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Not every economics research paper is estimating a causal quantity.
But, the implication or takeaway of papers is (almost) always a causal
one. Causality lies at the heart of every exercise. 1 1 “We do not have knowledge of a thing

until we have grasped its why, that is to
say, its cause.” – Aristotle

The goals in this lecture are:

• Enumerate tools used to discuss causal questions

• Emphasize a multimodal approach

• Set terminology/definitions for future discussions

Concretely, this involves covering three ways, notationally, of con-
sidering causal questions:

1. the potential outcomes (PO) framework,

2. the directed acyclic graph (DAG) framework,

3. structural models.

Over the course of describing these, we will also refresh our mem-
ories on the difference between the estimator, the estimand and the
estimate, and learn the identification condition for the average treat-
ment effect (ATE).

Notation

We will begin by outlining some notation for potential outcomes.
When defining treatment effects, this notation is extremely conve-
nient and clear, particularly when considering settings with signifi-
cant unobserved heterogeneity. However, since so much of the extant
literature in economics (and econometrics) is written using more
standard structural equations (e.g. Y = Xβ + ϵ), it is important to be
able to translate between the two. For the sake of completeness, I also
want to expose you to the directed acyclic graph (DAG) framework,
[Pearl, 2009, Imbens, 2020] which is more commonly used in other
fields such as epidimiology and computer science.2 It is much less 2 There was a period of time when the

debate about DAGs was quite ornery
(especially online). I think this has
subsided.

common in economics, but without getting into broader epistemic
debates, it’s extremely useful in some settings for clarifying the iden-
tifying assumptions (especially in settings relying on a “conditional
on observables” assumption).
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Potential Outcomes

We will follow Imbens and Rubin [2015] in our notation. I will be
slightly looser in my definitions for the purpose of space, but I en-
courage you to read Chapter 1 of Imbens and Rubin [2015] or Chap-
ter 7 of Aronow and Miller [2019] for a more precise treatment.

Consider a sample of N units, indexed by i. Each unit has a treat-
ment status Di and an outcome Yi.3 Sometimes, I will refer to the 3 For now, we will assume that there is

just a binary treatment, but this can be
generalized to multiple or continuous
treatments. It will make life more
complicated.

collection of observations or treatments as D and Y to denote a vector
of length N with each element corresponding to the treatment or out-
come for a given unit. Both D and Y are observed in our data: we see
who is treated (D), and the subsequent outcome (the Y given the D)

Example 1
Many medical examples naturally lend themselves to thinking about
potential outcomes. For example, consider the outcome of whether
you have a headache in three hours:

Y =

1 Have a headache in three hours

0 Do not have a headache in three hours

and the treatment of taking an aspirin:

D =

1 Take an aspirin

0 Do not take an aspirin.

We now consider the potential outcome for unit i. We can denote
this as Yi(D), which is the outcome for unit i if the set of treatments
for the N units is D. Note that this is a complicated function! It de-
pends on the treatment status of all units, not just the treatment
status of unit i. This leads us to a first important assumption:

Assumption 1 (Stable Unit Treatment Value Assumption)
If Di = D′i , then Yi(D) = Yi(D′).

Put in words, it means that your potential outcome is only affected
by your own treatment status, and not the treatment status of others.4 4 Sometimes this is called a “no interfer-

ence” condition. As we’ll see later on,
this could also be labeled a spillover in
the economics literature.

This assumption lets us write our potential outcome as Yi(Di), and
focus just on how our own treatment affects our outcome. This is a
strong assumption; we will discuss how one might consider relaxing
it in a few lectures. And of course any macroeconomist will tell you
that this is a terrible assumption. But, it is a useful starting point.
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Example 1 (continued)
We can now consider the potential outcome in the state of the world
where a person takes an aspirin or not: Yi(1) vs. Yi(0). Note that it
is not fundamentally possible to observe both states of the world: even
if a person were observed in different time periods, and in one case
they took the aspirin and in another they did not, this would reflect
fundamentally different observations. This type of repeated observa-
tion could be used to help identify the average potential outcomes, but
would require additional assumptions.
SUTVA is a very natural assumption in our medical example, since
others’ aspirin treatment decision should have no impact on our
headache. However, this is likely not true with vaccines or other
interventions.

