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There are three goals for this set of notes:

1. Discuss the value of randomized interventions, and more gener-
ally identifying settings where interventions are “as-if” randomly
assigned. In doing so, we’ll touch on the historical and (somewhat)
current views on this.

2. Define a “research design.”

3. Give an introduction to design-based vs. model-based identifica-
tion and causal inference.

Randomization

Randomization is a powerful tool. Being able to truly randomize
an intervention allows the researcher to assume (by definition) that
the potential outcomes for units are independent, satisfying the first
assumption in strong ignorability.

D Y

U

D Y

U Figure 1: D’s effect on Y is confounded
by U, but a randomized intervention of
D breaks any back-door connection

In a DAG, randomization ensures that any backdoor path to D is
broken, since the randomization was the only cause of the interven-
tion. This allows identification of the total effect on Y.1 1 Randomization does not necessarily

identify the direct effect of D on Y.
For example, if D affects multiple
outcomes, X and Y, and then X affects
Y as well, it’s possible that agents may
reoptimize their X, thereby offsetting
(or increasing) the direct effect of D on
Y.

If the use of randomization is so powerful, why don’t we always
use it? There are a few reasons:

1. People may not want to be randomized into different treatments.
They value their choices, and it may be impractical to randomize
their decisions even if there is a clear benefit to doing so. A firm,
for example, may not want to randomize their policies (although
they want to in some cases, as in settings with A/B testing).

2. It may be unethical to randomize. For example, if there is a clear
benefit to a treatment, it may be unethical to withhold that treat-
ment from individuals by placing them in the control.2 2 The concept of “equipoise” is often

used to describe the ethical considera-
tions of randomization in the medical
literature [Freedman, 1987]: “if there is
genuine uncertainty within the expert
medical community — not necessarily
on the part of the individual investiga-
tor — about the preferred treatment.”
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3. It may be impossible to randomize. For example, if we are in-
terested in the effect of a policy change, it may be impossible to
randomize the policy change across different regions or states.

The credibility revolution – then and now

While randomization is often viewed as the gold standard for policy
evaluation, this was not always the case. In fact, the use of random-
ized experiments in economics is relatively new. Indeed, while there
was the occasional agricultural economics application that had true
randomization, most econometric modeling estimating causal effects
and structural parameters was based on arguments about models
and controls. This led to substantial skepticism in the broader com-
munity by the end of the 1970s. This can be seen in discussion about
econometric estimates in Leamer [1983], “Let’s take the con out of
econometrics”:3 3 This Leamer [1983] article is really

worth reading in full.
After three decades of churning out estimates, the econometrics club
finds itself under critical scrutiny and faces incredulity as never before.
Fischer Black writes of “The Trouble with Econometric Models.” David
Hendry queries "Econometrics: Alchemy or Science?" John W. Pratt
and Robert Schlaifer question our understanding of "The Nature and
Discovery of Structure." And Christopher Sims suggests blending
"Macroeconomics and Reality.

Quite explicitly, Black [1982] says: “The trouble with econometric
models is that they present correlations disguised as causal relations.
The more obvious confusions between correlation and causation
can often be avoided, but there are many subtle ways to confuse
the two; in particular, the language of econometrics encourages this
confusion.”

The state of applied research is summarized (in a somewhat ex-
treme way) by Leamer as:

Econometricians would like to project the image of agricultural ex-
perimenters who divide a farm into a set of smaller plots of land and
who select randomly the level of fertilizer to be used on each plot. If
some plots are assigned a certain amount of fertilizer while others are
assigned none, then the difference between the mean yield of the fer-
tilized plots and the mean yield of the unfertilized plots is a measure
of the effect of fertilizer on agricultural yields. The econometrician’s
humble job is only to determine if that difference is large enough to
suggest a real effect of fertilizer, or is so small that it is more likely due
to random variation.

This image of the applied econometrician’s art is grossly misleading. I
would like to suggest a more accurate one. The applied econometri-
cian is like a farmer who notices that the yield is somewhat higher
under trees where birds roost, and he uses this as evidence that bird
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droppings increase yields. However, when he presents this finding at
the annual meeting of the American Ecological Association, another
farmer in the audience objects that he used the same data but came up
with the conclusion that moderate amounts of shade increase yields.
A bright chap in the back of the room then observes that these two hy-
potheses are indistinguishable, given the available data. He mentions
the phrase “identification problem,” which, though no one knows quite
what he means, is said with such authority that it is totally convinc-
ing.4 4 It continues: “The meeting reconvenes

in the halls and in the bars, with heated
discussion whether this is the kind
of work that merits promotion from
Associate to Full Farmer; the Luminists
strongly opposed to promotion and the
Aviophiles equally strong in favor.”

