardised by the estimated GARCHS
ẑt “ ε̂t

b

σ̂2
t

Test For Arch Effects

ARCH-M test

Auxiliary regression on the series of interest x̄t (original series, residuals, standardised residuals):

x̄2t “ ψ ` α1x̄
2
t´1 ` α2x̄

2
t´2 ` . . .` αmx̄

2
t´m ` εt

With H0 : α1 “ α2 “ . . . “ αm “ 0 and HA : H0 is not true

Standardised Residual Diagnostics

Assuming you already estimate a GARCH model for series

Verify if there are still ARCH effects left in the series (if the estimated GARCH model is correctly specified)
by performing standardised residual diagnostic tests on the residuals standardised by the estimated
GARCH conditional volatility (ẑt “ εt?

σ̂2
t

)

Figure 5: Estimation of different GARCH Models

3 ARMA PROCESSES 28
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Arch(1) is capturing overkurtosis, since it is able to generate outliers (α is sig diff from 0). But intercept
is not sig different from 0.

Arch-LM test and JB test are tested on . . . , both tests are redirected, there is remaining heteroskedacity,
α relatively mild.

GARCH - passing arch lm test, decay in ACF is very slow, α, β close to 1, very persistent, but able to
measure conditional heteroskedacity

RM - re estimated on data, p val for ARCH lm is 0.04, depends on confidence interval determines rejection.
But none are looking like norm RV

E(T) GARCH - neagtive shocks (response to future volaltity) γ positive. Egarch model log variances,

EGARCH - α - if shock negative then log of variance should be multiplied with negative variance (asym-
metric response, how much is shock differnt from abs value of expected shock)

α and γ? Negative and positive for egarch - at 5% sig level, all garchs seem to model sufficiently long
memory using model parameters, out of these (ignoring fact dont past JB test of normality)

When we talked about ARMA we talked about AIC, BIC allowing us to compare different models
estimated using ML, but different models have different parameters, so to control for this have different
penalty functions (k denotes parameters).

Even asymmetric GARCH are unable to account for negative (β), we see in the data. Thus we require
advanced financial econometrics

Garch loved since it is easy to forecast risk with them, central banks require risk forecasting on daily
basis - using GARCH(1,1) is very easy for this.

Exercise 1. TGARCH(1,1) Estimated σ̂2
t “ ŵ ` α̂ε2t´1 ` βσ2

t´1 ` . . .

Erσ2
t´1|Fts “ ŵ ` αr2t ` β̂σ̂2

t ` . . .

Erσ2
t´1|Fts “ w ` aErε2t |Fts ` βErσ2

t`1|Fts ` . . .

Expected value

W ` αErσ2
t`1|Fts ` βErσ2

t |Fts ` γErπpztqs

Forecasting With Risk Metrics

Let σ2
t follow a riskmetrics model:

σ2
t “ λσ2

t´1 ` p1 ´ λqY 2
t´1

Where λ “ 0.94

3.8 Variance Forecast Evaluation

σ2 is not observed, it may be replaced by proxies such as

• σ2
t`h “ r2t`h (squared daily returns)

• σ2
t`h “ RVt`h daily realised variance

Or alternatively, we evaluate the variance forecasts within economic applications :
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• Value at risk, expected shortcuts,

• Asset pricing etc

Good forecasting performance does not translate to good in sample fit (tradeoff?)

Tutorial 1. 5 Last week simulated GARCH, this week estimating GARCH and forecasting based on the
estimates. In PS4 we have simulated yt “ c`ψyt´1 ` θεt´1 ` εt Chose some parameters, then simulated
based upon those parameters, and once we had innovations, we simulated for values of ARMA parameters,
simulated the ARMA recursions This week have the daily log returns of SNP500, estimate ARMA and
GARCH parameters which are coming from data, why cant we just plug these parameters in and use
them in the simulation? Taking our σ̃2 and simulate returns, why cant we do this and why instead do
we forecast where σ̂2

t “ ŵ ` γr2t´1 ` β̂σ2
t´1 Simulated series which resemble data properties is defined as

Erσ2
t`1|Fts

Lecture 6: Kalman Filter Mon 04 Mar 09:04
[Lecture]

Erσ2
t`1|Fts “ w ` αε2t ` βσ2

t

If we think about the classical ARMA-GARCH framework, we have

1. returns with some conditional mean `εt where

rt “ Errt|Ft´1s ` εt

εt “ Lt ¨ σtpFt´1q

Lt „ N p0, 1q

If we would like to assume that returns is driven by

rt “ εt “ Ltσt

σ2
t “ fpFt´1q ` qt

εt|Ft´1 „ N p0, 1q

fpεtq “
1

a

2πσ2
t

exp

ˆ

´
ε2t
2σ2

t

˙

Multivariate normal distribution

„

r
y

ȷ

« N

ˆˆ

µy

µx

˙ ˆ

Σxx Σxy

Σxy Σyy

˙˙

We need the x|y distribution to derive the Kalman filter, the transformation can get us certain properties

Expected value (these are population parameters, fixed values, numbers measuring fixed variance)
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Lecture 6: Kalman Filter

Erzs “ Erxs ´ ΣxyΣ
´1
yy pErys ´ µyq

“ ErZ 1Zs if scalar, then Erz2s

“ E
“`

x´ ΣxyΣ
´1
yy py ´ µyq

˘ `

x´ ΣxyΣ
´1
yy py ´ µyq

˘‰

algebra . . .
covpx, yq “ Erxys ´ ErxsErys

Ñ uxuy ´ Erxy1s “ ´covpx, yq “ ´Σxy

and so the whole term

“ ErX 1Xs ´ ΣxyΣ
´1
yy Σ

1
xy

covpz, zq “ ErZZ 1s ´ ErZsErZs1

“ Erxx1s

We have 2 RV with joint distribution, we want to understand the conditional distribution

