Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image. Instance segmentation as an object detection are often used as key components in computer vision systems. Applications that use real-time instance segmentation models include video analytics, robotics, autonomous vehicles, multi-object tracking and object counting, medical image analysis, and many others.
This tutorial demonstrates step-by-step instructions on how to run and optimize PyTorch YOLOv11 with OpenVINO. We consider the steps required for instance segmentation scenario. You can find more details about model on model page in Ultralytics documentation.
The tutorial consists of the following steps:
This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.
Generally, PyTorch models represent an instance of the torch.nn.Module
class, initialized by a state dictionary with model weights.
We will use the YOLOv11 nano model (also known as yolo11n-seg
) pre-trained on a COCO dataset, which is available in this repo. Similar steps are also applicable to other YOLOv11 models.
Typical steps to obtain a pre-trained model:
In this case, the creators of the model provide an API that enables converting the YOLOv11 model to OpenVINO IR. Therefore, we do not need to do these steps manually.
import platform
if platform.system() == "Darwin":
%pip install -q "numpy<2.0.0"
%pip install -q "openvino>=2025.1.0" "nncf>=2.16.0"
%pip install -q "torch>=2.1" "torchvision>=0.16" "ultralytics==8.3.142" opencv-python tqdm --extra-index-url https://download.pytorch.org/whl/cpu
Note: you may need to restart the kernel to use updated packages. Note: you may need to restart the kernel to use updated packages.
Import required utility functions.
The lower cell will download the notebook_utils
Python module from GitHub.
from pathlib import Path
import requests
if not Path("notebook_utils.py").exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
from notebook_utils import download_file, VideoPlayer, device_widget
# Read more about telemetry collection at https://github.com/openvinotoolkit/openvino_notebooks?tab=readme-ov-file#-telemetry
from notebook_utils import collect_telemetry
collect_telemetry("yolov11-instance-segmentation.ipynb")
# Download a test sample
IMAGE_PATH = Path("./data/coco_bike.jpg")
if not IMAGE_PATH.exists():
download_file(
url="https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco_bike.jpg",
filename=IMAGE_PATH.name,
directory=IMAGE_PATH.parent,
)
For loading the model, required to specify a path to the model checkpoint. It can be some local path or name available on models hub (in this case model checkpoint will be downloaded automatically). You can select model using widget bellow:
import ipywidgets as widgets
model_id = [
"yolo11n-seg",
"yolo11s-seg",
"yolo11m-seg",
"yolo11l-seg",
"yolo11x-seg",
"yolov8n-seg",
"yolov8s-seg",
"yolov8m-seg",
"yolov8l-seg",
"yolov8x-seg",
]
model_name = widgets.Dropdown(options=model_id, value=model_id[0], description="Model")
model_name
Dropdown(description='Model', options=('yolo11n-seg', 'yolo11s-seg', 'yolo11m-seg', 'yolo11l-seg', 'yolo11x-se…
Making prediction, the model accepts a path to input image and returns list with Results class object. Results contains boxes for object detection model and boxes and masks for segmentation model. Also it contains utilities for processing results, for example, plot()
method for drawing.
Let us consider the examples:
from PIL import Image
from ultralytics import YOLO
SEG_MODEL_NAME = model_name.value
seg_model = YOLO(f"{SEG_MODEL_NAME}.pt")
label_map = seg_model.model.names
res = seg_model(IMAGE_PATH)
Image.fromarray(res[0].plot()[:, :, ::-1])
image 1/1 /home/maleksandr/test_notebooks/yolo-device/openvino_notebooks/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 3 bicycles, 2 cars, 1 motorcycle, 1 dog, 68.8ms Speed: 2.1ms preprocess, 68.8ms inference, 3.3ms postprocess per image at shape (1, 3, 480, 640)
Ultralytics provides API for convenient model exporting to different formats including OpenVINO IR. model.export
is responsible for model conversion. We need to specify the format, and additionally, we can preserve dynamic shapes in the model.