Finally, Leamer argues that the reason randomization is so helpful
is that it removes the need to arbitrarily try many specifications to
check for robustness to other confounding causes:

The truly sharp distinction between inference from experimental and
inference from nonexperimental data is that experimental inference
sensibly admits a conventional horizon in a critical dimension, namely
the choice of explanatory variables. If fertilizer is randomly assigned
to plots of land, it is conventional to restrict attention to the relation-
ship between yield and fertilizer, and to proceed as if the model were
perfectly specified... In contrast, it would be foolhardy to adopt such
a limited horizon with nonexperimental data. But if you decide to
include light level in your horizon, then why not rainfall; and if
rainfall, then why not temperature; and if temperature, then why not
soil depth, and if soil depth, then why not the soil grade; ad infini-
tum. Though this list is never ending, it can be made so long that a
nonexperimental researcher can feel as comfortable as an experimental
researcher that the risk of having his findings upset by an extension of
the horizon is very low. The exact point where the list is terminated
must be whimsical, but the inferences can be expected not to be sensi-
tive to the termination point if the horizon is wide enough.

If we fast-forward 25 years, Angrist and Pischke [2010] have now
declared victory: “The credibility revolution in empirical economics:
How better research design is taking the con out of econometrics”:

Empirical microeconomics has experienced a credibility revolution,
with a consequent increase in policy relevance and scientific impact.
Sensitivity analysis played a role in this, but as we see it, the primary
engine driving improvement has been a focus on the quality of em-
pirical research designs... The advantages of a good research design
are perhaps most easily apparent in research using random assign-
ment, which not coincidentally includes some of the most influential
microeconometric studies to appear in recent years.

As evidenced by both the title and the quote above, research de-
sign is declared the victor. But what is a research design? And why
is randomization its champion?
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Example 1
Some famous examples of programs that used randomization (includ-
ing those that they cite) include:

• PROGRESA, a conditional cash transfer program in Mexico (see
Parker and Todd [2017] for a review)

• Moving to Opportunity (MTO), a program that randomly selected
low income families to receive housing vouchers (see Katz et al.
[2001] for a discussion on the program)

• National Supported Work (NSW) demonstration, a federal job
training program that was randomized amongst applicants
(LaLonde [1986] is the canonical paper whose work with this
program is what sparked the “credibility revolution” – we will
discuss this next class)

• Oregon health insruance experiment, where the state of Oregon
randomized its Medicaid program for low-income, uninsured
adults. See Baicker et al. [2013] for a discussion.

• Tennessee STAR class size experiment, which randomized stu-
dents into classrooms of different sizes. See Krueger [1999] for a
discussion.

• H&R Block FAFSA was field experiment where individuals re-
cieving tax preperation at H&R Block were randomized into a
procedure to get help on the Free Application for Federal Student
Aid (FAFSA). See Bettinger et al. [2012] for a discussion.

What is a research design?

A goal of this class, and your empirical research going forward, is to
have a precise research design for your empirical analyses. This is a
term that is used frequently, but not always clearly defined. In fact,
in the Angrist and Pischke [2010] paper, the term is never defined
explicitly, despite being mentioned 69 times. I have seen it defined
explicitly only a few times, and rarely in economics.5 5 One very nice text in political science

that does define it is Blair et al. [2023].
They define a research design as “a
procedure for generating answers to
questions.”

I will provide you a definition, with the understanding that this
is not the only definition, and that there are many different ways to
think about research design. Much of the value in thinking about a
research design is about being explicit about the assumptions that
you are making, and how you are using the data to answer your
question.

A research design is a statistical and/or economic statement of
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how to estimate a causal relationship between two variables of inter-
est: how X causes Y. Since we know that causal effects require the
estimation of an (unobservable) counterfactual, this statement de-
scribes the assumptions necessary to impute the counterfactual. Why
is this valuable?