X|y « N
`

. . .
˘

Then if we take the transformation z
z “ x´ Σxy

1. Erzs “ Erxs

2. V rzs “ Σxx ´ Σ´1
yy Σxy

3. Covpy, zq “ 0

x “ z ` Σxy ` Σ´1
yy py ´ µyq

Erx|ys “ Erz|ys ` ΣxyΣ
´1
yy pEry|ys ´ µyq

First term = Erzs, second term is same third is y so

Erx|ys “ µx “ ΣxyΣ
´1
yy py ´ µyq

V rx|ys

x|y « N pµxq

Local Trend Model

In order to understand the SV model, consider a simple local trend model first

yt “ µt ` et, et „ N
`

0, σ2
e

˘

, (13)

µt`1 “ µt ` ηt, ηt „ N
`

0, σ2
η

˘

, (14)

Where tetu and tηtu are 2 independent Gaussian white noise series and t “ 1, . . . , T

The initial value µ1 is either given or follows a known distribution and is independent of tetu and tηtu
for t>0.
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Here µt is is a pure random walk with initial value µ1 and yt is an observed version of µt with added
noise et µt is referred to as the trend of the series which is not directly observable, and yt is the observed
data with observational noise et.

The models above can be used to analyse the realised volatility of an asset price, where µt represents the
underlying log volatility of the asset price and yt is the log of realised volatility.

The model is a special linear gaussian state space model, with the variable µt called the state of the
system at time t (not directly observed).

The y model provides the link between the data yt and the state µt and is called the observation equation
with measurement error et

The next µt`1 governs the time evolution of the state variable and is the state equation with innovate ηt.

If σe “ 0 then yt “ µt and there is no measurement error, which is an ARMA (0, 1, 0) model

If σe ą 0 then there exist measurement error and yt is an ARMA(0, 1, 1) model satisfying

p1 ´Bqyt “ p1 ´ θBqat (15)

where tatu is a gaussian white noise with mean zero and variance σ2
a

Then, the values of θ and σeta are determined by σe and ση

From the initial model we have

p1 ´Bqµt`1 “ ηt or µt`1 “
1

1 ´B
ηt

then we can rewrite yt “ µt ` et “ yt “
1

1 ´B
ηt´1 ` et

(16)

And multiplying by B we have
p1 ´Bqyt “ ηt´1 ` et ´ et´1

Then letting p1 ´ Bqyt “ wt we have wt “ ηt´1 ` et ´ et´1 And under the model assumptions it is easy
to see that wt is gaussian, Varpwtq “ 2σ2

e ` σ2
η and Covpwt, wt´1q “ ´σ2

e and Covpwt, wt´jq “ 0 for j>1

Then consequently wt follows an MA(1) model and can be written as wt “ p1 ´ θBqat

And by equating the variance and lag-1 autocovariance of wt “ p1 ´ θBqat “ ηt´1 ` et ´ et´1 and we
have

p1 ` θ2qσ2
a “ 2σ2

e ` σ2
η

θσ2
a “ σ2

e

Then for a given σ2
e and σ2

η we consider the ratio of these to form a quadratic function of θ, having 2
solutions which we select the one that satisfies |θ|<1.

Idea is that if you have state equation with large variance, you wont be able to recover much.
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Figure 6: State Space Model

If signal to noise ratio = 0.16, observe blue try to recover red. It is not very informative, if ratio is 6 then
signal is very informative

Kalman Filter

The aim of the analysis is to infer properties of the state µt alone from the data and the model. Let
Ft “ ty1, . . . , ytu be the information available at time t (inclusive) and assume that the model is known,
including all parameters.

Three estimates of interest

1. Filtering : recover µt (remove measurement error)

2. Smoothing : estimate µt given all available information up to time T

3. Prediction : forecast µt`k

Analogy - filtering is figuring out the word you are reading based on knowledge accumulated from the
beginning of the note, predicting is to guess the next word and smoothing is to decipher a particular
word once you have read through the note.

Properties of Multivariate Normal Distribution Considering a multivariate normal distribution
ˆ

x
y

˙

„ N
ˆˆ

µx

µy

˙

,

ˆ

Σxx Σxy

Σxy Σyy

˙˙

Kalman filter is a tool which characterises the conditional distribution of µt given the data. Given the
date we observe what is the distribution of µt

Notation

Let µt|j “ Erµt|Fjs and Σt|j “ Varpµt|Fjq be the conditional mean and variance of µt given Fj . yt|j is
the conditional mean of yt given Fj

And vt “ yt ´ yt|t´1 and Vt “ Varpvt|Ft´1q be the 1 step ahead forecast error and its variance of yt given
Ft´1

The forecast error vt is independent of Ft´1 so that the conditional variance is the same as the uncondi-
tional variance, that is Varpvt|Ft´1q “ Varpvtq
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Then
Yt|t´1 “ Eryt|Ft´1s “ Erµt ` et|Ft´1s “ Erµt|Ft´1s “ µt|t´1

