Potential Outcomes and Directed Acylic Graphs

Paul Goldsmith-Pinkham

January 16, 2024

Causality and counterfactuals

- Not every economics research paper is estimating a causal quantity
 - But, the implication or takeaway of papers is (almost) always a causal one
- Causality lies at the heart of every exercise
- Goal for today's class:
 - 1. Enumerate tools used to discuss causal questions
 - 2. Emphasize a *multimodal* approach
 - 3. Set terminology/definitions for future discussions

"We do not have knowledge of a thing until we have grasped its why, that is to say, its cause."

-Aristotle

Causality and counterfactuals - strong opinions

- The true underpinnings of causality are nearly philosphical in nature
 - If Aristotle didn't settle the question, neither will researchers in the 21t century
- I will avoid many of the discussions, but my biases will show up in one or two settings
- Key point: economics research is messy, and a careful discussion of causality entails two dimensions:
 - 1. A good framework to articulate your assumptions
 - 2. Readers that understand the framework

The problem of causal inference: a medical example

- Two variables:
 - $Y \in \{0, 1\}$: whether a person will get Covid-19
 - $D \in \{0, 1\}$: whether a person gets a vaccine
- Our question: does *D* causally affect *Y*?
- *Ignore the question of data for now* this is purely a question of what is knowable.
- "The fundamental problem of causal inference" (Holland 1986) is that for a given individual, we can only observe one world – either they get the vaccine, or they do not

The problem of causal inference: a medical example

- What is knowable?
 - We need notation
 - Begin with the Neyman-Rubin Causal model
- There is a population of *n* individuals, indexed by *i*.
- Let $Y_i(D_i)$ denote the outcome given a particular vaccine treatment
 - $Y_i(1)$: they receive the vaccine
 - $Y_i(0)$: they do not receive the vaccine
- Key Assumption?

The problem of causal inference: a medical example

- What is knowable?
 - We need notation
 - Begin with the Neyman-Rubin Causal model
- There is a population of *n* individuals, indexed by *i*.
- Let $Y_i(D_i)$ denote the outcome given a particular vaccine treatment
 - $Y_i(1)$: they receive the vaccine
 - $Y_i(0)$: they do not receive the vaccine
- **Key Assumption**? person *i*'s outcome is only affected by their own treatment. We will discuss relaxing this assumption later.
 - SUTVA Stable Unit Treatment Variable Assignment

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

i	Y _i (1)	<i>Y</i> _{<i>i</i>} (0)	Di	Y _i
1	1	0	1	1
2	0	0	1	0
3	1	0	0	0
		÷		
п	0	1	0	1

Causal inference is a missing data problem

- In the potential outcomes framework, causal inference and missing data are tightly linked.
- Any causal answer uses assumptions to infer the "missing" counterfactual
- Goal of this course will be to discuss many ways to solve these types of problems
- Before diving into the many potential estimands, consider what the goal is.
 - A structural parameter? E.g. dlnvestment/dTax Rate
 - Existence of an treatment effect?
 - A policy evaluation?

A brief aside: estimands, estimators and estimates

- Estimand: the quantity to be estimated
- <u>Estimate</u>: the approximation of the estimand using a finite data sample
- <u>Estimator</u>: the method or formula for arriving at the estimate for an estimand
- My way of remembering: https://twitter.com/ paulgp/status/1275135175966494721?s=20

Causal estimands

- We will start with the Average Treatment Effect:
 - $\tau_{ATE} = \mathbb{E}(\tau_i) = \mathbb{E}(Y_i(1) Y_i(0)) = \mathbb{E}(Y_i(1)) \mathbb{E}(Y_i(0))$
- This expression is defined over the full population, and includes individuals who may never recieve the treatment.
 - Average Treatment Effect on the Treated $\tau_{ATT} = \mathbb{E}(\tau_i | D_i = 1) = \mathbb{E}(Y_i(1) Y_i(0) | D_i = 1) = \mathbb{E}(Y_i(1) | D_i = 1) \mathbb{E}(Y_i(0) | D_i = 1)$
 - Estimated effect for individuals who received the treatment.
 - Note that one piece of this measure is purely observed data: $\mathbb{E}(Y_i(1)|D_i = 1)$
- Conditional Average Treatment Effect:

 $\overline{\tau_{CATE}(x) = \mathbb{E}(\tau_i | X_i = x) = \mathbb{E}(Y_i(1) - Y_i(0) | X_i = x)}$ where X_i is some additional characteristic.