First, it forces you to articulate what the counterfactual is. This may
seem obvious, but often you may find researchers estimating a linear
equation and presenting estimates without clearly thinking about
their counterfactual statement. For example, when you estimate the
effect of a policy change, what is the counterfactual? Is it the state
of the world where the policy never occured? Or is it one where the
policy was introduced later? Or when estimating the effect of an
informational event (such as the effect of monetary policy), is the
counterfactual where the event never occurred? Or is it where the
event occurred as previously expected?

Second, it forces you to articulate how you are going to estimate
the counterfactual, and what assumptions are necessary. This is, of
course, what we will spend the rest of the semester building tools to
do. But at a very high-level, a research design can be split into two
types of approaches: model-based and design-based. Model-based
approaches will involve assumptions about modeling the expectation
(or other functional) of the counterfactual, specifically dealing with
any possible confounding variables. Design-based approaches will
involve assumptions about the treatment assignment mechanism,
without making formal assumptions about the model of the potential
outcomes.
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Comment 1
• Model-based: the estimand is identified using assumptions on the

modeling of the potential outcomes conditional on treatment and
additional variables (e.g. parallel trends). Examples of approaches
that can fall under this category include difference-in-differences
(including non-random staggerred diff-in-diff), regression dis-
continuity, synthetic control (and synthetic diff-in-diff), and
instrumental variable approaches that use “included” instru-
ments.

• Design-based: the estimand is identified using assumptions on
the treatment variable, conditional on the potential outcomes and
additional variables. Examples include randomized control trials,
instrumental variable approaches that use “excluded” instru-
ments, difference-in-difference with random staggered timing,
and propensity score matching.

See Lihua Lei’s very nice twitter thread for a small history on why
these terms acquired their labels.

To give a concrete example of how these assumptions may differ,
we can use the example from Robins et al. [1992]. Consider the ques-
tion of how smoking affects peoples’ ability to breath, as measured
by “forced expiratory volume in one second” (FEV1). This is often
used as a measure of lung function. Now we want to know what the
effect of a person being a smoker (Di) is on the individuals’ FEV1

(Yi). The two approaches (model and design) highlight the different
ways you might consider estimating the effect. One approach would
be to think hard about ways that shift around an individuals’ propen-
sity to be a smoker in as-if random ways – this would be a design
approach, since it is focused on the treatment assignment mecha-
nism. Another approach might be to compare individuals over time
in places where cigarette smoking was legal earlier vs. later – this
would be a model approach, since it is focused on the modeling of the
potential outcomes by using the individuals in the state with later
smoking as a control for the earlier group.6 6 One could take the same data and

use it for both approaches. If you were
willing to assume that the states chose
to make the cigarettes legal late vs.
early randomly, then this would be a
design-based approach, since it would
influence the treatment assignment
mechanism.

As it turns out, not only do these approaches matter for clarity
of thought, they matter for robustness of estimation (design-based
inference will be robust to model specification), weighting of esti-
mands (model-based approaches will be more sensitive to negative
weights), and the ability to generalize to other settings (model-based
approaches are often more easily generalized, conditional on the
model being correct). Moreover, one approach, with the same re-
search data and causal question, may be much more statistically

https://twitter.com/lihua_lei_stat/status/1479700463343714306?s=20&t=pKi-XTp3e89Rn8KV8b3KEA
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precise than another. We will continue to explore and describe these
two approaches throughout the semester.

Randomization and design-based inference

Returning to randomization, we can see that randomized interven-
tions are a form of design-based causal inference. Konwledge of
the treatment assignment mechanism gives a very powerful tool for
thinking about the counterfactual. In fact, it is so powerful that it is
the benchmark for other approaches in design-based inference. That
is, a randomized intervention with knowledge of the treatment as-
signment mechanism is the “gold standard.” In future cases, we will
need to make assumptions about the treatment assignment mecha-
nism and defend them. For now, we will provide the notation and
estimators for the randomized case, and next class we will discuss
more general approaches.

As before, there is a finite population of n individuals indexed by
i. For each i, we have triplets (Yi(0), Yi(1), Di), where Di ∈ {0, 1}
is the treatment status and (Yi(0), Yi(1)) denotes the potential out-
comes. We observe (Yi, Di), and define the vector version of these as
Y and D. There are many things we could want to know abotu the
relationship between Di and τi = Yi(1)− Yi(0), but for today, we will
focus on τ̄ = n−1 ∑n

i=1 τi.7 7 One could, for example, study the
median treatment effect, or other
features of the distribution. This is
more complex, as we will see in future
lectures.