And consequently,
vt “ yt ´ yt|t´1 “ yt ´ µt|t´1

and
Vt “ Varpyt ´ µt|t´1|Ft´1q “ Varpµt ` et ´ µt|t´1|Ft´1q

“ Varppµt ´ µt|t´1|Ft´1qq ` Varpet|Ft´1q “ Σt|t´1 ` σ2
e

And then it is easy to see that

Ervts “ ErEryt ´ yt|t´1s|Ft´1s “ Eryt|t´1 ´ yt|t´1s “ 0

Covpvt, yjq “ Ervt, yjs “ ErErvtyj |Ft´1ss “ Eryj |Ervt|Ft´1ss “ 0, j ă t

Then as expected the 1 step ahead forecast error is uncorrelated with yjfor j<t. And furthermore for
the linear model in eq. (13) and eq. (14) µt|t “ Erµt|Fts “ Erµt|Ft´1, vts and ΣtZt “ Varpµt|Ftq “

Varpµt|Ft´1, vtq

That is, the information set ft can be written as Ft “ tFt´1, ytu

Theorem 1. Properties of MV normal distribution useful to the Kalman filter under normality Suppose
that x, y and z are 3 RV such that their joint distribution is MV normal, additionally assume that the
diagonal block covariance Σww is non singular for w “ x, y, z and Σyx “ 0, then

1. Erx|ys “ µx ` ΣxyΣ
´1
yy py ´ µyq

2. Varpx|yq “ Σxx ´ ΣxxΣ
´1
yy Σyx

3. Erx|y, zs “ Erx|ys ` ΣxzΣ
´1
zz pz ´ µzq

4. Varpx|y, zq “ Varpx|yq ´ ΣxzΣ
´1
zz Σi

Then the conditional distribution of x given y is

x|y „„ N pµx ` ΣxyΣyy
´1py ´ µyq, Σ´q

ˆ

µt

νt

˙

|Ft´1

Goal is the conditional distribution µt|Ft based on new data yt and the conditional distribution µt|Ft´1

ˆ

µt

νt

˙

„ N
ˆˆ

µt|t´1

0

˙

,

ˆ

Σt|t´1 Σt|t´1

Σt|t´1 Vt

˙˙
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Prediction

Initialise idea on conditional mean and variance of unobserved latent state variable (signals), take data
minus initial value/expectation.

Look at forecast error variance

How does it work?

First remove measurement error then estimate µt given all available information, then forecast. Distri-
bution of µt given information set Ft today. In order to today recover the value of µt need to update
conditional expectation so that take into account signal to noise ratio. How much new noise contributes
to the conditional variance expectation.

Filter latent process based on information t´1 then we update forecast once new information has arrived.
Kalman gain measures how much information does the new shock at time t add to uncertainty (?). Dent
take information as given yt has noise itself e so we only update conditional expectations proportionally
to the signal to noise ratio.

Recover, then smoothing re estimating µt (trying to mitigate effect of starting values), then based on this
forecast latent process. All based on one property of MVR norm.

After we know this we can write it down given this formula

Major idea of KF is to write down some expectations of latent process, then update these according to
Kalman gain which measures model uncertainty plus new variance originating from noisy data. Which
are inherently small in financial data. New data is not very informative (nothing in autocorrelation
structure), so strongly depends on starting values. These values are not eaten up by new data as they
may in physics.

[11]

Kalman Filter

The goal of the Kalman filter is to update knowledge of the state variable recursively when a new data
point becomes available. That is, knowing the conditional distribution of µt given Ft´1 and the new data
yt, we would like to obtain the conditional distribution of µt given Ft where as before Fj “ ty1 . . . , yju

since Ft “ tFt´1, vtu giving yt and Ft´1 is equivalent to giving vt and Ft´1.

To derive the KF, it suffices to consider the joint conditional distribution of pµt, vtq
1 given Ft´1 before

applying the above theorem

The conditional distribution of vt given Ft´1 is normal with mean zero and variance given by

Vt “ Varpµt ´ µt|t´1|Ft´1q ` Varpet|Ft´1q “
ÿ

t|t“1

`σ2
e

And that of µt given Ft´1 is also normal wiht mean µt|t´1 and variance Σt|t´1

Then, what remains to be solved is the conditional covariance between µt and vt given Ft´1

From the definition

We can obtain
ˆ

µt

vt

˙

„ N
ˆˆ

µt|t´1

0

˙

,

ˆ

Σt|t´1 Σt|t´1

Σt|t´1 Vt

˙˙
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Lecture 6: Kalman Filter

Then, using theorem 11.1 [11.1.2], the conditional distribution of µt given Ft is normal with mean and
variance

µt|t “ µt|t´1 `
Σt|t´1vt

Vt
“ µt|t´1 `Ktvt (17)

Σt|t “ Σt|t´1 ´
Σ2

t|t´1

Vt
“ Σt|t´1p1 ´Ktq

Where Kt “ Σt|t´1{Vt, is the Kalman Gain, the regression coefficient of µt on vt then from eq. (17) the
Kalman gain is the factor that governs the contribution of the new shock vt to the state variable µt

Then, one can use the knowledge of µt given Ft to predict µt`1 via eq. (18)

µt`1|t “ Erµt ` ηt|Fts “ Erµt|Fts “ µt|t (18)

Σt`1|t “ Varpµt`1|Ftq “ Varpµt|Ftq ` Varpηtq “ Σt|t ` σ2
η (19)

So, once the new data yt`1 is observed, one can repeat the above procedure to update knowledge of µt`1.
Which is the famous Kalman filter algorithm.