It’s worth remarking on a few things. First, this potential outcome
is an function of the individuals’ treatment status, and allowed to
vary by individual. Second, this outcome itself is not necessarily
observed. Indeed, what we observe is

Yi = Yi(1)Di + Yi(0)(1− Di). (1)

Hence, for the untreated units, we observe their Yi(0), and vice versa
for the treated units. This model is often referred to as the Neyman-
Rubin Causal model.5 5 These were not coauthors - Jerzy

Neyman was a Polish statistician who
initially proposed the potential out-
comes framework to study completely
randomized experiments [Splawa-
Neyman et al., 1990]. This model was
adopted and expanded by Donald
Rubin in a number of influential pa-
pers. This model was coined the Rubin
Causal model by Paul Holland, in an
influential paper [Holland, 1986] about
statistics and causality that we will
revisit shortly.

The fact that we only observe either Yi(1) or Yi(0) is sometimes
called the “fundamental problem of causal inference.6” Since we

6 This term, again, comes from Holland
[1986] (which you should read!).

can only observe one outcome for a given unit, we cannot trace out
the counterfactual outcomes for a single unit. This makes it quite
challenging to know what the effect of changing Di is on a single unit
i.7

7 If we assume the treatment effects
everyone exactly the same, then it is
straightforward. While we might make
a homogeneity assumption like this, we
don’t always believe it in practice.

One way to view the fundamental problem of causal inference is
as a missing data problem.8 We will use many different techniques

8 The treatment by Aronow and Miller
[2019] covers this in very nice detail.

throughout this course to impute a counterfactual outcome such that
we can know the causal effect of an intervention.
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Comment 1
It is worth thinking a bit about what causal effect you are interested
in estimating. Often this is referred to as the estimand. This could
be many things:

• A structural parameter (dInvestment/dTaxRate?)

• The effect of zoning restrictions on housing supply

• A policy evaluation of a renter’s assistance program

• The existence of underreaction in stock prices to earnings news

Comment 2
It is important to get these terms straight.

• Estimand: the quantity to be estimated

• Estimate: the approximation of the estimand using a finite data
sample

• Estimator: the method or formula for arriving at the estimate for
an estimand

For a particularly goofy way to remember this: https://twitter.
com/paulgp/status/1275135175966494721?s=20

Identification of the Average Treatment Effect Estimand

We will conclude this lecture by describing sufficient conditions
under which we can identify the Average Treatment Effect or ATE, a
common target estimand for researchers.

Before we do that, we need to define the individual level causal
estimand (that is, recall, inherently unknowable). Call this the Indi-
vidual Treatment Effect or ITE. This is the difference between the
potential outcomes for a given unit:

τi ≡ Yi(1)−Yi(0). (2)

This can be easily generalized to multiple treatments as well: we will
discuss this in a few lectures.

Average Treatment Effect

We now consider the average treatment effect over the population.
This is, quite simply, the average of the individual treatment effects
over all individuals in the overall population.

https://twitter.com/paulgp/status/1275135175966494721?s=20
https://twitter.com/paulgp/status/1275135175966494721?s=20
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Definition 1
We define the average treatment effect in our population as

τATE ≡ E(τi) = E(Yi(1)−Yi(0)) = E(Yi(1))−E(Yi(0)).

Why do we find the ATE interesting?9 For one thing, it describes 9 This is sometimes called the population
average treatment effect or PATE. This is
then contrasted with the sample average
treatment effect or SATE. The SATE
is the ATE defined for the sample of
N individuals we observe, while the
PATE is the ATE for the population of
individuals we can draw the sample
from. We will discuss this in more
detail later in the class, but for now
I will just refer to the ATE to refer to
the average treatment effect over the
sample, and assume that the SATE and
PATE are similar. Typically if samples
are randomly draw, this is a reasonable
assumption, and the difference is
mainly in the inference. See Imbens
[2004] for an example discussion.

the effect of giving the treatment to everyone in the population. This
is often of interest to policymakers, who want to know the effect of a
policy on the entire population.