Design-based inference considers the set of potential ways that
D could be randomized to the population. We will assume that Y1

and Y0 are fixed – it is only the random variation in D that creates
uncertainty. Formally, let Ω denote that space of possible values that
D can take. It is defined by the type of randomized experiment one
runs.
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Example 2
If we do a purely randomized individualized trial, where each individ-
ual has a fair coin flipped on whether they are treatment or control,
then Ω = {0, 1}n. But then the variation in number treated and
control can vary quite a lot for small samples!

0

100

200

0.00 0.25 0.50 0.75 1.00
Share Population Treated

Other ways to consider randomly assigning individuals include:

• Random draws from an urn (to ensure an exact number treated)

• Clustering individuals on characteristics (or location)

Given our sample space and knowledge of the randomziation, we
know the exact probability distribution over Ω, and hence D.

Example 3
Consider a sample of 10 units, with 5 treated and 5 control. We know
that there are only (10

5 ) = 252 potential combinations (each equally
likely). We observe one set of them in Table 1. Note that one set of the
entries (in blue) are fundamentally unobservable due to the treatment
status.

Di Yi(1) Yi(0) Yi τi

1 11.9 6.6 11.9 5.3
1 10.0 8.5 10.0 1.5
1 9.7 9.4 9.7 0.3
1 9.5 7.0 9.5 2.5
1 11.4 7.4 11.4 4.0
0 9.6 7.6 7.6 2.0
0 9.1 7.1 7.1 2.0
0 10.4 7.7 7.7 2.7
0 10.4 8.0 8.0 2.4
0 12.4 7.8 7.8 4.6

Table 1: Example of a randomization
over n = 10 units. The highlighted
entries are unobservable due to the fun-
damental problem of causal inference.

Now, we need an estimator for τ̄ = n−1 ∑n
i=1 τi. We already know

under random assignment that E(Yi|Di = 1)− E(Yi|Di = 0) identifies
E(τi). Then, the empirical analog is quite easy (with n1 equal to the
number of treated, n0 number control, and n0 + n1 = n):

ˆ̄τ(D, Y) =
D′Y
∑i Di

− (1 − D)′Y
∑i(1 − Di)

(1)

= n−1
1 ∑

i
YiDi − n−1

0 ∑
i

Yi(1 − Di) (2)

Note that this expectation operator is well-defined from the objects
we already know. Since only D is random, and we know its marginal
distribution over the sample we can show that this estimator is un-
biased. This particular estimator is unbiased when the design, or the
randomization across Ω, is special: it has complete random assign-
ment across of the units across the treatment. We assume that n1/n
units are randomly assigned (in our example in Table 1, 5/10.).8 8 If the probabiltiies vary across the

sample space (due to covariates, say, or
a more unusual sampling scheme), we
need to add weights. This is known as
Horovitz-Thompson weighting, and we
will return to this.

Under this design,the probability of a unit receiving treatment
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given a draw D is π = n1/n. Note that this implies that there are al-
ways n1 units treated, and we are randomly allocating the treatments
within the n units. Then, note that E(π−1

1 Di) = 1.9 With this, 9 Recall that E(Di) = Pr(Di = 1) =
n−1n1.

E( ˆ̄τ(D, Y)) = E
(

D′Y
∑i Di

− (1 − D)′Y
∑i(1 − Di)

)
= n−1E

(
∑

i
π−1

1 YiDi − ∑
i
(1 − π1)

−1Yi(1 − Di)

)

= n−1E

(
∑

i
π−1

1 Yi(1)Di − ∑
i
(1 − π1)

−1Yi(0)(1 − Di)

)
= n−1 ∑

i
Yi(1)E

(
π−1

1 Di

)
− n−1 ∑

i
Yi(0)E

(
(1 − π1)

−1(1 − Di)
)

= n−1 ∑
i

Yi(1)− Yi(0) = n−1 ∑
i

τi.