Kalman Filter For Local Trend Model

vt “ yt ´ µt|t´1

Vt “ Σt|t´1 ` σ2
e

Kt “ Σt|t´1{Vt

µt|t`1 “ µt|t´1 `Ktvt

Σt`1|t “ Σt|t´1p1 ´Ktq ` σ2
η, t “ 1, . . . , T

Tutorial 6

[PS6]

Is the signal to noise ratio the same no matter the number of simulations?

SNR is defined as σ2
e

σ2
η
, the variances determine this, here they do not depend on anything, it is always

defined by the variance of the error term in state equation and in the observation model.

B) mu and filter s

Our forecast error is defined as in [slide 11]

To understand the code, write the recursions using this slide

1 for (t in 1:T){
2 predict_mu[t] = filter_mu[t]
3 predict_S[t]= filter_S[t]
4 v[t] = y[t]-predict_mu[t]
5 V[t] = predict_S[t]+s_e^2
6 K[t] = predict_S[t]/V[t]
7 filter_mu[t+1] = predict_mu[t] + K[t]*v[t]
8 filter_S[t+1] = predict_S[t]*(1-K[t])+s_eta^2
9 print(V[t])

10 }
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Lecture 6: Kalman Filter

Old conditional expectation µt|t`1 “ µt|t`1 `Kt ¨ νt

In the for loop we take our conditional predictions and feed them 1 step ahead in the next iteration, so
we have filtered out in iteration t becomes a prediction in t` 1 so νt`1 “ yt`1iνt|t`1

Kalman filter updating - the filtered at t becomes a prediction for t+1

Also possible to start at 2 and do filtering at t-1

What are the filter initialisations?

Can also draw from MV norm, this is local linear trend model with strong SNR, starting values matter
less here, though this is the usual way to initialise.

Filter gets updated proportional to Kalman gain.

ν “ y1 ´ u1|0 “ y1 ´ predictnur1s

V1 “ predictSr1s ` σ2
e

K1 “ . . .

filterr1s “ predict.mur1s ` V r1s ¨Kr1s

then for t = 2

Figure 7

Figure 8

CI
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Figure 9

Figure 10

Fundamental property / assumption on µt, we assumed distribution given is normal and thus once we
obtain filtration we can use this to write down CI. Conditional variance is given by filtered Σ.

Hypothetical Exam Question Why would CI be much wider where σ2
e “ 0.9 and σ2

q “ 0.3 than
σ2
e “ 0.9 and σ2

q “ 0.9

The second has a SNR of 1, so higher ratio means the closer the observation and state equations are.
Thinking about how CI are calculated, ˘2 ¨ Σt|t or Σt|t “ Σt|t ` σ2

q

[recursive slide] - what about Kalman gain, need to think about how σ2
η influences variance, what does

increase in σ2
e , this is in denominator of Kalman gain :

This is all a recursive process

Why do we opt to calculate negative log likelihood?

1 kf_loglik = function(y,s_e,s_eta){
2 fit = kf_recursions(y,s_e,s_eta)
3 # compute the negative log likelihood
4 l = 0.5*log(2*pi)+0.5*(log(fit$V))+ 0.5*((fit$v^2)/fit$V)
5 ll =sum(l)
6 return(ll)
7 }

Estimates are RV, they can lie anywhere so have to do negative.
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Lecture 8: Realised Volatility

Lecture 8: Realised Volatility Mon 15 Apr 09:02
[ECON60332 Financial Econometrics]

GARCH etc developed a long time ago, these days we mostly work with realised variances and advances
in this domain

Idea

• A more consistent estimator of daily variance

• Computed from the intra day (high-frequency) information

• Use current intraday data to extract information about current level of volatilities

• Based on a continuous time model for the price process

• It is not based on a deterministic parametric specification (a non parametric measure)

• Measure of the variance that has been realised over a particular period

Mathematical Framework

• Assume a logarithmic asset price process pptq that evolves continually in time for each t P r0,8q

• Then the continuosly compounded return over a n-th period (usually a day) is defined by

rn “ ppnhq ´ pppn´ 1qhq, n “ 1, 2, . . . , N

where h is the length of the period (h = 1 is a day) and N denotes the number of periods (days) in
which we observe the process

• Assume we have M ` 1 intra-daily observations during each day

• The intra-daily returns, for the n-th day, are defined as :

rj,n “ pppn´ 1qh`
hj

M
q ´ pppn´ 1qh`

hpj ´ 1q

M
q, j “ 1, . . . ,M

M is the number of intraday observations, j is the iterator that goes over those continuous increments

This formula gives you the log price difference over a time increment j (small time period, almost 0) The
actual time h

m is the length of the time increment (10´6 for NYSE) Time increment is very small, the
increment over a millisecond is very small, plotting the continuous time evolution will be very smooth
line M - intraday periods

Realised Variance (rv)

The realized variance for day n based on M intra-daily returns is defined as the sum of the squared
intra-daily returns over that day:

RVM
n “

M
ÿ

j“1

r2j,n

• If intra-daily returns are 5-minute returns, then M “ 78 for six and a half hours of trading during
a day

• The realised volatility does not estimate the variance of 5-min returns, but the daily variance
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Parametric estimator is where you assume some parameters, once you know them you can describe the
DGP Non-parametric - DGP is some function, index by time, there is no parameter that covers the
intraday prices for instance

Point of confusion - RV is a estimate of the variance of 5 min returns - it is not Realised over a day, not
over a time period that is sitting in a 5 minute period, also not divided by M

We are not measuring a risk at the beginning at the beginning and end of interval, we are measuring the
risk that has been realised over this time period.

