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Contributions

• In-context understanding of SGD
dynamics with LLMs.

• Estimation of the SGD transition
kernel seen as a Markov chain.

• Prediction of the SGD convergence
from new random initializations in
convex and non-convex settings.

SGD as a Markov chain

Given a training set of N i.i.d. samples

(xi) ∈ Rd, we solve the following optimiza-

tion problem,

min
θ

F (θ), F (θ) = 1
N

N∑
i=1

f (xi, θ)

with the Stochastic Gradient Descent,

θt+1 = θt − γt∇f̃t(θt)

SGD updates form a multivariate Markov
chain, which is homogeneous for constant
stepsize.

Its transition kernel can be discretized
into a block matrix of size d × d.

Q =

λ1,1P
(1,1) . . . λ1,dP

(1,d)

... . . . ...
λd,1P

(d,1) . . . λd,dP
(d,d)


Time series tokenization

Starting point: LLMTime: LLMs are zero-
shot time series forecasters.
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Bridging the Gap between Constant Step Size

Stochastic Gradient Descent and Markov Chains

Extraction of probabilities

• Prompt the LLM with a tokenized time
series (zt)0≤t≤T

• Extract P(Zt+1|Zt = zt) from the softmax
output layer.
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LLMs identify the stationary distribution
in both over-parametrized (d >> N ) and
under-parametrized (d << N ) cases.

Imputation of missing values

Problem: Fewvisited states→ sparse tran-
sition matrices.

▶ Empty rows are filled in by comput-
ing theoptimal transport barycentersbe-
tween the observed states.

Neural scaling laws

For spectral gap ρ, speed of convergence
is given by dTV (πt, π) ≤ Cπ exp(−ρt).
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Learning M( )
M(0.15), = 0.48
M(0.35), = 0.26
M(0.8), = 0.09

LLMs are (in-context) Markov chains
learners.

▶Neural scaling laws for in-context learn-
ing.

▶ Influence of the spectral gap on the
power law coefficient.

Predicting the SGD
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The transition matrix Q is estimated
from an SGD run.

Cheap matrix products can then be used,
rather than accessing gradients.
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In the non-convex case, several runs are
needed to correctly identify the behavior

of the SGD.

Take HomeMessage

• LLMs are efficient (in-context)
Markov chains learners.

• They can be used to understand
SGD from a transition probability
point of view.

• Matrix multiplication is cheaper than
forward & backward propagation!

Want to KnowMore?

paper author

ICML 2024, Vienna, Austria oussama.zekri@ens-paris-saclay.fr

https://openreview.net/forum?id=FraikHzMu9
https://www.oussamazekri.fr/
mailto:oussama.zekri@ens-paris-saclay.fr