# instance segmentation model
seg_model_path = Path(f"{SEG_MODEL_NAME}_openvino_model/{SEG_MODEL_NAME}.xml")
if not seg_model_path.exists():
seg_model.export(format="openvino", dynamic=True, half=True)
Ultralytics 8.3.142 🚀 Python-3.10.12 torch-2.7.0+cpu CPU (Intel Core(TM) i9-10980XE 3.00GHz) PyTorch: starting from 'yolo11n-seg.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) ((1, 116, 8400), (1, 32, 160, 160)) (5.9 MB) OpenVINO: starting export with openvino 2025.1.0-18503-6fec06580ab-releases/2025/1... OpenVINO: export success ✅ 2.6s, saved as 'yolo11n-seg_openvino_model/' (6.0 MB) Export complete (2.8s) Results saved to /home/maleksandr/test_notebooks/yolo-device/openvino_notebooks/notebooks/yolov11-optimization Predict: yolo predict task=segment model=yolo11n-seg_openvino_model imgsz=640 half Validate: yolo val task=segment model=yolo11n-seg_openvino_model imgsz=640 data=/ultralytics/ultralytics/cfg/datasets/coco.yaml half Visualize: https://netron.app
We can reuse the base model pipeline specifying Intel devices (intel:gpu, intel:npu, intel:cpu) when running inference with OpenVINO.
Select device from dropdown list for running inference using OpenVINO
device = device_widget()
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
seg_model = YOLO(seg_model_path.parent, task="segment")
res = seg_model(IMAGE_PATH, device=f"intel:{device.value.lower()}")
Image.fromarray(res[0].plot()[:, :, ::-1])
Loading yolo11n-seg_openvino_model for OpenVINO inference... WARNING ⚠️ OpenVINO device 'AUTO' not available. Using 'AUTO' instead. Using OpenVINO LATENCY mode for batch=1 inference... image 1/1 /home/maleksandr/test_notebooks/yolo-device/openvino_notebooks/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 3 bicycles, 2 cars, 1 motorcycle, 1 dog, 89.9ms Speed: 3.9ms preprocess, 89.9ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)
Great! The result is the same, as produced by original models.
NNCF provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop. We will use 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize YOLOv11.
The optimization process contains the following steps:
nncf.quantize
for getting an optimized model.openvino.save_model
function.Please select below whether you would like to run quantization to improve model inference speed.
import ipywidgets as widgets
int8_model_seg_path = Path(f"{SEG_MODEL_NAME}_openvino_model_int8/{SEG_MODEL_NAME}.xml")
quantized_seg_model = None
to_quantize = widgets.Checkbox(
value=True,
description="Quantization",
disabled=False,
)
to_quantize
Checkbox(value=True, description='Quantization')
Let's load skip magic
extension to skip quantization if to_quantize
is not selected
# Fetch skip_kernel_extension module
import requests
if not Path("skip_kernel_extension.py").exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py",
)
open("skip_kernel_extension.py", "w").write(r.text)
%load_ext skip_kernel_extension
Reuse validation dataloader in accuracy testing for quantization.
For that, it should be wrapped into the nncf.Dataset
object and define a transformation function for getting only input tensors.
%%skip not $to_quantize.value
import nncf
from zipfile import ZipFile
from ultralytics.data.utils import DATASETS_DIR
from ultralytics.utils import DEFAULT_CFG
from ultralytics.cfg import get_cfg
from ultralytics.data.converter import coco80_to_coco91_class
from ultralytics.data.utils import check_det_dataset
from ultralytics.utils import ops
if not int8_model_seg_path.exists():
DATA_URL = "http://images.cocodataset.org/zips/val2017.zip"
LABELS_URL = "https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip"
CFG_URL = "https://raw.githubusercontent.com/ultralytics/ultralytics/v8.1.0/ultralytics/cfg/datasets/coco.yaml"
OUT_DIR = DATASETS_DIR
DATA_PATH = OUT_DIR / "val2017.zip"
LABELS_PATH = OUT_DIR / "coco2017labels-segments.zip"
CFG_PATH = OUT_DIR / "coco.yaml"
if not (OUT_DIR / "coco/labels").exists():
download_file(DATA_URL, DATA_PATH.name, DATA_PATH.parent)
download_file(LABELS_URL, LABELS_PATH.name, LABELS_PATH.parent)
download_file(CFG_URL, CFG_PATH.name, CFG_PATH.parent)
with ZipFile(LABELS_PATH, "r") as zip_ref:
zip_ref.extractall(OUT_DIR)
with ZipFile(DATA_PATH, "r") as zip_ref:
zip_ref.extractall(OUT_DIR / "coco/images")
args = get_cfg(cfg=DEFAULT_CFG)
args.data = str(CFG_PATH)
seg_validator = seg_model.task_map[seg_model.task]["validator"](args=args)
seg_validator.data = check_det_dataset(args.data)
seg_validator.stride = 32
seg_data_loader = seg_validator.get_dataloader(OUT_DIR / "coco/", 1)
seg_validator.is_coco = True
seg_validator.class_map = coco80_to_coco91_class()
seg_validator.names = label_map
seg_validator.metrics.names = seg_validator.names
seg_validator.nc = 80
seg_validator.nm = 32
seg_validator.process = ops.process_mask
seg_validator.plot_masks = []
def transform_fn(data_item: dict):
"""
Quantization transform function. Extracts and preprocess input data from dataloader item for quantization.