In continuous time, calculating this over many time increments (in fact infinitely small), if we would like
to measure the risk over this period, we would need to integrate the risk which can of course also be
written as infinite sum.

Integrate the risk, risk (σ2) is continuous process as well as price

Quadratic Variation

• Assume further that the log-price pptq follows a continuous-time marginal process :

– E r|pptq|s ă 8 for all t ě 0

– E rppptq|ppsqq, , 0 ď s ă ts “ ppsq

– Examples : W ptq, the standard Brownian motion

• The quadratic variation (QV) process associated with the martingale pptq process is given by :

QV ptq “ plim
loomoon

MÑ8

M´1
ÿ

j“1

ppptj`1q ´ pptjqq2

for any sequence of partitions t0 “ 0 ă t1 ă . . . ă tM “ t with suptj`1 ´ tj Ñ 0 as M Ñ 8

For any continuous marginal process we can write down the RV, that accumulates the risk from period
0 to t

RV estimator approximates the increments of the QV (risk that accumulates from period 0 to t), which
is the quantity we are interested in.

Assume continuous martingale on prices

Relation Between QV And RV

Thus, when M Ñ 8 :
RVM

n
p

ÝÑ QV phnq ´ qvpHpN ´ 1qq

• QV(t) accumulates the variance of the martingale process from 0 to t

• RV measures the increment of "quadratic variation" (over a day) associated with the continuous
martingale log price process

• The asymptotics of RV are infill (the time period, n, is held fixed; the number of observations within
the period, M, tends to infinity)
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• Assume further that the log price pptq follows a continuous time stochastic volatility process without
jumps (a very broad subclass of the martingale class processes)

pptq “

ż t

0

σpsqdW psq, , t ě 0

• σ is the spot volatility, σ2 the spot variance

• σ is independent of W

• Model can capture volatility clustering and fat tails

Integrated Variance

Really learn the difference

Because of the Brownian motion assumption on the measure, the returns will be normal and will have 0
mean.

• The increments of the log-price process (daily returns) have the following distribution, conditional
on the process σptq :

rn|σr2s
n Np0, σr2s

n q

where

– σ
r2s
n “ σ2 ˚ pnhq ´ σ2 ˚ ppn´ 1qhq

– M σ2 ˚ ptq “
şt

0
σ2ptq

– The process σ2 ˚ ptq is called the integrated variance

Assuming price is continuous time martingale, realised variance don’t have to assume anything

Facts About RV

martingale process best price of tomorrows price is today?

Consistency of RV holds under the assumption that the price process is a continuous martingale process
Problems:

• The price discreteness leads to discrimination error in RV measurement

• The martingale property is distorted by spurious autocorrelations in the high-frequency data stem-
ming from market microstructure effects:

1. Price discreteness

2. Rounding effects

3. Bid-ask bounces

4. Gradual response of price to a block-trade

5. Strategic order flows

6. Data recording mistakes

Market microstructure (particularly strategic order flows) can be taken advantage of

But often, data is cleaned rather than taking advantage of microstructures in raw data
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• In order to reach efficiency (smallest variance), one should choose the highest possible sampling

• The ultra-high sampling induces bias in RV

• Bias-variance trade-off: assessment hough volatility signature plot

• Volatility signature plot depicts the average of a very long sample of RV’s against the sampling
frequency

• Empirically, the plot stabilises at frequencies ranging from 5 to 40 minute

figures/lec_08/fig1.png

Figure 11: Volatility signature plot for daily RV of IBM from 01.01.2001 until 30.06.2006

Ideally, we would like to pick sample frequency as high as possible, however there is a tradeoff The
efficiency tells us to go high frequency, however this results in biased RV due to microstructure

So typically, 5-minutes so see less and less of these patterns

Problem is that it is realised, still need some model to forecast it going into the future, these are long
memory models.

Har Model For
?
rv

Heterogeneous autoregressive model

Xt “ x` βpdqX
pdq

t´1 ` βpwqXw
t´1 ` βpmqX

pmq

t´1 ` εt

where

• M Xt “
a

RVM
t

• d stands for the daily

• W for weekly (5 days)

• M for monthly (22 days) frequency. Xp.q
t are averages of past values ofRVt, EGX

pwq

t “

b

1
5

ř4
i“0RVt´i

• The future volatility is predicted by daily, weekly and monthly volatilities
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Sample Properties of RV

• The logarithm of daily realised standard deviations (squared root of daily RV) are approximately
normally distributed

• The daily returns standardised by realised standard deviations are approximately normal distributed

• The autocorrelation function of daily RV series is slowly decaying: long memory property of financial
volatility

• In order to obtain forecast of future volatility from a RV time-series apply eg, long-memory models:
ARFIMA or HAR of Corsi (2009)

• Further approaches of modelling series of RV: mixed data sampling etc

Historical volatility is calculated based on CID of daily returns, in contrast we have better

• Prices are unit root non-stationary (unpredictable ) processes

• Have better measure of daily risk (no longer no need for GARCH)

• GARCH still popular in practice due to RiskMetrics

• Not a lot of people in industry use realised variance since intra day data is expensive, thus less
popular

• GARCH for latent processes

Summary

• More consistent estimator of daily variance

• Computed from high frequency (expensive ) intraday data

• Almost error-free - sometimes market microstructure meaning that martingale assumption is some-
times violated (not by much)

• No parametric assumptions, just that log price is martingale

• Understanding more about model, parameters etc need model then

• Realised over a day, we are looking at continuous time, some time interval, what is the risk over
this interval

