!jupyter nbconvert --to markdown 3_7_6_Exercises.ipynb
[NbConvertApp] WARNING | Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`. [NbConvertApp] Converting notebook 3_7_6_Exercises.ipynb to markdown [NbConvertApp] Support files will be in 3_7_6_Exercises_files/ [NbConvertApp] Making directory 3_7_6_Exercises_files [NbConvertApp] Writing 16254 bytes to 3_7_6_Exercises.md
import random
import torch
import d2l
import numpy as np
import matplotlib.pyplot as plt
from torch import autograd
import warnings
warnings.filterwarnings("ignore")
/home/jovyan/work/d2l/notebooks/d2l.py:119: SyntaxWarning: assertion is always true, perhaps remove parentheses? assert(self, 'net'), 'Neural network is defined' /home/jovyan/work/d2l/notebooks/d2l.py:123: SyntaxWarning: assertion is always true, perhaps remove parentheses? assert(self, 'trainer'), 'trainer is not inited'
data = d2l.SyntheticRegressionData(w=torch.tensor([2, -3.4]), b=4.2)
model = d2l.LinearRegressScratch(2, lr=0.03)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model = d2l.LinearRegressScratch(2, lr=0.03,sigma = 0)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model = d2l.LinearRegressScratch(2, lr=0.03,sigma=1000)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
In this context, starting from Ohm's Law, it is understood that the current passing through a resistor is directly proportional to the voltage applied: $$ V = I \cdot R $$
Where:
So we generate synthetic data $V$ and $I$ with a parameter $R$ and build a line regression model to simulate the relationship between voltage and current. Meanwhile MSE is employed as the loss function to quantify the difference between predicted and actual voltages. Utilizing the stochastic gradient descent (SGD) optimizer, a training loop encompasses forward and backward propagation, as well as parameter updates. As training progresses, the model gradually adjusts the value of parameter $R$, allowing the predicted voltage to approach the actual voltage.
data = d2l.SyntheticRegressionData(w=torch.tensor([5.1]), b=0, noise=1)
model = d2l.LinearRegressScratch(1, lr=0.03)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
plt.figure(figsize=(3.5, 2.5))
plt.scatter(data.X, data.y)
plt.show()
print(f'error in estimating w: {data.w - model.w.reshape(data.w.shape)}')
print(f'error in estimating b: {data.b - model.b}')
error in estimating w: tensor([0.3010], grad_fn=<SubBackward0>) error in estimating b: tensor([-0.0321], grad_fn=<RsubBackward1>)
Here
You measure the energy for different wavelengths $\lambda$ and you now need to fit the spectral density curve to Planck’s law.
def f(t, x):
c = 299792458
h = 6.6260701e-34
k = 1.380649e-23
beta = h*c/(k*x)
alpha = 2*h*c**2/x**5
return alpha/(torch.exp(beta/t)-1)
class SyntheticPlankData(d2l.DataModule):
def __init__(self, T, noise=0.05, num_train=1000, num_val=1000,
batch_size=32):
super().__init__()
self.save_hyperparameters()
n = num_train + num_val
self.X = torch.arange(300, n) * 1e-9
noise = random.random() * noise
self.y = f(T, self.X)*(1+noise)
def get_tensorloader(self, tensor, train, indices=slice(0, None)):
tensor = tuple(a[indices] for a in tensor)
dataset = torch.utils.data.TensorDataset(*tensor)
return torch.utils.data.DataLoader(dataset, self.batch_size,
shuffle=train)
def get_dataloader(self, train):
i = slice(0, self.num_train) if train else slice(self.num_train, None)
return self.get_tensorloader((self.X, self.y), train, i)
class PlankModel(d2l.Module):
def __init__(self, T, lr, sigma=0.01):
super().__init__()
self.save_hyperparameters()
# self.T = torch.normal(0, sigma, (1,), requires_grad=True) * 4500
self.T = torch.Tensor([T])