A second brief aside: what is identification?

- What does (point) identification mean?

A second brief aside: what is identification?

- What does (point) identification mean?
- Intuitively, for an estimate of interest, τ_{ATE} , to be identified, it means that in a world with no uncertainty about data, can we always identify the value of τ from the data we observe?
 - In other words, it's an invertability condition

"Econometric identification really means just one thing: model parameters or features being uniquely determined from the observable population that generates the data" -Lewbel (2019)

A second brief aside: what is identification?

- What does (point) identification mean?
- Intuitively, for an estimate of interest, τ_{ATE} , to be identified, it means that in a world with no uncertainty about data, can we always identify the value of τ from the data we observe?
 - In other words, it's an invertability condition

"Econometric identification really means just one thing: model parameters or features being uniquely determined from the observable population that generates the data" -Lewbel (2019)

- Why would something not be identified if we only observe (Y_i, D_i) ?
 - Consider τ_{ATT} . $\mathbb{E}(Y_i(1)|D_i = 1)$ is identified, mechanically. What about $\mathbb{E}(Y_i(0)|D_i = 1)$?
 - One approach: make an assumption on the relationship between D_i and $(Y_i(1), Y_i(0))$.

Under what conditions is the ATE identified?

Strong Ignorability: D_i is strongly ignorable conditional on a vector \mathbf{X}_i if

- **1.** $(Y_i(0), Y_i(1)) \perp D_i | \mathbf{X}_i$
- **2.** $\exists \epsilon > 0$ s.t. $\epsilon < \Pr(D_i = 1 | X_i) < 1 \epsilon_i$
 - The first condition asserts independence of the treatment from the "potential" outcomes
 - The second condition asserts that there are both treated and untreated individuals
 - N.B. The term "strong ignorability" is much more precise than exogeneous
 - But less commonly used in economics.
 - You might instead say "D_i is conditionally randomly assigned."
 - If you *might* even say *D_i* is exogeneous.

When could we not identify the ATE?

- Intuitively, we understand why we typically can't estimate a treatment effect
- Consider an unobservable variable, $U_i \in \{0, 1\}$ where $(Y_i(0), Y_i(1), D_i) \not\perp U_i$
- Simple example: when $E(D_i | U_i = 1) > E(D_i | U_i = 0)$ and $E(\tau_i | U_i = 1) > E(\tau_i | U_i = 0)$.
- In other word, there is a variable that influences both the potential outcomes and the choice of treatment.
 - In this case, estimating the counterfactual is contaminated by the variable *U_i*
- Many of the goals in this class will be to address this

Theorem: Identification of the ATE

<u>Theorem</u>: If D_i is strongly ignorable conditional on X_i , then

$$\mathbb{E}(\tau_i) = \sum_{x \in \text{Supp } X_i} (\mathbb{E}(Y_i | D_i = 1, \mathbf{X}_i = x) - \mathbb{E}(Y_i | D_i = 0, \mathbf{X}_i = x)) Pr(\mathbf{X}_i = x)$$

<u>Proof:</u> Note that $\mathbb{E}(Y_i(0)|\mathbf{X}_i) = \mathbb{E}(Y_i(0)|D_i = 0, \mathbf{X}_i) = \mathbb{E}(Y_i|D_i = 0, \mathbf{X}_i)$ by strong ignorability. In essence, independence of D_i and $(Y_i(0), Y_i(1))$ lets us interchange counterfactuals and realized data in conditionals. The rest follows by the law of iterated expectations.

- Key implication – counterfactual can be generated by using the averages.

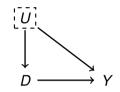
Identification of the ATE - Intuition

i	<i>Y_i</i> (1)	<i>Y_i</i> (0)	Di	Y _i
1	1	-	1	1
2	0	-	1	0
3	1	-	1	1
4	1	-	1	1
5	-	0	0	0
6	-	0	0	0
7	-	0	0	0
8	-	1	0	1

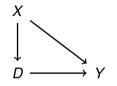
- We can estimate $\mathbb{E}(Y_i | D_i = 1) = 0.75$ and $\mathbb{E}(Y_i | D_i = 0) = 0.25$.
- We are defining our counterfactual in the missing data as 0.25, or 0.75, respectively.
- If we had covariates, we would condition within those groups.
- Note that this is all *non-parametric* identification – we have made no model restriction on the data-generating process