We now consider some additional average treatment estimands.
The first is the Average Treatment Effect on the Treated (ATT):

Definition 2

τATT ≡ E(τi|Di = 1) = E(Yi(1)|Di = 1)−E(Yi(0)|Di = 1).

This estimates the effect for individuals who received the treatment.10

10 It will be a little while until we dis-
cuss cases when the ATT and ATE
are different. A notable example is
difference-in-differences. Many exam-
ples where we use models to estimate
our counterfactual outcome will lead
to cases where we can only identify the
ATT and not the ATE.

Note that one piece of the ATT is observed: E(Yi(1)|Di = 1). This is
just the observed outcome for the treated units.

We can also define the conditional average treament effect (CATE).
Let Xi be a pre-determined set of covariates. Then, we can define the
CATE as:

Definition 3

τCATE(x) ≡ E(Yi(1)|Xi = x)−E(Yi(0)|Xi = x).

Example 1 (continued)
The ATE is what the effect would be on headaches if every person in
the population took aspirin relative to not taking aspirin.
The ATT is what the impact of aspirin has been for those who took
aspirin, relative to if they had not taken aspirin.
The CATE is what the impact of aspirin for a particular group, such
as older men, would be relative to not taking aspirin.

It is useful to note the following relationship between the ATE and
the CATE:

τATE =
∫

τCATE(x) f (x)dx.

If Xi is discrete with values in X , more simply this is

τATE = ∑
x∈X

τCATE(x)Pr(Xi = x).

We now discuss under what conditions we can identify the ATE.
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Identification of the ATE

Comment 3
What is identification? Intuitively, for a given estimand to be identi-
fied, it means that in a world with no uncertainty about data, can we
always identify the value of our estimand from the data we observe?
To quote Lewbel [2019]: “Econometric identification really means
just one thing: model parameters or features being uniquely deter-
mined from the observable population that generates the data.”

Note that without further assumptions, the ATE is not identified
from the observed data, (Y, D). Why? Consider the following estima-
tor of the ATE:

τ = E(Yi|Di = 1)− E(Yi|Di = 0) (3)

which compares the treated units’ average outcome to the untreated
units’ average outcome. Rewriting using our potential outcomes,

τ = E(Yi(1)|Di = 1)− E(Yi(0)|Di = 0),

we see that our key challenge is that the two expectations condition
on different values of Di. Hence, if there is correlation between Di and
(Yi(1), Yi(0)), these two averages are not comparable.

Example 2
Imagine I am a researcher studying the effect of a wage train-
ing program (Di) on wages (Yi). I have a sample of work-
ers, and I observe their wages and whether they participated
in the training program. I want to know the effect of the
training program on wages. If I use Equation (3) to com-
pare the wages of those who take the program to those who do
not, I may be comparing individuals who are very different.

For example, if the training program is voluntary, then it is likely
that those who take the program are more motivated or knowledge-
able about the labor force, and hence would have higher wages even
if they did not take the program. In this case, the naive estimator
would overstate the effect of the training program on wages. Let
Ui be a binary variable capturing their motivation or knowledge
of the labor force. If E(Di|Ui = 1) − E(Di|Ui = 0) > 0, and
E(τi|Ui = 1) − E(τi|Ui = 0) > 0, then the naive estimator will
overstate the effect of the training program on wages.
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Comment 4
As an exercise, prove that the naive estimator is biased in Example 2.

We are now ready for our first identification result. We first define
strong ignorability:

Definition 4
We say that Di is strongly ignorable conditional on a vector Xi if

1. Yi(0), Yi(1) ⊥ Di|Xi

2. ∃ε > 0 such that ε < Pr(Di = 1|Xi) < 1− ε.

