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Causality and counterfactuals

- Not every economics research paper is
estimating a causal quantity

- But, the implication or takeaway of papers is
(almost) always a causal one

- Causality lies at the heart of every exercise

- Goal for today’s class:
1. Enumerate tools used to discuss causal

questions
2. Emphasize a multimodal approach
3. Set terminology/definitions for future

discussions

“We do not have knowledge of a
thing until we have grasped its
why, that is to say, its cause.”

-Aristotle
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Causality and counterfactuals - strong opinions

- The true underpinnings of causality are nearly
philosphical in nature

- If Aristotle didn’t settle the question, neither will
researchers in the 21t century

- I will avoid many of the discussions, but my biases will
show up in one or two settings

- Key point: economics research is messy, and a careful
discussion of causality entails two dimensions:

1. A good framework to articulate your assumptions
2. Readers that understand the framework
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The problem of causal inference: a medical example

- Two variables:
- Y ∈ {0,1}: whether a person will get Covid-19
- D ∈ {0,1}: whether a person gets a vaccine

- Our question: does D causally affect Y ?

- Ignore the question of data for now – this is purely a question of what
is knowable.

- “The fundamental problem of causal inference” (Holland 1986) is
that for a given individual, we can only observe one world – either
they get the vaccine, or they do not
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The problem of causal inference: a medical example

- What is knowable?
- We need notation
- Begin with the Neyman-Rubin Causal model

- There is a population of n individuals, indexed by i .

- Let Yi(Di) denote the outcome given a particular
vaccine treatment

- Yi (1): they receive the vaccine
- Yi (0): they do not receive the vaccine

- Key Assumption?

person i ’s outcome is only affected
by their own treatment. We will discuss relaxing this
assumption later.

- SUTVA - Stable Unit Treatment Variable Assignment

Yi = DiYi(1) + (1−Di)Yi(0)

i Yi(1) Yi(0) Di Yi

1 1 0 1 1
2 0 0 1 0
3 1 0 0 0

...
n 0 1 0 1
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Causal inference is a missing data problem

- In the potential outcomes framework, causal inference
and missing data are tightly linked.

- Any causal answer uses assumptions to infer the
“missing” counterfactual

- Goal of this course will be to discuss many ways to
solve these types of problems

- Before diving into the many potential estimands,
consider what the goal is.

- A structural parameter? E.g. dInvestment/dTax Rate
- Existence of an treatment effect?
- A policy evaluation?
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A brief aside: estimands, estimators and estimates

- Estimand: the quantity to be estimated

- Estimate: the approximation of the estimand using a
finite data sample

- Estimator: the method or formula for arriving at the
estimate for an estimand

- My way of remembering: https://twitter.com/
paulgp/status/1275135175966494721?s=20
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Causal estimands

- We will start with the Average Treatment Effect:
- τATE = E(τi ) = E(Yi (1)− Yi (0)) = E(Yi (1))−E(Yi (0))

- This expression is defined over the full population, and includes
individuals who may never recieve the treatment.

- Average Treatment Effect on the Treated τATT = E(τi |Di = 1) =
E(Yi (1)− Yi (0)|Di = 1) = E(Yi (1)|Di = 1)−E(Yi (0)|Di = 1)

- Estimated effect for individuals who received the treatment.
- Note that one piece of this measure is purely observed data:

E(Yi (1)|Di = 1)

- Conditional Average Treatment Effect:
τCATE (x) = E(τi |Xi = x) = E(Yi(1)− Yi(0)|Xi = x) where Xi is some
additional characteristic.
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A second brief aside: what is identification?

- What does (point) identification mean?

- Intuitively, for an estimate of interest, τATE , to be
identified, it means that in a world with no
uncertainty about data, can we always identify
the value of τ from the data we observe?

- In other words, it’s an invertability condition

“Econometric identification really
means just one thing: model
parameters or features being
uniquely determined from the
observable population that
generates the data”

-Lewbel (2019)
- Why would something not be identified if we only observe (Yi ,Di)?

- Consider τATT . E(Yi (1)|Di = 1) is identified, mechanically. What about E(Yi (0)|Di = 1)?
- One approach: make an assumption on the relationship between Di and (Yi (1),Yi (0)).
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Under what conditions is the ATE identified?

Strong Ignorability: Di is strongly ignorable conditional on a vector Xi if
1. (Yi(0),Yi(1)) ⊥⊥ Di |Xi

2. ∃ϵ > 0 s.t. ϵ < Pr(Di = 1|Xi) < 1− ϵi

- The first condition asserts independence of the treatment from the
“potential” outcomes

- The second condition asserts that there are both treated and
untreated individuals

- N.B. The term “strong ignorability” is much more precise than
exogeneous

- But less commonly used in economics.
- You might instead say “Di is conditionally randomly assigned.”
- If you might even say Di is exogeneous.
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When could we not identify the ATE?

- Intuitively, we understand why we typically can’t
estimate a treatment effect

- Consider an unobservable variable, Ui ∈ {0,1} where
(Yi(0),Yi(1),Di) ̸⊥⊥ Ui

- Simple example: when E(Di |Ui = 1) > E(Di |Ui = 0)
and E(τi |Ui = 1) > E(τi |Ui = 0).

- In other word, there is a variable that influences both
the potential outcomes and the choice of treatment.

- In this case, estimating the counterfactual is
contaminated by the variable Ui

- Many of the goals in this class will be to address this
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Theorem: Identification of the ATE

Theorem: If Di is strongly ignorable conditional on Xi , then

E(τi) = ∑
x∈SuppXi

(E(Yi |Di = 1,Xi = x)−E(Yi |Di = 0,Xi = x))Pr (Xi = x)

Proof: Note that E(Yi(0)|Xi) = E(Yi(0)|Di = 0,Xi) = E(Yi |Di = 0,Xi)
by strong ignorability. In essence, independence of Di and (Yi(0),Yi(1))
lets us interchange counterfactuals and realized data in conditionals. The
rest follows by the law of iterated expectations.

