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Outline on Randomization

- Discuss the value of randomized interventions, and identifying settings where
interventions are “as-if” randomly assigned

- Touch on the historical and (somewhat) current views on this

- Define a “research design.”

- Give an introduction to design-based vs. model-based identification and causal
inference.
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The power of randomization
- Randomization is a powerful tool

- E.g. An intervention giving a treatment to half of a
sample using a randomized process

- Formally, randomly assign Di to a sample of size n
such that the set of potential random assignments
across all n individuals is known (Ω), and the
probability distribution over Ω is known

- In other words, you know the “true” propensity to
receive treatment (the p-score)

- In our different models of causal inference:

- randomized intervention breaks paths on DAG
- Creates independence necessary for strong

ignorability
- Creates some forms of independence between the

intervention and structural errors in a model
- Why only some?
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- Imagine an intervention that
affects multiple outcomes

- Even randomized, if agents
reoptimize with respect to X ,
this intervention no longer
identifies the exclusive effect
of D on Y without more
assumptions
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A historical aside on the credibility revolution

- A director’s cut of “Let’s take
the con out of econometrics”
Leamer (1983)
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A historical aside on the credibility revolution

- Important context for
understanding current
empirical methodology:
empirics was viewed with
tremendous skepticism by the
1980s

- Here’s Black (1982)
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A historical aside on the credibility revolution

- Fast-forward 25 years later and
Angrist and Pischke (2010)
have declared a credibility
revolution

- “Reseach design” is the clear
victor, with pure randomization
the leading champion
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What is a research design?

- A clear interpretation from this is that “research design” is
important.

- Well, what’s the right definition for research design?
- Shows up 69 times in Angrist and Pischke’s JEP piece, but

not defined

- It seems almost “intuitive” but let’s try to define it.
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David Card’s definition of Research Design

- Card draws a distinction between causality as “model-based” and “design-based”:
- “causality is model-based: only exists within the framework of a theory that x causes y”
- “causality is design-based: ...causality requires that you can design a manipulation in

which x causes y”

- Crucial definition of what Card views as “design-based” approach:
- “identification equated with research design”
- “research design defines the counterfactual”
- Of course, he also doesn’t define (in his slides) what research design means...

- From Card’s Nobel lecture: research design is equated with transparently describibng
sources of identification

- https://davidcard.berkeley.edu/lectures/woytinsky.pdf
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Paul Goldsmith-Pinkham’s definition of Research Design
- A (causal) research design is a statistical and/or economic statement of how an

empirical research paper will estimate a relationship between two (or more) variables
that is causal in nature: how X causes Y .

- Since we know that causal effects require estimation of an (unobservable)
counterfactual, a research design describes what assumptions are necessary to
estimate the counterfactual for a given estimand.

- As we will discuss in class, these research designs can be split into two types of
assumptions (with some overlap to be discussed later):

- Model-based: the estimand is identified using assumptions on the modeling of the
potential outcomes conditional on treatment and additional variables (e.g. parallel trends)

- Design-based: the estimand is identified using assumptions on the treatment variable,
conditional on the potential outcomes and additional variables

- They are different assumptions to allow for credible estimates
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Why was research design revolution so important?
- For today, we’ll assume we have a randomized

intervention: an example of a design-based approach
- Ignore compliance
- Ignore “quasi-experimental” vagaries
- These are all solveable! See Bowers and Leavitt (2020) for

discussion

- Knowledge of an explicit, randomized design provides a
different approach to estimation and testing than what we
traditionally learn in econometrics

- Design-based inference is
1. Transparent
2. Efficient

- Today: basic primer to give groundwork for rest of course
- Very useful in some situations!
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What is goal of design-based inference?

- Potential outcomes framework highlights that we can talk about every unit’s PO.
- Let there be a finite population of n individuals, i = {1, . . . ,n}
- For each i , we have (Yi (0),Yi (1),Di ), where (Yi (0),Yi (1)) denote their set of potential

outcomes, and Di ∈ {0,1} denote their treatment status
- Let Y0 denote the vector of Yi (0), Y1 denote the vector of Yi (1), and D0 denote the

vector of Di .