Market microstructure

3.9 Tutorial
Long memory is the persistence of financial risk over time, meaning that for several months (IBM 80 /
90 days) We cannot model this by any means of standard models since we would need an AR(90) model,
instead, we start looking for a model which is capable of modelling σ2

t enough such that A GARCH model
is pretty bad, either some kurtosis or not all the memory is captured well enough To check whether realised
variance is empirically a good measure f daily risk, we take day returns and divide by

?
RVt

Ideally the standardised returns should look like an iid variable with standardised distribution. If there
is some systematic Then that We learn about stochastic modelling Realised variance is a non parametric
estimator, so far we have not estimated anything, we have took information, summed and squared it, and
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with this we are able to model the realised volatility. LBQ test, all autocorrelations are jointly 0 Pictures
are suggestive evidence rather than concrete evidence

Writing Economic interpretation of QV(t)

This is the financial risk accumulated upto period t (+1) , assuming pptq is continuous, liquid assets.
QV(t) measures the price variation of the continuous martingale process for over infinitely small periods
of time

Key is to demonstrate knowledge, think about people and their money and trading, subject is mitigating
peoples risks

Lecture 9: Value at Risk Mon 22 Apr 09:04

Idea

• It is defined to be the worst expected loss with probability p

• It is a quantile-based risk measure

• It is mainly concerned with the market risk

• It is used by financial institutions to assess their risks

• It is used by regulatory committee to set margin requirements to financial institutions

Probability p is any level you can choose, but in Basel committee it is 1% Market risk is mostly driver of
the risk but risky mortgages can increase this

Quantile For any univariate cumulate distribution function F pxq and probability p, such that 0 ă p ă 1,
the quantity

inftx|F pxq ě pu

is called the p-th quantile of F pxq. We use the term F´1ppq to denote the p-th quantile of F pxq

Smallest x at the support of F pxq such that Inverse of the CDF

Value at Risk For a Long Position

• M ∆Vtplq - change in the value of he financial asset Vt from t to t` l (in a given currency)

• M Ftpxq - cumulative distribution function (CDF) of ∆Vtplq

We implicitly define at time t to the VaR of a long position in this financial asset over time horizon l
with probability p s.t.

p “ Prr∆Vtplq ď V aRtpp, lqs “ FtpV aRtpp, lqq

Then
V aRtpp, lq “ F´1

l ppq

• VaR is the p-th quantile if the distribution of the asset of profits and losses

• For a long position, the var is defined as a negative value (loss)
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Figure 12

Interpretation 1

• The Var of a portfolio at level p is the minimal amount that can be lost with probability less than
p

• The var is a loss bound that at most will be exceeded with probability p

• Example 1 : V artp1%, 1q consider the investment over the horizon of one trading day. Assume
V artp1%, 1q “ 100, 000. given 100 (independent) trading days then we can expect that in 1 out of
100 trading days the realised loss will exceed 100, 000 (the VAR)

Basel Accords

• In 1996 the Basel Committee imposes banks to use the var as a risk measure of their investment
and sets minimum capital requirements

• Banks are allowed to use their own internal models to compute VAR

• Impose a method for testing the accuracy of the internal models used by banks to measure their
market risk : back testing

• In 2001, the Basel committee sets capital charges to market risk from the Var measure

• In 2012, Basel 3 sets further regulation on the minimum capital requirement and recommends the
stress-testing

Type of Var Measurements

How to get predicted density from profit and loss?

• (Un)conditional extreme value theory based approaches - EVT

• (Un)conditional non-parametric based approaches - historical simulations

• Unconditional parametric approaches under independence

• Conditional parametric approaches - conditional quantile regressions, GARCH with non-parametric
estimates of the tails
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VAR for net returns

Let rtplq denote the l-period net return of Vt, rtplq “
Vt`l´Vt

Vt
, then

p “ PrrVt`l ´ Vt ď V ARtpp, lqs “ Prr
Vt`l ´ Vt

Vt
ď
V ARtpp, lq

Vt
s

It follows that V artpp, lq “ F´1ppqVt where Ft is the cdf of the net returns rtplq

VAR for log returns

Let rtplq denote the l-period log return of Vt, rtplq “ lnp
Vt`l

Vt
, then

It follows that V artpp, lq “ F´1ppqVt where Ft is the cdf of the net returns rtplq

If sample if a bit more volatile, and you need a 30 day ahead forecast, then you multiply mean by 30
days (cumulative return over 30 days)

Var computation with RiskMetrics model Subtract mean of k-period ahead mean standardise with vari-
ance, then same for LHS, then rearrange with terms

Basel Committee

• Don’t have legal power, but local central bank is heavily influenced by the reports

• Developed to try to avoid the collapse of financial systems, introducing the first notion of reserves

Back Testing

• Punishment of banks which face more violations (losses below the VAR) that can reasonably be
expected given the confidence level : are required to hold higher levels of capital

• Banks with more than 9 violations out of 250 trading days are required to follow the standardized
approach (8%)

• Imposition of penalty leads to reputation loss, higher capital charges and possibly to the introduction
few a more stringent external model to forecast the VAR thresholds

Procedure Unconditional coverage test :

E rHts “ p

where Ht “ 1prt ă ˆV artppqq t “ T ` 1, T ` 2, . . . , T ` S

A green light is max 4 violations - internal models A yellow light - between 5 and 9 violations : progressive
penalties A red light - more than 9 violations : "standardised approach"

Independence test
E rHt|Ft´1s “ p and Ht|Ft´1

iid Berppq
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Conditional coverage test

Figure 13: Halbleib Pohlmeier (2011): VaR through calm period

Percentage rate of violations of VaR(1%) for the period January 1, 2007 – July 18, 2007 (total of 143
days). Bold type entries refer to p-values of conditional coverage test smaller than 0.05, italic to p-values
between and 0.05 and 0.10 and no mark refers to p-values larger than

VaR had bad performance in the financial crisis in 2008, inherently due tot he fact it is a time series, it
has not seen this data before.

