This tutorial demonstrates how to apply INT8
quantization to Image Classification model using NNCF. It uses the MobileNet V2 model, trained on Cifar10 dataset. The code is designed to be extendable to custom models and datasets. The tutorial uses OpenVINO backend for performing model quantization in NNCF, if you interested how to apply quantization on PyTorch model, please check this tutorial.
This tutorial consists of the following steps:
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
# Install required packages
%pip install -q "openvino>=2023.1.0" "nncf>=2.6.0" torch torchvision tqdm "matplotlib>=3.4" --extra-index-url https://download.pytorch.org/whl/cpu
from pathlib import Path
# Set the data and model directories
DATA_DIR = Path("data")
MODEL_DIR = Path("model")
DATA_DIR.mkdir(exist_ok=True)
MODEL_DIR.mkdir(exist_ok=True)
Model preparation stage has the following steps:
import requests
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/cmd_helper.py",
)
open("cmd_helper.py", "w").write(r.text)
from cmd_helper import clone_repo
clone_repo("https://github.com/chenyaofo/pytorch-cifar-models.git")
from pytorch_cifar_models import cifar10_mobilenetv2_x1_0
model = cifar10_mobilenetv2_x1_0(pretrained=True)
OpenVINO supports PyTorch models via conversion to OpenVINO Intermediate Representation format using model conversion Python API. ov.convert_model
accept PyTorch model instance and convert it into openvino.runtime.Model
representation of model in OpenVINO. Optionally, you may specify example_input
which serves as a helper for model tracing and input_shape
for converting the model with static shape. The converted model is ready to be loaded on a device for inference and can be saved on a disk for next usage via the save_model
function. More details about model conversion Python API can be found on this page.
import openvino as ov
model.eval()
ov_model = ov.convert_model(model, input=[1, 3, 32, 32])
ov.save_model(ov_model, MODEL_DIR / "mobilenet_v2.xml")
We will use CIFAR10 dataset from torchvision. Preprocessing for model obtained from training config
import torch
from torchvision import transforms
from torchvision.datasets import CIFAR10
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)),
]
)
dataset = CIFAR10(root=DATA_DIR, train=False, transform=transform, download=True)
val_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True,
)
Files already downloaded and verified
NNCF provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop. We will use 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize MobileNetV2. The optimization process contains the following steps:
nncf.quantize
for getting an optimized model.openvino.save_model
function.NNCF is compatible with torch.utils.data.DataLoader
interface. For performing quantization it should be passed into nncf.Dataset
object with transformation function, which prepares input data to fit into model during quantization, in our case, to pick input tensor from pair (input tensor and label) and convert PyTorch tensor to numpy.
import nncf
def transform_fn(data_item):
image_tensor = data_item[0]
return image_tensor.numpy()
quantization_dataset = nncf.Dataset(val_loader, transform_fn)
INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino
nncf.quantize
function accepts model and prepared quantization dataset for performing basic quantization. Optionally, additional parameters like subset_size
, preset
, ignored_scope
can be provided to improve quantization result if applicable. More details about supported parameters can be found on this page
quant_ov_model = nncf.quantize(ov_model, quantization_dataset)
Statistics collection: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [00:06<00:00, 44.58it/s] Biases correction: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 36/36 [00:01<00:00, 24.92it/s]
Similar to ov.convert_model
, quantized model is ov.Model
object which ready to be loaded into device and can be serialized on disk using ov.save_model
.
ov.save_model(quant_ov_model, MODEL_DIR / "quantized_mobilenet_v2.xml")
from tqdm.notebook import tqdm
import numpy as np
def test_accuracy(ov_model, data_loader):
correct = 0
total = 0
for batch_imgs, batch_labels in tqdm(data_loader):
result = ov_model(batch_imgs)[0]
top_label = np.argmax(result)
correct += top_label == batch_labels.numpy()
total += 1
return correct / total
select device from dropdown list for running inference using OpenVINO
from notebook_utils import device_widget
device = device_widget()
device
Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')
core = ov.Core()
compiled_model = core.compile_model(ov_model, device.value)
optimized_compiled_model = core.compile_model(quant_ov_model, device.value)
orig_accuracy = test_accuracy(compiled_model, val_loader)
optimized_accuracy = test_accuracy(optimized_compiled_model, val_loader)
0%| | 0/10000 [00:00<?, ?it/s]
0%| | 0/10000 [00:00<?, ?it/s]
print(f"Accuracy of the original model: {orig_accuracy[0] * 100 :.2f}%")
print(f"Accuracy of the optimized model: {optimized_accuracy[0] * 100 :.2f}%")
Accuracy of the original model: 93.61% Accuracy of the optimized model: 93.51%
Finally, measure the inference performance of the FP32
and INT8
models, using Benchmark Tool - an inference performance measurement tool in OpenVINO.