Parameters:
data_item: Dict with data item produced by DataLoader during iteration
Returns:
input_tensor: Input data for quantization
"""
input_tensor = seg_validator.preprocess(data_item)["img"].numpy()
return input_tensor
quantization_dataset = nncf.Dataset(seg_data_loader, transform_fn)
val: Fast image access ✅ (ping: 0.0±0.0 ms, read: 4722.9±1342.9 MB/s, size: 130.3 KB)
val: Scanning /home/maleksandr/test_notebooks/olmocr-check/openvino_notebooks/notebooks/yolov11-optimization/datasets/co
The nncf.quantize
function provides an interface for model quantization. It requires an instance of the OpenVINO Model and quantization dataset.
Optionally, some additional parameters for the configuration quantization process (number of samples for quantization, preset, ignored scope, etc.) can be provided. Ultralytics models contain non-ReLU activation functions, which require asymmetric quantization of activations. To achieve a better result, we will use a mixed
quantization preset. It provides symmetric quantization of weights and asymmetric quantization of activations. For more accurate results, we should keep the operation in the postprocessing subgraph in floating point precision, using the ignored_scope
parameter.
Note: Model post-training quantization is time-consuming process. Be patient, it can take several minutes depending on your hardware.
%%skip not $to_quantize.value
import shutil
import openvino as ov
core = ov.Core()
seg_ov_model = core.read_model(seg_model_path)
if not int8_model_seg_path.exists():
ignored_scope = nncf.IgnoredScope( # post-processing
subgraphs=[
nncf.Subgraph(inputs=[f"__module.model.{22 if 'v8' in SEG_MODEL_NAME else 23}/aten::cat/Concat",
f"__module.model.{22 if 'v8' in SEG_MODEL_NAME else 23}/aten::cat/Concat_1",
f"__module.model.{22 if 'v8' in SEG_MODEL_NAME else 23}/aten::cat/Concat_2",
f"__module.model.{22 if 'v8' in SEG_MODEL_NAME else 23}/aten::cat/Concat_7"],
outputs=[f"__module.model.{22 if 'v8' in SEG_MODEL_NAME else 23}/aten::cat/Concat_8"])
]
)
# Segmentation model
quantized_seg_model = nncf.quantize(
seg_ov_model,
quantization_dataset,
preset=nncf.QuantizationPreset.MIXED,
ignored_scope=ignored_scope
)
print(f"Quantized segmentation model will be saved to {int8_model_seg_path}")
ov.save_model(quantized_seg_model, str(int8_model_seg_path))
shutil.copy(seg_model_path.parent / "metadata.yaml", int8_model_seg_path.parent / "metadata.yaml")
WARNING:nncf:NNCF provides best results with torch==2.6.*, while current torch version is 2.7.0+cpu. If you encounter issues, consider switching to torch==2.6.*
/home/maleksandr/test_notebooks/yolo-device/openvino_notebooks/venv/lib/python3.10/site-packages/openvino/runtime/__init__.py:10: DeprecationWarning: The `openvino.runtime` module is deprecated and will be removed in the 2026.0 release. Please replace `openvino.runtime` with `openvino`. warnings.warn(
INFO:nncf:109 ignored nodes were found by subgraphs in the NNCFGraph INFO:nncf:Not adding activation input quantizer for operation: 148 __module.model.23/aten::cat/Concat INFO:nncf:Not adding activation input quantizer for operation: 158 __module.model.23/aten::view/Reshape_3 INFO:nncf:Not adding activation input quantizer for operation: 307 __module.model.23/aten::cat/Concat_1 INFO:nncf:Not adding activation input quantizer for operation: 318 __module.model.23/aten::view/Reshape_4 INFO:nncf:Not adding activation input quantizer for operation: 424 __module.model.23/aten::cat/Concat_2 INFO:nncf:Not adding activation input quantizer for operation: 428 __module.model.23/aten::view/Reshape_5 INFO:nncf:Not adding activation input quantizer for operation: 160 __module.model.23/aten::cat/Concat_7 INFO:nncf:Not adding activation input quantizer for operation: 171 __module.model.23/aten::cat/Concat_4 INFO:nncf:Not adding activation input quantizer for operation: 186 __module.model.23/prim::ListUnpack INFO:nncf:Not adding activation input quantizer for operation: 206 __module.model.23.dfl/aten::view/Reshape INFO:nncf:Not adding activation input quantizer for operation: 207 __module.model.23/aten::sigmoid/Sigmoid INFO:nncf:Not adding activation input quantizer for operation: 224 __module.model.23.dfl/aten::transpose/Transpose INFO:nncf:Not adding activation input quantizer for operation: 239 __module.model.23.dfl/aten::softmax/Softmax INFO:nncf:Not adding activation input quantizer for operation: 252 __module.model.23.dfl.conv/aten::_convolution/Convolution INFO:nncf:Not adding activation input quantizer for operation: 264 __module.model.23.dfl/aten::view/Reshape_1 INFO:nncf:Not adding activation input quantizer for operation: 277 __module.model.23/prim::ListUnpack/VariadicSplit INFO:nncf:Not adding activation input quantizer for operation: 289 __module.model.23/aten::sub/Subtract INFO:nncf:Not adding activation input quantizer for operation: 290 __module.model.23/aten::add/Add_6 INFO:nncf:Not adding activation input quantizer for operation: 301 __module.model.23/aten::add/Add_7 311 __module.model.23/aten::div/Divide INFO:nncf:Not adding activation input quantizer for operation: 302 __module.model.23/aten::sub/Subtract_1 INFO:nncf:Not adding activation input quantizer for operation: 312 __module.model.23/aten::cat/Concat_5 INFO:nncf:Not adding activation input quantizer for operation: 274 __module.model.23/aten::mul/Multiply_3 INFO:nncf:Not adding activation input quantizer for operation: 173 __module.model.23/aten::cat/Concat_8
Output()
Output()
Quantized segmentation model will be saved to yolo11n-seg_openvino_model_int8/yolo11n-seg.xml
nncf.quantize
returns the OpenVINO Model class instance, which is suitable for loading on a device for making predictions. INT8
model input data and output result formats have no difference from the floating point model representation. Therefore, we can reuse the same detect
function defined above for getting the INT8
model result on the image.
%%skip not $to_quantize.value
display(device)
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
%%skip not $to_quantize.value
seg_model = YOLO(int8_model_seg_path.parent, task="segment")
device_name = device.value if device.value == "AUTO" else f"intel:{device.value.lower()}"
res = seg_model(IMAGE_PATH, device=f"intel:{device.value.lower()}")
display(Image.fromarray(res[0].plot()[:, :, ::-1]))
Loading yolo11n-seg_openvino_model_int8 for OpenVINO inference... WARNING ⚠️ OpenVINO device 'AUTO' not available. Using 'AUTO' instead. Using OpenVINO LATENCY mode for batch=1 inference... image 1/1 /home/maleksandr/test_notebooks/yolo-device/openvino_notebooks/notebooks/yolov11-optimization/data/coco_bike.jpg: 480x640 2 bicycles, 2 cars, 1 motorcycle, 1 dog, 126.8ms Speed: 4.2ms preprocess, 126.8ms inference, 4.3ms postprocess per image at shape (1, 3, 480, 640)
back to top ⬆️
Finally, use the OpenVINO Benchmark Tool to measure the inference performance of the FP32
and INT8
models.