Tradeoff - do you go with conservative model to be in green zone or use ARMA garch quantile

Figure 14: Halbleib Pohlmeier (2011): Var through crisis period

Major critique if VAR is that it is very sensitive to model risk, and doesn’t necessarily prevent banks
from large trading losses, since notion of being conservative in risk modelling inst a feature and it doesn’t
capture systematic risk

Coherent Risk Measures

1. Translation invariance ρp`cq “ ρpXq ´ c for all c - hedge risk by inviting into something constant
to reduce risk

2. Sub additivity ρpX1 `X2q ď ρpX1q ` ρpX2q - riosk of investing into 2 things is not larger than sum
of 2 risks

3. Positive homogeneity : ρpλXq “ λρpXq for all λ ě 0

4. Monotonicity X ď Y Ñ ρpY q ď ρpXq

1,3,4 is from value at risk is quantile

Why no subadditivity in VAR?
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Value at risk approach has the disadvantage that it doesn’t take into account the distribution of the log,
given that it has occurred, e the shape of the tail of the profit-loss distribution. Therefore we consider
here another risk measure called "expected shortfall"

Expected Shortfall

The expected shortfall (ESF) is defined as

ESFtpp, lq “ E rXt|Xt ă V ARtpp, lqs

“

ż V ARtpp,lq

´8

xdFlpx|x ă V ARtpp, lqq

• ESF is the expected loss under the conditional that the VAR threshold has already been crossed. as
such, it can discriminate between positions with the same WAR’S but with different distributions
of the extreme losses

• ESF is a coherent risk measure
řn

i“1

Lecture 10: Multivariate Volatility Modelling Mon 29 Apr 09:04

3.10 Motivation - Portfolio Optimisation
• Let W be the wealth of a risk averse investor with utility function UpU 1 ą 0 and U2 ă 0q

• Taylor series approximation of UpW q around E rW s :

UpW q “ UpE rW sq`U 1pE rW sqpW´E rW sq`
1

2
U2pE rW sqpw´E rW sq2`

1

6
U2pE rW sqpW ´ E rW sq2 ` . . .

looooooooooooooooooooomooooooooooooooooooooon

S3

• Then the expected utility function is given by:

= U(E rW sq ` 1
2U

2pE rW sqV rW s ` E rS3s

• Assuming normal distributed wealth function or second degree polynomial utility function:

E rUpW qs “ UpE rW sq `
1

2
U2pE rW sqV rW s

• Let W be invested in a portfolio of n financial assets with returns ri and weights wi, i, . . . , n

• The optimal portfolio choice amount the assets is based on the principle of expected utility max-
imisation

The optimal choice among risky assets is based on the maen-variance optimisation rule (Markovitz 1952):

minw w1Σw s.t w1µ “ µ ˚p and w1ι “ 1
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Mgarch

Let Yt be avector stochastic process of dimension nx1 and θ a finite vector of parameters

Yt “ E rYt|Ft´1s ` εt with εt “ Σ
1
2
t pθqzt

• Σtpθq is a ppdf nˆ n matrix

• M Σ
1
2
t pθq is the cholesky decomposition of Σtpθq

• M zt is an nˆ 1 random vecotr assumed to be iid with

1. M E rzts “ 0

2. M V rzts “ In

• M Ft is the information set available at time t

Given this speciication for the error term, we can compute the covariance matrix of Yt as

V rYt|Ft´1s “ Σ
1
2
t V rzt|Ft´1s pΣ

1
2
t q1

“ Σ
1
2
t V rzts pΣ

1
2
t q1

“ Σtpθq

Vec Model

The process Σt is called a vector GARCH(p,q) or simply VEC(p,q) if

σt “ c`

q
ÿ

i“1

Aiηt´i `

p
ÿ

i“1

Giσt´i with σt “ vechpΣtq and ηt “ vechpεtε
1
tq

It was introduced by Bollerslev, Engle Wooldridge (1988)

Name derives from the "vech" operator that stacks the lower tirangle of the square nˆ n matrix Σt into
a nn`1

2ˆ1 vector σt

Number of Parameters of Vec nn`1
2ˆ1 parameters for the vector c n n`1

2ˆnn`1
2

parameters for the matrix

Ai n
n`1

2ˆnn`1
2

parameters for the matrix Gi For a VEC(1,1) : npn`1qpnpn`1q`1q

2

Bivariate VEC(1,1) model

¨

˝

σ11,t
σ21,t
σ22,t

˛

‚“

¨

˝

c1
c2
c3

˛

‚`

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚

¨

˝

ε21t´1

ε1t´1ε2t´1

ε22t´1

˛

‚`

¨

˝

g11 g12 g13
g21 g22 g23
g31 g32 g33

˛

‚

¨

˝

σ11,t´1

σ21,t´1

σ22,t´1

˛

‚ (20)

Equation for the conditional covariance

σ21t “ c2 ` a21ε
2
1t´1ε2t´1 ` a23ε

2
2t´1 ` g21σ11,t´1 ` g22σ21,t´1 ` g23σ2,t´1

• VEC can capture volatility spillover effects, in general (co) variance depends not only on its own
past values, but also on the asst values of the other (co) variances
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• Extremely large number of parameters, even if n is moderate