Hence, this estimator is unbiased for the ATE.
We can also study the variance properties of the estimator. Thanks

to Splawa-Neyman et al. [1990], we know that the variance of ˆ̄τ is
given by:

σ2
ˆ̄τ =

1
n − 1

(
n1σ2

0
n0

+
n0σ2

1
n1

+ 2σ0,1

)
(3)

where σ2
0 , σ2

1 , σ0,1 are the variance of the potential control, treatment,
and the covariance between the two. Note that these variances are of
the potential outcomes. Some nice intuition can come from looking
at this. First, we see that the variance of the estimator increases when
either the treated or control variance increases. This makes sense – it
is harder to distinguish treatment and control when there is a large
dispersion for either group. Second, the overall variance is increases
(holding fixed the specific variances) as you increase the share of
treated units. This makes sense because you have less information
about the control for the treatment. Finally, the covariance of the
potential outcomes matters for the overall variance – if the units have
negative covariance, that will help in estimating the treatment effect
because a large shock to the control potential outcome will be offset
by a large shock in the other direction for the treatment.

Since we do not know σ0,1, we need to bound this estimand with a
conservative estimator:

σ̂2
ˆ̄τ =

n
n − 1

(
σ̂2

0
n0

+
σ̂2

1
n1

)
. (4)

This estimator is knowable from the data, if the treatment is ran-
domly assigned.
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Example 3 (continued)
We can now construct our estimator and the variance of this estima-
tor:

ˆ̄τ = 5−1 ∑
i

YiDi − 5−1 ∑
i

Yi(1 − Di) = 2.86

and

σ̂2
0 = 5−1 ∑

i
(Yi − Ŷ0)

2(1 − Di) = 0.932

σ̂2
1 = 5−1 ∑

i
(Yi − Ŷ1)Di = 0.0904

σ̂2
τ̂ =

10
9

(
0.932

5
+

0.0904
5

)
= 0.2

Hence, our standard error is
√

0.2 = 0.45.

Comment 2
It is interesting to note that this variance estimator is nearly iden-
tical to the case with the standard robust estimator from a more
traditional linear equation:

Yi = α + βDi + ϵi.

See Equation 2 from Imbens and Kolesar [2016] to compare.

Thinking about inference

We could use this variance estimator to thinking about constructing
confidence intervals now. Often, this is done by inverting a hypothesis
test. For example, we could test the null hypothesis that E(τi) = 0
– the average treatment effect in the sample is zero. We will revisit
this in further detail in our linear regression classes, and you have
likely seen quite a bit of this in your previous classes. Thinking about
testing in the design-based setting will be no different – the only
change is that the uncertainty is driven by the random assignment
of the treatment, rather than uncertainty in the outcome (e.g. usually
the errors in the model). It is not always easy to figure out what the
variance of an estimator is that has a non-standard design. We will
discuss simple cases where probabilities are done in a straightfor-
ward way, but often experiments are run in ways that create unusual
dependence across units.10 10 See Imbens and Rubin [2015] for a

general discusion and Chang [2023] for
a discussion on complex experiements.

One very powerful tool that can avoid estimation of standard
errors is to use randomization inference instead. One example where
we can use this is in testing the strong null hypothesis that τi = 0 for
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all i. That is, the treatment has zero effect. This is a very strong null
hypothesis – it is stronger than the null hypothesis that τ̄ = 0.

Di Yi(1) Yi(0) Yi

1 11.9 11.9 11.9
1 10 10 10

1 9.7 9.7 9.7
1 9.5 9.5 9.5
1 11.4 11.4 11.4
0 7.6 7.6 7.6
0 7.1 7.1 7.1
0 7.7 7.7 7.7
0 8 8 8

0 7.8 7.8 7.8

Table 2: Imputed values under the null
hypothesis of τi = 0 for all i.

Given our data and under the null of τi = 0, we can calculate the
full distribution of potential observed statistics we would see, as we
vary D. We do so by imputing our missing values under the null hy-
pothesis, and calculating the estimator if we randomly permuted the
treatment labels. Since we are asserting the known missing values,
we can reconstruct the full distribution in Figure 2. We can then cal-
culate the probability of seeing a value as extreme as our observed
value. This is known as a p-value. If this probability is small, we reject
the null hypothesis that τi = 0 for all i.

0

3

6

9

−3 0 3
Estimated Differences under Strong Null

Figure 2: Distribution of ˆ̄τ under the
null hypothesis of τi = 0 for all i under
all permutations. Vertical line denotes
the observed estimate in the data.

Comment 3
We have only discussed a very simple estimator which assumes com-
plete randomization. The generalized estimator that allows for more
complex randomization schemes is known as the Horvitz-Thompson
estimator from Horvitz-Thompson (1952) (see Aronow and Middle-
ton (2013) for a useful discussion):

ˆ̄τHT = n−1

[
∑

i

1
π1i

YiDi −
1

π0i
Yi(1 − Di)

]
, (5)

where πi1 = Pr(Di = 1), and π0i = Pr(Di = 0). This estimator
is unbiased even in settings where we don’t have equal weighting
across the sampling space. This is reweighting using the propensity
score! We will discuss this next class.