- Key implication – counterfactual can be generated by using the
averages.
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Identification of the ATE - Intuition

i Yi(1) Yi(0) Di Yi

1 1 - 1 1
2 0 - 1 0
3 1 - 1 1
4 1 - 1 1
5 - 0 0 0
6 - 0 0 0
7 - 0 0 0
8 - 1 0 1

- We can estimate E(Yi |Di = 1) = 0.75
and E(Yi |Di = 0) = 0.25.

- We are defining our counterfactual in
the missing data as 0.25, or 0.75,
respectively.

- If we had covariates, we would condition
within those groups.

- Note that this is all non-parametric
identification – we have made no model
restriction on the data-generating
process
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Identification through Directed Acylic Graphs (DAGs)

- Above, we encoded random variables’
relationships functionally, using
potential outcomes

- An alternative approach does this
graphically (with similar modeling under
the hood – to be continued...)

- We can encode the relationship
between D and Y using an arrow in a
graph. The direction emphasizes that D
causes Y , and not vice versa.

- Substantially more intuitive

D Y
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Identification through Directed Acylic Graphs (DAGs)
- We can also allow for the unobservable

U , which drove the identification
concerns above

- In this case, U is termed a confounder.
Why?

- Examine the paths by which D links to
Y :

- The standard direct effect D → Y
- The “Back-Door” path D ← U → Y

- Note that the back-door is not causal

- Key point: effect of D on Y is not
identified under this setup

D Y

U
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Identification through Directed Acylic Graphs (DAGs)

- We replace U with an observable X identification
concerns above

- X is still a confounder, but we could condition on
it and identify our effect. Why?

- Examine the paths by which D links to Y :
- The standard direct effect D → Y
- The “Back-Door” path D ← X → Y

- Now, conditioning on a variable along the path
“blocks” the path

- E.g. D is independent of Y conditional on X
(strong ignorability)

D Y

X
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Identification through Directed Acylic Graphs (DAGs)

- One more example before formalizing the goal
- X is now a “collider” (note direction of arrows)

- Examine the paths by which D links to Y :
- The standard direct effect D → Y
- The path D → X ← Y

- Key difference: a collider is automatically blocked
(if it or upstream variables are not conditioned on)

- If you condition on X , you open the path!
- Example: conditioning on an outcome variable

D Y

X
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Identification through Directed Acylic Graphs (DAGs)

- The graphs looked similar, but the order of true
causal path mattered

- Identifying colliders is a crucial aspect of
identifying whether an effect is identified

- Key value in a DAG (to me) is laying out a model
of causality, and clarifying what effects need to
be restricted, even in a complicated setting

- For example, how is the effect of D on Y
identified here?

- What about now?

D Y

X

18 / 21



Identification through Directed Acylic Graphs (DAGs)

- The graphs looked similar, but the order of true
causal path mattered

- Identifying colliders is a crucial aspect of
identifying whether an effect is identified

- Key value in a DAG (to me) is laying out a model
of causality, and clarifying what effects need to
be restricted, even in a complicated setting

- For example, how is the effect of D on Y
identified here?

- What about now?

D Y

U

18 / 21



Identification through Directed Acylic Graphs (DAGs)

- The graphs looked similar, but the order of true
causal path mattered

- Identifying colliders is a crucial aspect of
identifying whether an effect is identified

- Key value in a DAG (to me) is laying out a model
of causality, and clarifying what effects need to
be restricted, even in a complicated setting

- For example, how is the effect of D on Y
identified here?

- What about now?

D Y

X

Z

18 / 21



Identification through Directed Acylic Graphs (DAGs)

- The graphs looked similar, but the order of true
causal path mattered

- Identifying colliders is a crucial aspect of
identifying whether an effect is identified

- Key value in a DAG (to me) is laying out a model
of causality, and clarifying what effects need to
be restricted, even in a complicated setting

- For example, how is the effect of D on Y
identified here?

- What about now?

D Y

U

Z

18 / 21



Key steps with a DAG

- Steps when using a DAG
1. Write down the DAG, and identify what effect you want
2. Write all paths between the two nodes
3. What are the “causal” paths (e.g. the arrows all flow in the

right direction)?
4. How many backdoor paths are there? Are they blocked?

Can they be?

- Crucial point: conditioning on colliders will cause more
harm than good

- We will revisit this setup for some empirical settings
- Let me know if you think there are good use cases!
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Structural equations and causal effects (Haile 2020)
- Important: do not lose sight of the fact that these should

be estimates that inform our economic model

- (Haile 2020) The reduced form equation is one where the
inputs are i) exogeneous (ed note: we have not defined this)
and ii) unobservable (“structural errors”) and the outputs
are endogeneous variables. [E.g. Yi = f (Di ,Xi , ϵi)]

- The PO framework’s key insight was considering the sets
of counterfactuals for each individual. However, it is not
magic; insights can typically map across different notations
(DAGs, PO, structural econometric equations). Note that
these are effectively equivalent:

Yi = DiYi(1) + (1−Di)Yi(0)
Yi = α + Di(τ + vi) + ui
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Concrete example: demand and supply

- Consider a demand and supply model: P(Q) and Q(P):

P = α0 + α1Q + α2W + ϵ (1)
Q = β0 + β1P + β2V + ξ (2)

- This is the “structural” equations

- The reduced form comes from plugging in the endogeneous variables and solving for
only “exogeneous” variables on the RHS

- This will let us consider counterfactuals in the structural equations!
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