- What do we want to know / test about these outcomes?
- Average? Distribution? Shifts? Underlying parameter?
- For now, we’ll focus on additive difference τi = Yi (1)− Yi (0), and the average of it

τ̄ = n−1 ∑n
i=1 τi .

- What do we want to do?
- Let’s start by making τ̄ our estimand
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Define our research design
- Consider the set of potential ways that D could be

randomized to the population
- Y1 and Y0 are fixed – it is only the random variation in D

that creates uncertainty

- Let Ω denote that space of possible values that D can take.
It is defined by the type of randomize experiment one
runs.

- If we do a purely randomized individualized trial, where
each individual has a fair coin flipped on whether they are
treatment or control, then Ω = {0,1}n. But then the
variation in number treated and control can vary quite a lot
for small samples!

- Other ways to consider randomly assigning individuals
- Random draws from an urn (to ensure an exact number

treated)
- Clustering individuals on characteristics (or location)

0

100

200

0.00 0.25 0.50 0.75 1.00
Share Population Treated
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Define our research design

- Key point: we know the exact probability distribution over
Ω, and hence D.

- First consider with full knowledge for the true draw of D
(the assignment that happened in our data)

- The fundamental problem of causal inference binds
- Now, if we enforce that 50% is always treated, we know

that there are only (10
5 ) = 252 potential combinations (each

equally likely).
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Return to our estimand of interest, τ̄

- We now need an estimator for τ̄ = n−1 ∑n
i=1 τi

- We already know under random assignment that E(Yi |Di = 1)− E(Yi |Di = 0)
identifies E(τi)

- Take the empirical estimator of this expression: ˆ̄τ(D,Y) = D′Y
∑i Di

− (1−D)′Y
∑i (1−Di )

- Note that this expectation operator is well-defined from the objects we already know –
only D is random, and we know its marginal distribution over the sample

- Can show that under certain assumptions (random assignment is equal across Ω) that this
estimator is unbiased.

- We can also now construct tests for this estimator that are more efficient than model based
versions in small samples
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- Is it an unbiased estimator in this case?

- If we assume that assignment is completely equal, then let π1(D) = nt (D)/n be the
share treated, and E(π−1

1 Di) = 1.

- We’ll show

E( ˆ̄τ(D,Y)) = E
(

D′Y
∑i Di

− (1 − D)′Y
∑i(1 − Di)

)
(1)

= n−1E

(
∑

i
π−1

1 YiDi − ∑
i
(1 − π1)

−1Yi(1 − Di)

)
(2)

= n−1E

(
∑

i
π−1

1 Yi(1)Di − ∑
i
(1 − π1)

−1Yi(0)(1 − Di)

)
(3)

= n−1 ∑
i

Yi(1)E
(

π−1
1 Di

)
− n−1 ∑

i
Yi(0)E

(
(1 − π1)

−1(1 − Di)
)

(4)

= n−1 ∑
i

Yi(1)− Yi(0) = n−1 ∑
i

τi (5)
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Variance of τ̂

- The variance of τ̂ (based on the sampling variation in the random design) is known
thanks to Neyman (1923)

σ2
ˆ̄τ =

1
n − 1

(
nt σ

2
0

nc
+

ncσ2
1

nt
+ 2σ0,1

)
(6)

where nt and nc are the number of treated and control individuals (nt + nc = n) and
σ2

0 , σ2
1 , σ0,1 are the variance of the potential control, treatment, and the covariance

between the two.

- Unfortunately, σ0,1 comes from the joint distribution of Y0,Y1, and so isn’t directly
knowable. Instead, we bound for a conservative estimate:

σ̂2
ˆ̄τ =

n
n − 1

(
σ2

0
nc

+
σ2

1
nt

)
(7)
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The payoff – thinking about inference

- Now consider a test of our estimator. Consider the
following strong null hypothesis: τi = 0 for all i .

