Young apple tree development under a gradient of agroforestry radiative conditions: a dataset of morphological and architectural responses at various topological scales
This Notebook showcase how to load the data and extract the analysis of apple tree under a gradient of agroforestry radiative conditions
from gafam import analysis
tree_df, branch_df, GU_df = analysis.full_analysis(verbose=False)
NODE < < False
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="ticks", palette="crest")
fig, ax =plt.subplots(1,2, sharey=True)
sns.boxplot(x="trt", y="LA_2018",
data=tree_df, hue='trt', ax=ax[0])
sns.boxplot(x="trt", y="LA_2019",
data=tree_df,hue='trt', ax=ax[1])
<Axes: xlabel='trt', ylabel='LA_2019'>
GU_df
tree | trt | years | GU | LeafArea | nb_GU | nb_leaves | nb_flowers | nb_fruits | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | AC | 2018 | A | 627.20200 | 1 | 0 | 0 | 0 |
1 | 1 | AC | 2018 | B | 6512.77992 | 43 | 58 | 54 | 0 |
2 | 1 | AC | 2018 | C | 7938.62165 | 94 | 153 | 120 | 0 |
3 | 1 | AC | 2018 | D | 0.00000 | 0 | 0 | 0 | 0 |
4 | 1 | AC | 2018 | E | 0.00000 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
445 | 148 | AF_IR | 2019 | A | 97.33408 | 1 | 0 | 0 | 0 |
446 | 148 | AF_IR | 2019 | B | 5478.28288 | 44 | 34 | 24 | 4 |
447 | 148 | AF_IR | 2019 | C | 14091.22799 | 112 | 72 | 55 | 14 |
448 | 148 | AF_IR | 2019 | D | 5928.16141 | 65 | 0 | 0 | 0 |
449 | 148 | AF_IR | 2019 | E | 0.00000 | 0 | 0 | 0 | 0 |
450 rows × 9 columns
fig, ax =plt.subplots(2,4, sharey='row')
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2018" and GU=="A"'),
hue='trt', ax=ax[0][0])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2018" and GU=="B"'), hue='trt', ax=ax[0][1])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2018" and GU=="C"'), hue='trt', ax=ax[0][2])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2018" and GU=="D"'), hue='trt', ax=ax[0][3])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2019" and GU=="A"'), hue='trt', ax=ax[1][0])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2019" and GU=="B"'), hue='trt', ax=ax[1][1])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2019" and GU=="C"'), hue='trt', ax=ax[1][2])
sns.boxplot(x="trt", y="LeafArea",
data=GU_df.query('years == "2019" and GU=="D"'), hue='trt', ax=ax[1][3])
<Axes: xlabel='trt', ylabel='LeafArea'>