Note: For more accurate performance, it is recommended to run
benchmark_app
in a terminal/command prompt after closing other applications. Runbenchmark_app -m <model_path> -d CPU -shape "<input_shape>"
to benchmark async inference on CPU on specific input data shape for one minute. ChangeCPU
toGPU
to benchmark on GPU. Runbenchmark_app --help
to see an overview of all command-line options.
%%skip not $to_quantize.value
display(device)
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
if int8_model_seg_path.exists():
!benchmark_app -m $seg_model_path -d $device.value -api async -shape "[1,3,640,640]" -t 15
[Step 1/11] Parsing and validating input arguments [ INFO ] Parsing input parameters [Step 2/11] Loading OpenVINO Runtime [ INFO ] OpenVINO: [ INFO ] Build ................................. 2025.1.0-18503-6fec06580ab-releases/2025/1 [ INFO ] [ INFO ] Device info: [ INFO ] AUTO [ INFO ] Build ................................. 2025.1.0-18503-6fec06580ab-releases/2025/1 [ INFO ] [ INFO ] [Step 3/11] Setting device configuration [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files [ INFO ] Read model took 22.41 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [?,3,?,?] [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [?,116,21..] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [?,32,8..,8..] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'x': [1,3,640,640] [ INFO ] Reshape model took 9.50 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] x (node: x) : u8 / [N,C,H,W] / [1,3,640,640] [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [1,116,8400] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [1,32,160,160] [Step 7/11] Loading the model to the device [ INFO ] Compile model took 373.37 ms [ INFO ] Start of compilation memory usage: Peak 413976 KB [ INFO ] End of compilation memory usage: Peak 4198120 KB [ INFO ] Compile model ram used 3784144 KB [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 [ INFO ] EXECUTION_DEVICES: ['CPU'] [ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12 [ INFO ] MULTI_DEVICE_PRIORITIES: CPU [ INFO ] CPU: [ INFO ] CPU_DENORMALS_OPTIMIZATION: False [ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0 [ INFO ] DYNAMIC_QUANTIZATION_GROUP_SIZE: 32 [ INFO ] ENABLE_CPU_PINNING: True [ INFO ] ENABLE_CPU_RESERVATION: False [ INFO ] ENABLE_HYPER_THREADING: True [ INFO ] EXECUTION_DEVICES: ['CPU'] [ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE [ INFO ] INFERENCE_NUM_THREADS: 36 [ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'> [ INFO ] KEY_CACHE_GROUP_SIZE: 0 [ INFO ] KEY_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] KV_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] LOG_LEVEL: Level.NO [ INFO ] MODEL_DISTRIBUTION_POLICY: set() [ INFO ] NETWORK_NAME: Model0 [ INFO ] NUM_STREAMS: 12 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12 [ INFO ] PERFORMANCE_HINT: THROUGHPUT [ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0 [ INFO ] PERF_COUNT: NO [ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE [ INFO ] VALUE_CACHE_GROUP_SIZE: 0 [ INFO ] VALUE_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] MODEL_PRIORITY: Priority.MEDIUM [ INFO ] LOADED_FROM_CACHE: False [ INFO ] PERF_COUNT: False [Step 9/11] Creating infer requests and preparing input tensors [ WARNING ] No input files were given for input 'x'!. This input will be filled with random values! [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). [ INFO ] First inference took 44.61 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] [ INFO ] Count: 2232 iterations [ INFO ] Duration: 15135.08 ms [ INFO ] Latency: [ INFO ] Median: 80.47 ms [ INFO ] Average: 81.06 ms [ INFO ] Min: 40.37 ms [ INFO ] Max: 128.06 ms [ INFO ] Throughput: 147.47 FPS
if int8_model_seg_path.exists():