self.T.requires_grad = True
def forward(self, X):
return f(self.T, X)
def loss(self, y_hat, y):
l = (y_hat-y)**2/2
return l.mean()
def configure_optimizers(self):
return d2l.SGD([self.T], self.lr)
ts = [4000, 5000]
datas = []
plt.figure(figsize=(3.5, 2.5))
for t in ts:
datas.append(SyntheticPlankData(t))
plt.scatter(datas[-1].X, datas[-1].y, label=t)
plt.legend()
plt.show()
data = SyntheticPlankData(5020)
model = PlankModel(T=3000, lr=1e-21)
trainer = d2l.Trainer(max_epochs=5)
trainer.fit(model, data)
model.T
tensor([5054.9624], requires_grad=True)
use autograd.grad
with create_graph=True
def sin(x):
return torch.sin(x)
x = torch.arange(-5, 5, 0.1)
x.requires_grad = True
y = sin(x)
first_derivative = autograd.grad(y.sum(), x, create_graph=True)[0]
second_derivative = autograd.grad(first_derivative.sum(), x)[0]
d2l.plot(x.detach(), [sin(x).detach(), first_derivative.detach(),
second_derivative.detach()], 'x', 'f(x)',
figsize=(5, 3), legend=['sinx', 'first_derivative',
'second_derivative'])
Reshaping is used to ensure that the dimensions of the predicted values match the dimensions of the ground truth values so that the loss calculation can be performed correctly.
We make some experienmts with lr in [0.003,0.03,0.3,3] with epoch=3
data = d2l.SyntheticRegressionData(w=torch.tensor([2, -3.4]), b=4.2)
model = d2l.LinearRegressScratch(2, lr=0.003)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model.w,model.b
(tensor([[ 0.4372], [-0.8910]], requires_grad=True), tensor([1.0680], requires_grad=True))
model = d2l.LinearRegressScratch(2, lr=0.003)
trainer = d2l.Trainer(max_epochs=20)
trainer.fit(model,data)
model.w,model.b
model = d2l.LinearRegressScratch(2, lr=0.03)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model.w,model.b
(tensor([[ 1.8396], [-3.2372]], requires_grad=True), tensor([3.9771], requires_grad=True))
model = d2l.LinearRegressScratch(2, lr=0.3)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model.w,model.b
(tensor([[ 2.0009], [-3.3990]], requires_grad=True), tensor([4.1986], requires_grad=True))
model = d2l.LinearRegressScratch(2, lr=3)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model,data)
model.w,model.b
(tensor([[-3.2974e+29], [ 4.5504e+29]], requires_grad=True), tensor([-7.8700e+28], requires_grad=True))
We add codes below in function fit_epoch
if len(batch[0]) != 32:
print(len(batch[0]))
As the result print 3 times(which equals max_epochs
) of 8(which equals 1000 - 32*1000//32
), we may make the conclusion that the last data_iter will give out all the examples left even though the number of examples is less than the batch size.
We can also set parameter drop_last=True
of DataLoader
, if we just want to ignore the batch whose size is smaller than others.
data = d2l.SyntheticRegressionData(w=torch.tensor([2, -3.4]), b=4.2)
model = d2l.LinearRegressScratch(2, lr=0.03)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)
8 8 8
class LinearRegressAbsLoss(d2l.Module):
def __init__(self, num_inputs, lr, sigma=0.01):
super().__init__()
self.save_hyperparameters()
self.w = torch.normal(0, sigma, (num_inputs, 1), requires_grad=True)
self.b = torch.zeros(1, requires_grad=True)
def forward(self, X):
return torch.matmul(X, self.w) + self.b
def loss(self, y_hat, y):
l = torch.abs(y_hat - y)
return l.sum()
def configure_optimizers(self):
return d2l.SGD([self.w, self.b], self.lr)
For regular data, you'll notice the following behavior:
Squared Loss: The squared loss is sensitive to the differences between predicted values and ground truth. It penalizes larger differences more strongly, and the loss value can increase rapidly for larger deviations.