The first part of Definition 4 is sometimes referred to unconfounde-
ness (or in economics, exogeneity): we assume that the choice of
treatment is independent (conditional on X) of the units’ potential
outcome. This means a unit can’t select into the treament based on
their potential benefits.11 11 Strong ignorability is a much more

precise term than exogeneous, but
tends to be used less in economics.
When communicating with an eco-
nomics audience, you might say that
Di is conditionally randomly assigned,
or Di is exogeneous – but this would
omit the second condition (which is
that the treatment is not too rare or too
common).

The second condition asserts that there is some variation in treat-
ment. This is sometimes called the common support or overlap con-
dition . It is a bit stronger than we need, but it is a convenient way to
ensure that we can compare the treated and untreated units.

Theorem 1 (Identification of the ATE)
If Di is strongly ignorable conditional on Xi, then

E(τi) = ∑
x∈Supp Xi

(
E(Yi|Di = 1, Xi = x)−E(Yi|Di = 0, Xi = x)

)
Pr(Xi = x)

Proof 1
Note that by strong ignorability,

E(Yi(0)|Xi) = E(Yi(0)|Di = 0, Xi) = E(Yi|Di = 0, Xi).

In essence, independence of Di and (Yi(0), Yi(1)) lets us interchange coun-
terfactuals and realized data in conditionals. The rest follows by the law of
iterated expectations.

This result is quite powerful, and describes a non-parametric con-
dition for when we can identify (and estimate) the ATE. A corrolary
of this theorem is that we can also identify conditional average treat-
ment effects as well (by assumption).

Identification through Directed Acylic Graphs

Above, we encoded random variables’ relationships functionally,
using potential outcomes. An alternative approach does this graph-
ically. I will not cover this in significant detail, but want to give an
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example of how to think about identification using Directed Acylcic
Graphs (DAGs).

We can encode the relationship between D and Y using an arrow
in a graph. The direction emphasizes that D causes Y, and not vice
versa.

D Y Figure 1: D has a causal effect on Y

We can also allow for the unobservable U, which drove identi-
fication concerns above in Example 2. In this case, U is termed a
confounder. We can look at the paths by which D links to Y:

• The standard direct effect D → Y

• The “back door” path D ← U → Y

Note that the back-door is not causal. We know from above that the
effect of D on Y is not identified under this setup, but this provides a
graphical intuition as well – there is a path connecting D and Y but it
does not flow in the right direction.

D Y

U Figure 2: D’s effect on Y is confounded
by U

Now, we can replace U with an observable X. X is still a con-
founder, but since it is observable, we can condition on it and identify
our effect (as in 1). As before, examine the paths by which D links to
Y:

• The standard direct effect D → Y

• The “back door” path D ← X → Y.

In a DAG, conditioning on a variable along the path “blocks” the
path, such that we would block the back door path.

D Y

X Figure 3: D’s effect on Y is confounded
by an observable X

Finally, let’s consider a more complicated example. X is now a
“collider”, such that D and Y both affect X.

As before, examine the paths by which D links to Y:
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D Y

X

• The standard direct effect D → Y

• The indirect path D → X ← Y.

This is not called a backdoor path because X does not point into D.
The key difference in this setting is that since X does not cause Y,

it is automatically blocked (all effects on X occur through our main
effect). However, if you condition on X, you open the path!

Example 2 (continued)
Return to the example of a job training program. We want to study
the impact of the program on wages, and we condition on whether a
person has a car. If a person’s wages affects their likelihood of having
a car, we will have created a biased comparison: we will first consider
the effect of the job training program among those who have a car
(which may be small), and then among those who do not (which may
also be small). If much of the effect of the program affects individu-
als’ ability to buy a car, then we will underestimate the effect of the
program.

Comment 5
A last example is what’s called a mediator. This is another variable
that is affected by the treatment, and affects the outcome. In this
case, we can think of the treatment as having two effects: a direct
effect, and an indirect effect through the mediator.

D Y

X

It is possible to control for a mediator in order to estimate only the
direct effect – this is sometimes referred to as mediation analysis.
However this is very sensitive to functional form, and not
recommended.

I will not give an exhaustive approach on how to deal with DAGs
for identification, but you can hopefully see that there is a great deal
of intuitive value in writing down the DAG in some problems. This is
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particularly true when dealing with colliders.