• Diagonal (Ai and Gi diagonal) and scalar (Ai “ aiU and Gi “ giU with U a matrix of ones)
versions have therefore been proposed

• Difficult parameter restrictions to ensure stationarity and positivity of Σt

Bekk Model

The process Σt is called BEKK(p,q,K) if:

Σt “ C ˚1 C ˚ `

K
ÿ

k“1

q
ÿ

i“1

A ˚1
ik εt´iε

1
t´iA ˚ik `

K
ÿ

k“1

p
ÿ

i“1

G ˚ik Σt´iG˚ik

where

• C˚ upper nˆ n trianglular parameter matrix

Conditional variance and covariance equations are given by: g˚212 - market spillover effect

Pros and Cons of BEKK

• Bekk can capture volatility spillover effects, in general, each

• still large number of parameters

• diagonal and scalar versions have been proposed

• parameter restrictions to ensure stationarity of Σt

• but no positivity constraints since it is written in quadratic form

Modelling Conditional Correlation Matrix rt

Based on the following decomposition of the covariance matrix:

Σt “ DtRtDt

Dt “ diagpσ11t, . . . , σmntq

Rt “ pρijtq with ρiit “ 1

the covariance is given by
σijt “ ρijt

?
σiitσjjt,

Where σiit is a univariate GARCH model

Positivity of Σt results from the positivity of Rt

Mostly stick to the Engle DCC

Englde Dcc

Rt “ pdiagpQtqq´ 1
2Q1pdiagpQtqq´ 1

2 Where Q1 is an nˆ n symmetric and pd matrix given by

Qt “ p1 ´ θ1 ´ θ2qQ̄` θ1ut´1
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Properties

• Qt is a weighted average of the unconditional covariance, its lag and the lag of cross products of
standardised innovation

• if θ1, θ2 ą 0, θ1 ` θ2 ă 1 then Qt is pd

• the CCC model is a restricted DCC with θ1 “ θ2 “ 0 and q̄ii “ 1

• θ1 and θ2 given the dynamics of all npn´1q

2 correlation series

• an alternative specification for the matrix Qt is to define it as an integrated process

Pros And Cons

• Dcc cannot capture volatility and spillover effects

• 2 parameters to estimate

Estimation

• Let zt iidN p0, Inq

• then Yt|Ft´1 iidN pµt,Σtq with µt “ E rYt|Ft´1s

• let θ be the vector

DCC can break into 2 steps

• substitute Σt “ DtRtDt in the likelihood above:

• get parameter vector θ1

• maximise likelihood 1 then part of likelihood number 2 this is easier since you split the estimation
into 2 tractable chunks

Second step crucially depends on fact θ1 is estimated in consistent way

Engle (2002) - θ̂1 depends on step 1, so conditional correlations based on very wide estimates of these
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Figure 15: IBM and Citigroup

In 2008, IBM has increased volatility in returns, despite not being involved in financial crisis

If then plotting daily cross product returns

Figure 16: correlations between IBM and Citigroup

Figure 17: Daily log-returns of IBM and Citigroup from 1986 to 2011

Note: The estimation results are based on 6515 observations. stands for p-values larger than 0.1 and
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stands for p-values between 0.1

• VEC -

• BEKK - if looking at spillover effect of risk of citigroup onto IBM, looking at lin alg, these are
the off diagonal elements of D so G* is spillover (p values larger), this model doesnt capture the
spillover effects.

• DC - by constriction doesn’t model volatility spillover effects. Even though on the picture we clearly
see this, but estimate does not

Drawbacks of Mgarch

• low precision

• limited flexibility

• no guarantee matrix is pd

• curse of dimensionality

Realised Covariance

Same as realised variance but multivariate (same as lecture 8 but in multivariate world )

Realised covariation is the reason that DCC is not in papers now

Mathematical Framework Same as L8

Realised Covariance

RCM
n

loomoon

KˆK

“

M
ÿ

j“1

rj,nr
1
j,n

Relation between QC and RC

Deal with market structure by averaging out where you obtain data from

But Epps effect - non synchronicity

Suppose have assets A and B, then have price arrival Asset a traded at 9:30, traded at 9:40 (coca-cola,
stable) Investing in private company (terribly illiquid), but when coca-cola changed at 9:35, yours changed
at 9:36

But calculating price change of corporate bond is 0 since it didn’t change (very illiquid), resulting in
under (downward) estimation of covariation of assets due to price information not arriving since it is
illiquid

There are solutions to price sampling so that there are no market microstructure or Epps effect

Same problem as with realised variance, we can non parametrically estimate risk

In order to get a model we need to look at realised covariances
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Figure 18: Line Graph of daily RC computed from 5-min returns of IBM and Citigroup from 01.01.2001

Before the financial crisis,

There are versions where distributions are assumed, but the recommended is based on fisher transform

Realised Correlations

The realised correlation between the return of asset i and the returns of asset j is given by:

Rcorrij,t “
RCij,t

a

RVi,t
a

RVj,t
t “ 1, . . . , T i, j “ 1, . . . , n

The fisher transformation of RCorrij,t namely Xij,t “ 1
2 ln

1`RCorrij,t
1´RCorrij,t

is approximately normal dis-
tributed

If you wpould like to forecast the RC, forecast

Empirically what works best is in DRD format

Realised covariance is the way to model risk for all kinds of financial assets
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