!benchmark_app -m $int8_model_seg_path -d $device.value -api async -shape "[1,3,640,640]" -t 15
[Step 1/11] Parsing and validating input arguments [ INFO ] Parsing input parameters [Step 2/11] Loading OpenVINO Runtime [ INFO ] OpenVINO: [ INFO ] Build ................................. 2025.1.0-18503-6fec06580ab-releases/2025/1 [ INFO ] [ INFO ] Device info: [ INFO ] AUTO [ INFO ] Build ................................. 2025.1.0-18503-6fec06580ab-releases/2025/1 [ INFO ] [ INFO ] [Step 3/11] Setting device configuration [ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT. [Step 4/11] Reading model files [ INFO ] Loading model files [ INFO ] Read model took 29.72 ms [ INFO ] Original model I/O parameters: [ INFO ] Model inputs: [ INFO ] x (node: x) : f32 / [...] / [?,3,?,?] [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [?,116,21..] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [?,32,8..,8..] [Step 5/11] Resizing model to match image sizes and given batch [ INFO ] Model batch size: 1 [ INFO ] Reshaping model: 'x': [1,3,640,640] [ INFO ] Reshape model took 13.52 ms [Step 6/11] Configuring input of the model [ INFO ] Model inputs: [ INFO ] x (node: x) : u8 / [N,C,H,W] / [1,3,640,640] [ INFO ] Model outputs: [ INFO ] ***NO_NAME*** (node: __module.model.23/aten::cat/Concat_8) : f32 / [...] / [1,116,8400] [ INFO ] input.255 (node: __module.model.23.cv4.2.1.act/aten::silu_/Swish_46) : f32 / [...] / [1,32,160,160] [Step 7/11] Loading the model to the device [ INFO ] Compile model took 622.93 ms [ INFO ] Start of compilation memory usage: Peak 415052 KB [ INFO ] End of compilation memory usage: Peak 3672284 KB [ INFO ] Compile model ram used 3257232 KB [Step 8/11] Querying optimal runtime parameters [ INFO ] Model: [ INFO ] NETWORK_NAME: Model0 [ INFO ] EXECUTION_DEVICES: ['CPU'] [ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12 [ INFO ] MULTI_DEVICE_PRIORITIES: CPU [ INFO ] CPU: [ INFO ] CPU_DENORMALS_OPTIMIZATION: False [ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0 [ INFO ] DYNAMIC_QUANTIZATION_GROUP_SIZE: 32 [ INFO ] ENABLE_CPU_PINNING: True [ INFO ] ENABLE_CPU_RESERVATION: False [ INFO ] ENABLE_HYPER_THREADING: True [ INFO ] EXECUTION_DEVICES: ['CPU'] [ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE [ INFO ] INFERENCE_NUM_THREADS: 36 [ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'> [ INFO ] KEY_CACHE_GROUP_SIZE: 0 [ INFO ] KEY_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] KV_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] LOG_LEVEL: Level.NO [ INFO ] MODEL_DISTRIBUTION_POLICY: set() [ INFO ] NETWORK_NAME: Model0 [ INFO ] NUM_STREAMS: 12 [ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12 [ INFO ] PERFORMANCE_HINT: THROUGHPUT [ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0 [ INFO ] PERF_COUNT: NO [ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE [ INFO ] VALUE_CACHE_GROUP_SIZE: 0 [ INFO ] VALUE_CACHE_PRECISION: <Type: 'uint8_t'> [ INFO ] MODEL_PRIORITY: Priority.MEDIUM [ INFO ] LOADED_FROM_CACHE: False [ INFO ] PERF_COUNT: False [Step 9/11] Creating infer requests and preparing input tensors [ WARNING ] No input files were given for input 'x'!. This input will be filled with random values! [ INFO ] Fill input 'x' with random values [Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 15000 ms duration) [ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop). [ INFO ] First inference took 32.21 ms [Step 11/11] Dumping statistics report [ INFO ] Execution Devices:['CPU'] [ INFO ] Count: 4728 iterations [ INFO ] Duration: 15032.59 ms [ INFO ] Latency: [ INFO ] Median: 37.42 ms [ INFO ] Average: 37.98 ms [ INFO ] Min: 22.45 ms [ INFO ] Max: 80.42 ms [ INFO ] Throughput: 314.52 FPS
The performance could be also improved by another OpenVINO method such as async inference pipeline or preprocessing API.