NOTE: For more accurate performance, it is recommended to run benchmark_app in a terminal/command prompt after closing other applications. Run
benchmark_app -m model.xml -d CPU
to benchmark async inference on CPU for one minute. Change CPU to GPU to benchmark on GPU. Runbenchmark_app --help
to see an overview of all command-line options.
# Inference FP16 model (OpenVINO IR)
!benchmark_app -m "model/mobilenet_v2.xml" -d $device.value -api async -t 15
[Step 1/11] Parsing and validating input arguments [ INFO ] Parsing input parameters [Step 2/11] Loading OpenVINO Runtime [ INFO ] OpenVINO: [ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0 [ INFO ] [ INFO ] Device info: [ INFO ] AUTO [ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0 [ INFO ] [ INFO ] [Step 3/11] Setting device configuration [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files [ INFO ] Read model took 8.60 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x , 1 , x.1 (node: Parameter_2) : f32 / [...] / [1,3,32,32] [ INFO ] Model outputs: [ INFO ] 223 (node: aten::linear_928) : f32 / [...] / [1,10] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] x , 1 , x.1 (node: Parameter_2) : u8 / [N,C,H,W] / [1,3,32,32] [ INFO ] Model outputs: [ INFO ] 223 (node: aten::linear_928) : f32 / [...] / [1,10] [Step 7/11] Loading the model to the device [ INFO ] Compile model took 312.76 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT [ INFO ] NETWORK_NAME: Model0 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18 [ INFO ] MODEL_PRIORITY: Priority.MEDIUM [ INFO ] MULTI_DEVICE_PRIORITIES: CPU [ INFO ] CPU: [ INFO ] CPU_BIND_THREAD: YES [ INFO ] CPU_THREADS_NUM: 0 [ INFO ] CPU_THROUGHPUT_STREAMS: 18 [ INFO ] DEVICE_ID: [ INFO ] DUMP_EXEC_GRAPH_AS_DOT: [ INFO ] DYN_BATCH_ENABLED: NO [ INFO ] DYN_BATCH_LIMIT: 0 [ INFO ] ENFORCE_BF16: NO [ INFO ] EXCLUSIVE_ASYNC_REQUESTS: NO [ INFO ] NETWORK_NAME: Model0 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18 [ INFO ] PERFORMANCE_HINT: THROUGHPUT [ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0 [ INFO ] PERF_COUNT: NO [ INFO ] EXECUTION_DEVICES: ['CPU'] [Step 9/11] Creating infer requests and preparing input tensors [ WARNING ] No input files were given for input '1'!. This input will be filled with random values! [ INFO ] Fill input '1' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 18 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). [ INFO ] First inference took 2.29 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] [ INFO ] Count: 117540 iterations [ INFO ] Duration: 15005.85 ms [ INFO ] Latency: [ INFO ] Median: 1.99 ms [ INFO ] Average: 2.11 ms [ INFO ] Min: 1.25 ms [ INFO ] Max: 118.00 ms [ INFO ] Throughput: 7832.95 FPS
# Inference INT8 model (OpenVINO IR)
!benchmark_app -m "model/quantized_mobilenet_v2.xml" -d $device.value -api async -t 15
[Step 1/11] Parsing and validating input arguments [ INFO ] Parsing input parameters [Step 2/11] Loading OpenVINO Runtime [ INFO ] OpenVINO: [ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0 [ INFO ] [ INFO ] Device info: [ INFO ] AUTO [ INFO ] Build ................................. 