- Above, we encoded random variables' relationships functionally, using potential outcomes
- An alternative approach does this graphically (with similar modeling under the hood – to be continued...)
- We can encode the relationship between *D* and *Y* using an *arrow* in a graph. The direction emphasizes that *D* causes *Y*, and not vice versa.
- Substantially more intuitive

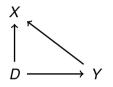
- We can also allow for the unobservable *U*, which drove the identification concerns above
- In this case, *U* is termed a *confounder*. Why?
- Examine the paths by which *D* links to *Y*:
 - The standard direct effect D o Y
 - The "Back-Door" path $\textit{D} \leftarrow \textit{U}
 ightarrow \textit{Y}$
- Note that the back-door is not causal
- Key point: effect of *D* on *Y* is not identified under this setup



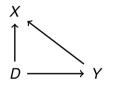
- We replace *U* with an observable *X* identification concerns above
- X is still a confounder, but we could condition on it and identify our effect. Why?
- Examine the paths by which D links to Y:
 - The standard direct effect D o Y
 - The "Back-Door" path $D \leftarrow X \rightarrow Y$
- Now, conditioning on a variable along the path "blocks" the path
 - E.g. *D* is independent of *Y* conditional on *X* (strong ignorability)



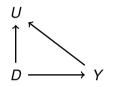
- One more example before formalizing the goal
 - X is now a "collider" (note direction of arrows)
- Examine the paths by which *D* links to *Y*:
 - The standard direct effect D o Y
 - The path $D o X \leftarrow Y$
- Key difference: a collider is automatically blocked (if it or upstream variables are not conditioned on)
 - If you condition on *X*, you open the path!
 - Example: conditioning on an outcome variable



- The graphs looked similar, but the order of true causal path mattered



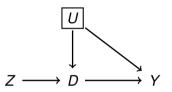
- The graphs looked similar, but the order of true causal path mattered
- Identifying colliders is a crucial aspect of identifying whether an effect is identified



- The graphs looked similar, but the order of true causal path mattered
- Identifying colliders is a crucial aspect of identifying whether an effect is identified
- Key value in a DAG (to me) is laying out a model of causality, and clarifying what effects need to be restricted, even in a complicated setting
 - For example, how is the effect of *D* on *Y* identified here?

X	к
Î	
$Z \longrightarrow D$	$\longrightarrow Y$

- The graphs looked similar, but the order of true causal path mattered
- Identifying colliders is a crucial aspect of identifying whether an effect is identified
- Key value in a DAG (to me) is laying out a model of causality, and clarifying what effects need to be restricted, even in a complicated setting
 - For example, how is the effect of *D* on *Y* identified here?
- What about now?



Key steps with a DAG

- Steps when using a DAG
 - 1. Write down the DAG, and identify what effect you want
 - 2. Write all paths between the two nodes
 - 3. What are the "causal" paths (e.g. the arrows all flow in the right direction)?
 - 4. How many backdoor paths are there? Are they blocked? Can they be?
- Crucial point: conditioning on colliders will cause more harm than good
- We will revisit this setup for some empirical settings
 - Let me know if you think there are good use cases!

Structural equations and causal effects (Haile 2020)

- **Important**: do not lose sight of the fact that these should be estimates that inform our economic model
- (Haile 2020) The reduced form equation is one where the inputs are i) *exogeneous* (ed note: we have not defined this) and ii) unobservable ("structural errors") and the outputs are endogeneous variables. [E.g. $Y_i = f(D_i, X_i, \epsilon_i)$]
- The PO framework's key insight was considering the sets of counterfactuals for each individual. However, it is not magic; insights can typically map across different notations (DAGs, PO, structural econometric equations). Note that these are effectively equivalent:

$$Y_{i} = D_{i} Y_{i}(1) + (1 - D_{i}) Y_{i}(0)$$

$$Y_{i} = \alpha + D_{i}(\tau + v_{i}) + u_{i}$$

Concrete example: demand and supply

- Consider a demand and supply model: *P*(*Q*) and *Q*(*P*):

$$P = \alpha_0 + \alpha_1 Q + \alpha_2 W + \epsilon$$
(1)

$$Q = \beta_0 + \beta_1 P + \beta_2 V + \xi$$
(2)

- This is the "structural" equations
- The reduced form comes from plugging in the endogeneous variables and solving for only "exogeneous" variables on the RHS
- This will let us consider counterfactuals in the structural equations!