Async Inference pipeline help to utilize the device more optimal. The key advantage of the Async API is that when a device is busy with inference, the application can perform other tasks in parallel (for example, populating inputs or scheduling other requests) rather than wait for the current inference to complete first. To understand how to perform async inference using openvino, refer to Async API tutorial
Preprocessing API enables making preprocessing a part of the model reducing application code and dependency on additional image processing libraries. The main advantage of Preprocessing API is that preprocessing steps will be integrated into the execution graph and will be performed on a selected device (CPU/GPU etc.) rather than always being executed on CPU as part of an application. This will also improve selected device utilization. For more information, refer to the overview of Preprocessing API tutorial. To see, how it could be used with YOLOV8 object detection model, please, see Convert and Optimize YOLOv8 real-time object detection with OpenVINO tutorial
import collections
import time
import cv2
from IPython import display
import numpy as np
def run_instance_segmentation(
source=0,
flip=False,
use_popup=False,
skip_first_frames=0,
model=seg_model,
device=device.value,
video_width: int = None, # if not set the original size is used
):
player = None
try:
# Create a video player to play with target fps.
player = VideoPlayer(source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
# Start capturing.
player.start()
if use_popup:
title = "Press ESC to Exit"
cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)
processing_times = collections.deque()
while True:
# Grab the frame.
frame = player.next()
if frame is None:
print("Source ended")
break
if video_width:
# If the frame is larger than video_width, reduce size to improve the performance.
# If more, increase size for better demo expirience.
scale = video_width / max(frame.shape)
frame = cv2.resize(
src=frame,
dsize=None,
fx=scale,
fy=scale,
interpolation=cv2.INTER_AREA,
)
# Get the results.
input_image = np.array(frame)
start_time = time.time()
detections = seg_model(input_image, verbose=False, device=f"intel:{device.lower()}")
stop_time = time.time()
frame = detections[0].plot()
processing_times.append(stop_time - start_time)
# Use processing times from last 200 frames.
if len(processing_times) > 200:
processing_times.popleft()
_, f_width = frame.shape[:2]
# Mean processing time [ms].
processing_time = np.mean(processing_times) * 1000
fps = 1000 / processing_time
cv2.putText(
img=frame,
text=f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)",
org=(20, 40),
fontFace=cv2.FONT_HERSHEY_COMPLEX,
fontScale=f_width / 1000,
color=(0, 0, 255),
thickness=1,
lineType=cv2.LINE_AA,
)
# Use this workaround if there is flickering.
if use_popup:
cv2.imshow(winname=title, mat=frame)
key = cv2.waitKey(1)
# escape = 27
if key == 27:
break
else:
# Encode numpy array to jpg.
_, encoded_img = cv2.imencode(ext=".jpg", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100])
# Create an IPython image.
i = display.Image(data=encoded_img)
# Display the image in this notebook.
display.clear_output(wait=True)
display.display(i)
# ctrl-c
except KeyboardInterrupt:
print("Interrupted")
# any different error
except RuntimeError as e:
print(e)
finally:
if player is not None:
# Stop capturing.
player.stop()
if use_popup:
cv2.destroyAllWindows()
Use a webcam as the video input. By default, the primary webcam is set with source=0
. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set flip=True
when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set use_popup=True
.
NOTE: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a remote server (for example, in Binder or Google Colab service), the webcam will not work. By default, the lower cell will run model inference on a video file. If you want to try live inference on your webcam set
WEBCAM_INFERENCE = True
WEBCAM_INFERENCE = False
if WEBCAM_INFERENCE:
VIDEO_SOURCE = 0 # Webcam
else:
VIDEO_SOURCE = Path("people.mp4")
if not VIDEO_SOURCE.exists():
download_file(
"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/video/people.mp4",
"people.mp4",
)
device
Dropdown(description='Device:', index=1, options=('CPU', 'AUTO'), value='AUTO')
run_instance_segmentation(
source=VIDEO_SOURCE,
flip=True,
use_popup=False,
model=seg_model,
device=device.value,
# video_width=1280,
)
Source ended