2023.0.0-10926-b4452d56304-releases/2023/0 [ INFO ] [ INFO ] [Step 3/11] Setting device configuration [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files [ INFO ] Read model took 16.74 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x , x.1 , 1 (node: Parameter_2) : f32 / [...] / [1,3,32,32] [ INFO ] Model outputs: [ INFO ] 223 (node: aten::linear_928) : f32 / [...] / [1,10] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] x , x.1 , 1 (node: Parameter_2) : u8 / [N,C,H,W] / [1,3,32,32] [ INFO ] Model outputs: [ INFO ] 223 (node: aten::linear_928) : f32 / [...] / [1,10] [Step 7/11] Loading the model to the device [ INFO ] Compile model took 392.77 ms [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT [ INFO ] NETWORK_NAME: Model0 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18 [ INFO ] MODEL_PRIORITY: Priority.MEDIUM [ INFO ] MULTI_DEVICE_PRIORITIES: CPU [ INFO ] CPU: [ INFO ] CPU_BIND_THREAD: YES [ INFO ] CPU_THREADS_NUM: 0 [ INFO ] CPU_THROUGHPUT_STREAMS: 18 [ INFO ] DEVICE_ID: [ INFO ] DUMP_EXEC_GRAPH_AS_DOT: [ INFO ] DYN_BATCH_ENABLED: NO [ INFO ] DYN_BATCH_LIMIT: 0 [ INFO ] ENFORCE_BF16: NO [ INFO ] EXCLUSIVE_ASYNC_REQUESTS: NO [ INFO ] NETWORK_NAME: Model0 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 18 [ INFO ] PERFORMANCE_HINT: THROUGHPUT [ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0 [ INFO ] PERF_COUNT: NO [ INFO ] EXECUTION_DEVICES: ['CPU'] [Step 9/11] Creating infer requests and preparing input tensors [ WARNING ] No input files were given for input '1'!. This input will be filled with random values! [ INFO ] Fill input '1' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 18 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). [ INFO ] First inference took 2.20 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] [ INFO ] Count: 210528 iterations [ INFO ] Duration: 15001.67 ms [ INFO ] Latency: [ INFO ] Median: 1.04 ms [ INFO ] Average: 1.10 ms [ INFO ] Min: 0.71 ms [ INFO ] Max: 79.19 ms [ INFO ] Throughput: 14033.63 FPS
# Define all possible labels from the CIFAR10 dataset
labels_names = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
all_pictures = []
all_labels = []
# Get all pictures and their labels.
for i, batch in enumerate(val_loader):
all_pictures.append(batch[0].numpy())
all_labels.append(batch[1].item())
import matplotlib.pyplot as plt
def plot_pictures(indexes: list, all_pictures=all_pictures, all_labels=all_labels):
"""Plot 4 pictures.
:param indexes: a list of indexes of pictures to be displayed.
:param all_batches: batches with pictures.
"""
images, labels = [], []
num_pics = len(indexes)
assert num_pics == 4, f"No enough indexes for pictures to be displayed, got {num_pics}"
for idx in indexes:
assert idx < 10000, "Cannot get such index, there are only 10000"
pic = np.rollaxis(all_pictures[idx].squeeze(), 0, 3)
images.append(pic)
labels.append(labels_names[all_labels[idx]])
f, axarr = plt.subplots(1, 4)
axarr[0].imshow(images[0])
axarr[0].set_title(labels[0])
axarr[1].imshow(images[1])
axarr[1].set_title(labels[1])
axarr[2].imshow(images[2])
axarr[2].set_title(labels[2])
axarr[3].imshow(images[3])
axarr[3].set_title(labels[3])
def infer_on_pictures(model, indexes: list, all_pictures=all_pictures):
"""Inference model on a few pictures.
:param net: model on which do inference
:param indexes: list of indexes
"""
output_key = model.output(0)
predicted_labels = []
for idx in indexes:
assert idx < 10000, "Cannot get such index, there are only 10000"
result = model(all_pictures[idx])[output_key]
result = labels_names[np.argmax(result[0])]
predicted_labels.append(result)
return predicted_labels
indexes_to_infer = [7, 12, 15, 20] # To plot, specify 4 indexes.
plot_pictures(indexes_to_infer)
results_float = infer_on_pictures(compiled_model, indexes_to_infer)
results_quanized = infer_on_pictures(optimized_compiled_model, indexes_to_infer)
print(f"Labels for picture from float model : {results_float}.")
print(f"Labels for picture from quantized model : {results_quanized}.")
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Labels for picture from float model : ['frog', 'dog', 'ship', 'horse']. Labels for picture from quantized model : ['frog', 'dog', 'ship', 'horse'].