Credibility revolution and internal vs. external validty

The focus on randomization and credible design has had an ex-
tremely powerful impact of the believability of estimates. However,
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there was (and sometimes is) a view that the emphasis in these ap-
proaches focuses too much on solving problems of internal validity
(i.e. the ability to identify the causal effect in the sample) and not
enough on external validity (i.e. the ability to generalize to other set-
tings).

This debate around internal vs. external validity erupted at the
end of the 2000s, especially focused in development economics. Pa-
pers in this space include:

• “Instruments, Randomization, and Learning about Development”
Deaton (2010)

• “Comparing IV with structural models: What simple IV can and
cannot identify”, Heckman and Urzua (2009)

• “Better LATE Than Nothing: Some Comments on Deaton (2009)
and Heckman and Urzua (2009)” Imbens (2010)

• “Building Bridges between Structural and Program Evaluation
Approaches to Evaluating Policy” Heckman (2010)

Much of this is tied to instrumental variables, which we’ll revisit
later. To give you a flavor of the issue as flagged in development,
here is Angus Deaton in 2010 [Deaton, 2010] describing issues with
randomized experiments in development:

Under ideal circumstances, randomized eval uations of projects are
useful for obtaining a convincing estimate of the average effect of a
program or project. The price for this success is a focus that is too nar-
row and too local to tell us "what works" in development, to design
policy, or to advance scientific knowledge about development pro-
cesses. Project evaluations, whether using random ized controlled trials
or nonexperimental methods, are unlikely to disclose the secrets of
development nor, unless they are guided by theory that is itself open
to revision, are they likely to be the basis for a cumulative research
program that might lead to a better understanding of development.

As another example, here is a table from Heckman [2010] that
compares the assumptions needed for potential outcomes vs. struc-
tural work (a dichotomy which I think is somewhat vacuous), and
emphasizing the external validity problem in potential outcomes
work:11 11 There are a number of statements in

this table that are not correct regarding
potential outcomes. For example,
the statement that social interactions
is assumed away is not correct. See
Lecture 4 for more discussion.

Many of the complaints by the anti-randomistas devolve into three
types: first, the analyses are done incorrectly (e.g. bad IVs). I think
full-throated defenders of experiments would agree that badly done
research should be rejected regardless. More importantly, the trans-
parency of the research design should make this easier. Second, that
research does not generalize to other populations. For example, Pro-
gressa is a big success, but knowing that conditional cash transfers
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work in this one setting may not necessarily inform our ability to roll
it out in places that are very different. Third, that there is a rhetorical
overreliance on RCTs as the gold standard, and that post-hoc anal-
yses (without a pre-analysis plan) defeat the underlying value of an
RCT anyway.12 More generally, there is a concern that focusing on 12 It is unclear why an experiment is

worse than a non-experiment in this
regard, but this is a concern Deaton
flags.

clever RCTs and IVs causes an overfocus on irrelevant or unimpor-
tant questions. A briefcase full of results that are not economically
useful.13 13 This is still a complaint one can hear

today!It is useful to consider these concerns in the context of the discus-
sion at the beginning of this lecture. Much of this concern about how
to do empirical work does not provide much of a counterfactual. His-
torical evidence suggests that empirical work was simply not credible
prior to this move. Additionally, it seems like the concerns about
empirics being too separated from models are overstated. Perhaps
in part in response to these critiques, many empirical papers with
causal parameters are tightly linked to theretical work. For those
that are not, the results eventually inform many theoretical papers.
A push to open data has actually made it easier for researchers to
follow-up and study these issues.

The key way in which “better research design is taking the con
out of econometrics” is by making the assumptions in empirical
work explicit. This can be using a randomized intervention, or some
other design-based approach, or it can be done using a model-based
approach. Then, researchers can evaluate clearly the credibility of the
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assumptions, and the robustness of the results to these assumptions.
The inclusion of an economic model does not grant an empirical researcher
to omit a research design from their empirics. Many researchers may
propose a model, and then demonstrate that their model is consistent
with observational data. This is not a research design, which requires
an additional argument for how the empirical approach can be used
to identify the causal estimand of interest.
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