Absolute Value Loss: The absolute value loss considers the absolute differences between predicted values and ground truth, without squaring them. It provides a more balanced treatment of deviations, and the loss value increases linearly with the magnitude of the differences.
data = d2l.SyntheticRegressionData(w=torch.tensor([2, -3.4]), b=4.2)
model = LinearRegressAbsLoss(2, lr=0.01)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)
model.w,model.b
(tensor([[ 1.9236], [-3.2809]], requires_grad=True), tensor([4.1000], requires_grad=True))
model = d2l.LinearRegressScratch(2, lr=0.01)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)
When perturbing entry y[5] to a large value, you'll notice that the squared loss reacts strongly to the perturbation, leading to a much larger value compared to the absolute value loss. This is because squared loss is more sensitive to outliers.
alpha = 10000/data.y[5]
data.X[5] *= alpha
data.y[5] = 10000
model = LinearRegressAbsLoss(2, lr=0.01)
trainer = d2l.Trainer(max_epochs=3)
trainer.fit(model, data)
model.w,model.b
(tensor([[-50.7932], [344.7570]], requires_grad=True), tensor([4.0400], requires_grad=True))
model = d2l.LinearRegressScratch(2, lr=0.01)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)
model.w,model.b
(tensor([[nan], [nan]], requires_grad=True), tensor([nan], requires_grad=True))
To combine the best aspects of squared loss and absolute value loss while avoiding really large gradient values, you can consider using the Huber loss (also known as smooth L1 loss), which behaves like the squared loss near zero but transitions to the absolute value loss for larger values. This can provide a compromise between the two loss functions, preventing extreme gradients while being robust to outliers.
class LineRegressionHuberLoss(d2l.Module):
def __init__(self, num_inputs, lr, sigma=0.01):
super().__init__()
self.save_hyperparameters()
self.w = torch.normal(0, sigma, (num_inputs,1), requires_grad=True)
self.b = torch.zeros(1, requires_grad=True)
def forward(self, X):
return torch.matmul(X, self.w) + self.b
def loss(self, y_hat, y, sigma=1):
beta = 1.0/(sigma**2)
diff = torch.abs(y_hat - y)
l = torch.where(diff<beta, 0.5*diff**2/beta, diff - 0.5*beta)
return l.sum()
def configure_optimizers(self):
return d2l.SGD([self.w, self.b], self.lr)
model = LineRegressionHuberLoss(2, lr=1e-7)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)
model.w,model.b
(tensor([[ 0.0104], [-0.0376]], requires_grad=True), tensor([0.0007], requires_grad=True))
Shuffling the dataset during training is important for improving the efficiency and effectiveness of optimization algorithms, particularly stochastic gradient descent (SGD) and its variants. Shuffling serves several purposes:
Randomization: Shuffling the dataset before each epoch ensures that the model encounters the data in a random order. This randomization helps prevent the model from memorizing the order of examples, which could lead to overfitting and biased learning.
Smooth Convergence: Shuffling reduces the chances of encountering clusters of similar examples together. If the dataset has some inherent order or structure, not shuffling could cause the optimization process to converge unevenly or slowly.
Effective Exploration: Shuffling encourages the optimization algorithm to explore different parts of the loss landscape in each epoch. This can help the model escape local minima and reach a more optimal solution.
Regarding a case where a maliciously constructed dataset could break the optimization algorithm, consider a scenario where the dataset is intentionally ordered in a way that exploits the optimization algorithm's weaknesses:
Imagine a dataset with examples sorted in a manner that gradually increases the loss. For instance, the dataset contains images of cats, and the images are ordered in such a way that the difficulty of classification gradually increases. If the optimization algorithm is used without shuffling, it would first encounter a series of easy examples, leading to quick convergence. However, as it proceeds, it would encounter progressively harder examples, causing the optimization algorithm to slow down, potentially getting stuck in suboptimal regions of the loss landscape.
In such a case, shuffling the dataset before each epoch would disrupt the ordered pattern and ensure that the optimization algorithm encounters examples of varying difficulty levels throughout training. This randomness helps the optimization process explore the loss landscape more effectively and prevents the algorithm from being misled by the malicious ordering.
Overall, shuffling the dataset is a common practice to improve the robustness and convergence of optimization algorithms in machine learning and deep learning tasks.