- Note, this is much stronger than our traditional hypothesis
testing based on the estimator

- Given our data, we can calculate the full distribution of
potential observed statistics we would see, as we vary D.

- How? By imputing our missing values using the null
hypothesis, and calculating the estimator if we randomly
permuted the treatment labels

- Since we are asserting the known missing values, we can
reconstruct the full distribution

- This approach is very valuable in other settings (especially
when treatments are very complicated). More next week.

- Key downside: doesn’t test for average effects

Di Yi(1) Yi(0) Yi

1 11.9 11.9
1 10 10
1 9.7 9.7
1 9.5 9.5
1 11.4 11.4
0 7.6 7.6
0 7.1 7.1
0 7.7 7.7
0 8 8
0 7.8 7.8
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Alternative estimator? Horvitz-Thompson

- For our estimator of τ̄, the estimator is unbiased only under certain assumptions
(random assignment is equal across Ω).

- A more general approach is more flexible and unbiased in many designs, from
Horvitz-Thompson (1952) (see Aronow and Middleton (2013) for a useful discussion):

ˆ̄τHT = n−1

[
∑

i

1
π1i

YiDi −
1

π0i
Yi(1 − Di)

]
, (8)

where πi1 = Pr (Di = 1), and π0i = Pr (Di = 0).

- This estimator is unbiased even in settings where we don’t have equal weighting
across the sampling space

- This is reweighting using the propensity score!
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Ok, great, but what’s the problem?
- Inference in this setting is very agnostic to a broader sample

- How to think about extensions to other problems?

- More generally, does a focus on internal validity suffer from focusing too little on
external validity

- This debate erupted at the end of the 2000s, especially focused on development
- “Instruments, Randomization, and Learning about Development” Deaton (2010)
- “Comparing IV with structural models: What simple IV can and cannot identify”, Heckman

and Urzua (2009)
- “Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua

(2009)” Imbens (2010)
- “Building Bridges between Structural and Program Evaluation Approaches to Evaluating

Policy” Heckman (2010)

- Much of this is tied to instrumental variables, which we’ll revisit later
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“Instruments, Randomization, and Learning about Development”
Deaton (2010)
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“Building Bridges between Structural and Program Evaluation
Approaches to Evaluating Policy” Heckman (2010)
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Ok, great, but what’s the problem?

- Many of the complaints by the anti-randomistas devolve into three types:
1. These are done incorrectly (e.g. bad IVs) – this is not interesting and bad research should

be rejected regardless. More importantly, the transparency of the design should make
this easier

2. Inablility to generalize to other populations – e.g. Progressa is a big success, but knowing
that conditional cash transfers work in this one setting does not necessarily inform our
ability to roll it out in places that are very different

3. A rhetorical overreliance on RCTs as the gold standard – post-hoc analyses (w/o
pre-analysis plan) defeat the underlying value of an RCT anyway

- The concern is that this focus on RCTs and IVs causes an overfocus on irrelevant or
unimportant questions. A briefcase full of results that are not economically useful.
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My take
- My (biased) take on this:

1. These concerns about empirics being too separated from models are overstated. Perhaps
in part in response to these critiques, many empirical papers with causal parameters are
tightly linked to theory models. For those that are not, they inform many theoretical
papers. A push to open data has actually made it easier for researchers to follow-up and
study these issues

2. This concern about how to do empirical work does not provide much of a counterfactual
(the counterfactual of the counterfactuals!). Evidence suggests that empirical work was in
a not-so-great place historically.

- Most importantly: the inclusion of an economic model does not grant an empirical
researcher to omit a research design from their empirics

- Many researchers may propose a model, and then demonstrate that their model is
consistent with observational data:

- This is a research design that needs to be made explicit

23 / 22