Structural equations and causal effects

It is important to not lose sight of the fact that these should be es-
timates that inform our economic model. Since much of our back-
ground is traditionally in structural equations (that often map to
economic models) it can often be more familiar to write out outcome
equation as:

Yi = α + βDi + εi.

It is quite helpful to see how this maps back to the potential out-
come framework:

Yi = Yi(0)(1− Di) + Yi(1)Di

= Yi(0) + τiDi

= Yi(0) + τDi + (τi − τ)Di

= E(Yi(0)|Di = 0)︸ ︷︷ ︸
α

+ τ︸︷︷︸
β

Di + (τi − τ)Di + (Yi(0)− E(Yi(0)|Di = 0))︸ ︷︷ ︸
εi

Consider now what E(Yi|Di) will recover:

E(Yi|Di = 1) = α + τ + E(εi|Di = 1)

E(εi|Di = 1) = (E(τi|Di = 1)− τ) + E(Yi(0)|Di = 1)− E(Yi(0)|Di = 0)

E(Yi|Di = 0) = α + E(εi|Di = 1)

E(εi|Di = 0) = 0.

So, we can see that we will recover the average treatment effect as β

if Di is randomly assigned (or strongly ignorable). This is a special
case where the coefficient β in the linear regression case will give the
average treatment effect, the constant will give the average for the
untreated, and the error term will capture the rest. We will suffer
from omitted variable bias if E(Yi(0)|Di = 1)− E(Yi(0)|Di = 0) ̸= 0 –
e.g. if there is selection into treatment based on your control potential
outcome. Notice that if E(τi|Di = 1) ̸= τ, then we will also not
estimate the ATE, but we will estimate the ATT.

More generally, however, it’s just useful to see that there are one-
to-one mappings between the potential outcome framework and
structural regressions. In many ways, the potential outcome frame-
work is helpful because it emphasizes the relevant counterfactual
state more than many linear models.

Phil Haile has some lovely slides discussing the importance of
structure in economics. One of the key issues he pushes back on is

https://www.princeton.edu/~reddings/tradephd/Haile_theorymeas.pdf
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the idea where many applied researchers estimating treatment effects
say they are being “model-free.” In other words, rather than writing
down a structural model and attempting to estimate something com-
plicated with a functional form, they view their treatment effects as
model-agnostic. This is sometimes referred to as the “reduced form”.

What is the reduced form from a structural estimation perspec-
tive? Following Haile, a reduced form relationship is one where the
endogeneous variable is a function of exogeneous variables and unob-
served structural error terms. Exogeneous here means variables that
satisfy the necessary independence assumptions with the structural
error terms.

Example 3
Consider a supply and demand system:

Qd = D(P, X, Ud)

Qs = S(P, Z, Us).

These are simultaneous equations where the observed price we see in
the market is the price where Qd = Qs. Often, supply (Qs) will be
written in terms of price (which is a function of marginal cost):

Q = D(P, X, Ud)

P = S(Q, Z, Us).

Since P and Q are endogeneous, these are structural equations.

The reduced form version of these equations would have the form

Q = d(X, Z, Ud, Us)

P = s(X, Z, Ud, Us).

In economics, we may consider estimating the effect of price on quan-
tity (e.g. a labor demand elasticity), which is a parameter in the
structural demand equation. When we use instrumental variables
and two-stage least squares (to be discussed further in a later class),
the first stage will be the reduce form, and the second stage is a
structural model.

Overall, it’s important to remember that many of our estimation
approaches imply a particular structural model. We may be approx-
imating something more complicated, but we’re typically making
some kind of modeling decision.
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Discussion Questions 1
1. Consider the potential outcome framework in the context of indi-

viduals. We are thinking about annual earnings Yi for an individ-
ual i. Often, we study the earnings gap between men and women.
Is it reasonable to consider the potential outcome Yi(1) vs. Yi(0)
for Di = 1 when i is a woman vs. when i is a man?

2. Consider the linear model from above:

Yi = α + βDi + εi.

When would we expected homoskedasticity to hold?
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