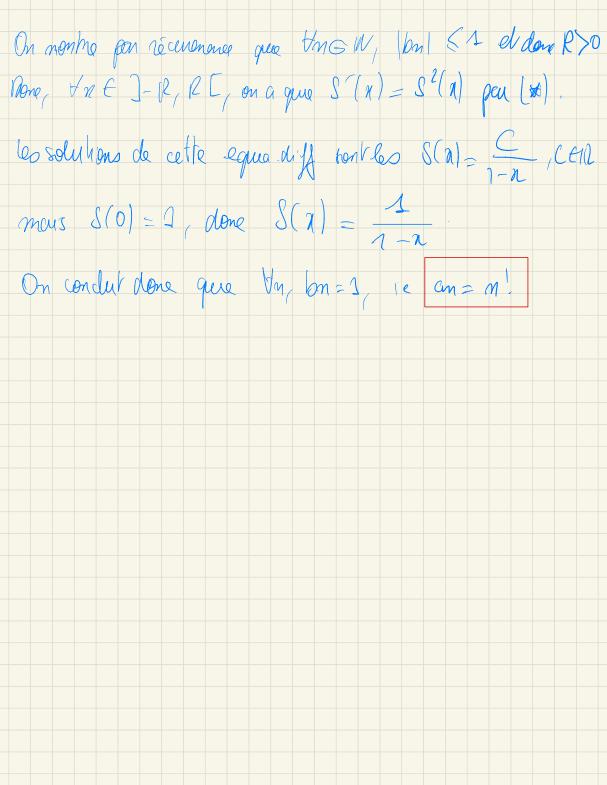
Exercie 1: Cemiges colle 11 So, + R rayon de Zan 3 m * Soit 131 < R diens Zanz MACV done an 3^M - 50 degre and 3^{2M} - 50 Or par 121> 2/ (an27m) n'est pas bornée Leone 3/2 < R done R < VR * Soit 131 < Ve' on a gre 1312622 et done que lan 2 2 2 1 30 d'en lan 3 9 30. et done TR' (R On en déduir que 131 ER

Éxercile 2: 1) tx til, tn CW, Isin (9m2) [[12 | an | donc il y a conneigene osselve de le seix ausque la < 1 2) Soit for(n):= sin(a^mn) On a que for E C et que

Y le, Il for II o


La lor qui est le heure général d'une série ACV Aore par theoremo, $f \in C^{\infty}$ et $\forall x \in \mathbb{N}$, $|f|^{(k)}(x)| \leq \frac{1}{1-|a|^{k}} \leq \frac{1}{1-|a|}$ 3) Par Taylor-Laplace, $f(n) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} n^{k} + \int_{0}^{\infty} \frac{(n-t)^{m}}{m!} f^{(m+1)}(t) dt$ $\begin{array}{c|c} ou & & \\$ Ains, la serve de Taylor CV sur IR vois f donc f est OSE

Exercise 3: Cettle inhigher act been convergence (le new fier repidement)

On a de plus que,
$$\forall x \in \mathcal{F}_{1}, \exists \mathcal{F}_{1}$$
 of $\exists 1$

Rano, $\exists (n) = 1 - n$
 \exists

Exercise 4 1) (m+p) v m^p dome R=12) $\forall x \in J - 1, 1 \in C^{\infty}$ et $f(\eta) = \sum_{n=1}^{\infty} {n \cdot p \choose p} n \cdot x^{n-1}$ Agne (1-x) $f'(x) = \sum_{n=0}^{\infty} (n+1) \binom{n+p+1}{n} \binom{n}{n} - \sum_{n=0}^{\infty} \binom{n+p}{p} \binom{n}{n} = \sum_{n=0}^{\infty} d_n n^n$ ance dn = (n+p+1)(n+p) - n(n+p) = (p+1)(n+p)Par sure, (1-a) g(n) = (p+1) g(n)les solutions de l'équa diff (1-n)y' = (p+1)y sont les y(n) = C / Hat J-1127Ctllor, f(0) = 1, done $\forall x \in]-1;1[$, $f(n) = \frac{1}{(1-x)^{p+1}}$ Ero S: Posous to, bn = an On a done que to EW, (M+1) $bm+1 = \sum_{k=0}^{n} bm-k bk$ Posono $f(n) = \sum_{n=0}^{\infty} b_n n^n of molions R son rayon$

Exercise 6:
$$an = \int_{0}^{\pi/4} (fam/4)^{n} dt$$

1) TCD: seat $fn(t) = (fan/4)^{m}$.

* fn est CPM em $Jo, \pi/4E$

* fn CVS vers O em $Jo, \pi/4E$

to $fn(V) = fan(V) = fan(V) = fan(V)$

(and $fn(V) = fan(V) = fan$

done
$$dn = \frac{1}{m+2}$$

3) Pay 2), of monetonie, dn , an +an = 2 $\leq 2an \leq an + an = 2$

done $an = \frac{1}{2n}$
 $done dn(n) = \frac{an}{n} = \frac{n}{2n} = \frac{n}{2n^{a+1}}$

Rayon = 1 ET an bord.

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \) CV (= 3 \(\text{V}) \)

* So a = 1 \(\text{Un(n)} \)

$$\frac{(1)}{2} \sum_{n=0}^{\infty} a_{n} (2n) + a_{n} (2n) = - \ln(1-n) \quad (DRE)$$

$$\frac{1}{2} \sum_{n=0}^{\infty} a_{n} (2n) + \frac{1}{2} \sum_{n=0}^{\infty} \frac{\ln(1-n)}{n}$$

$$\frac{1}{2} \sum_{n=0}^{\infty} a_{n} (2n) + \frac{1}{2} \sum_{n=0}^{\infty} \frac{\ln(1-n)}{n}$$