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Linear Regression and Inference

- Today, we’ll be focusing on the simple linear model, and studying
various cases for understanding inference

- So far we’ve focused on identification – e.g. what estimands can we
know from the data generating process?

- Now, given estimators for these estimands, we want to discuss
uncertainty and inference

- Let’s define some notation to start. We’ll consider a sample of size
n:

- causal variable Di (can be continuous valued) → Dn;
- outcome Yi → Yn;
- controls Xi (relevant for exogeneity, and can be vector valued) → Xn.

- We’ll assume SUTVA holds, and that Di is exogeneous conditional
on Xi
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Start with the traditional model-based approach

- Regression is typically written as

Yi = Xi γ + Di τ + ϵi ,

where ϵi denotes the error term, and is driving the randomness to
estimate τ (and γ). To see this, let Wi = (Xi ,Di) such that

Yi = Wi β + ϵi .

- Note that β̂ = β + (W′
nWn)−1W′

nϵn
- Typically we take Wn as given, and so the uncertainty (in the model

based world) is driven by ϵi
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Start with the traditional model-based approach
- The variance of the estimator of β̂ is

V(β̂|Wn) = (W′
nWn)

−1W′
nE(ϵnϵ′

n|Wn)Wn(W′
nWn)

−1 (1)

Everything pivots around the structure of E(ϵnϵ′
n|Wn) = Ωn. The

simplest case we can consider is homoskedasticity, where Ω = σ2In.

- This beautifully simplifies our variance:

V(β̂)homoskedastic = σ2(W′
nWn)

−1 (2)

- What is the content of this assumption? That Cov(ϵi , ϵj) = 0 and
Var (ϵi |Wi) = Var (ϵi).

- Feasible estimator (k = number of regressors):

V̂(β̂)homoskedastic = σ̂2(W′
nWn)

−1 σ̂2 = (n − k − 1)−1ϵ̂′
nϵ̂n (3) 4 / 26



Start with the traditional model-based approach

- Under heteroskedasticity (which implies that Var (ϵi |Wi) = σ2(Wi),
the robust estimator comes from Eicker (1967), Huber (1967) and
White (1980) [EHW]:

V̂(β̂)EHW = (W′
nWn)

−1 ∑
i

ϵ̂2
i WiW ′

i (W
′
nWn)

−1

- Consider the simple dummy treatment case. Here, we have

V̂(β̂)homoskedastic =
σ̂2

n0
+

σ̂2

n1
, V̂(β̂)EHW =

σ̂2(0)
n0

+
σ̂2(1)

n1

- Key question for later: how do we estimate σ̂2(x)?
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Confidence intervals

V̂(β̂)homoskedastic =
σ̂2

n0
+

σ̂2

n1
, V̂(β̂)EHW =

σ̂2(0)
n0

+
σ̂2(1)

n1

- We then consider confidence intervals based around distributional assumptions.

- Recall that our distributional assumptions come from considering the following
statistics: T = β̂−β

V̂
- When we assume that the distribution of ϵ is Normal, we know the exact distribution of

T (under homoskedasticity).
- That’s because β is normally distributed, and a Normal divided by square root of the

variance (which is chi-squared in distribution).
- E.g. T = Z /

√
V /ν, where Z ∼ N (0,1), V ∼ χ2(ν)

- Without Normality, only holds asymptotically (asymptotically pivotal). Without
homoskedasticity, holds asymptotically, but becomes more complicated if n1 and n0
are not both growing large.
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Confidence intervals and the Behrens-Fisher problem
- We construct 95% confidence intervals based on these asymptotic results:

CI =
(

β − tn−2
0.975 ×

√
V̂, β + tn−2

0.975 ×
√

V̂
)

where tn
q is the qth quantile the t distribution with degrees of freedom n

- The trick – when we construct this statistic in the heteroskedastic case, we’re
not dividing by the right finite sample variance.

- Why? Because the variance is the weighted sum of different Chi-squared
distributions

- The Behrens-Fisher problem – imagine that n0 >> n1. (E.g. many untreated,
a few treated).

- Then, the distribution is really driven by σ2(1)/n1, and n1 is the correct degrees
of freedom.

- This makes a big difference! Contrast t3
0.975 = 3.182 vs. t28

0.975 = 2.048
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Simulation Example (Imbens and Kolesar)
- Simulation: n = 30,n0 = 27,n1 = 3
- Normally distributed conditional on treatment
- Relative variance varies from 0.5 to 2
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Confidence intervals and the Behrens-Fisher problem

- This generalizes to general regression setting (even when it’s not
binary)

- The key idea – the variance we’re scaling by is not a Chi-squared
with the full degrees of freedom. We want to match the distribution
as best we can.

- The approximation that we use matches the degrees of freedom to
get the first and second moment as close as possible to the “right”
chi-squared.

- This accounts for issues like a highly skewed regressor (log-normal
right hand side variable)
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Doing this in practice
- These are solveable and packages exist. Stata uses the EHW standard errors by

default. For the Bell-Maccaffrey adjustments, see reg sandwich. For R, see estimatR,
clubSandwich, and Kolesar’s github repo:
https://github.com/kolesarm/Robust-Small-Sample-Standard-Errors

- Key point is that these are all approximations in finite sample

- What are the options for estimating σ̂2(x)?
uj = Yj − Wj β,h = W(W′W)−1W′

V̂(β̂)robust = (W′W)−1 ∑
j
(n/n − k)u2

j W ′
i Wi(W′W)−1 (robust)

V̂(β̂)HC2 = (W′W)−1 ∑
j
(1/(1 − hjj))u2

j W ′
i Wi(W′W)−1 (HC2)

V̂(β̂)HC3 = (W′W)−1 ∑
j
(1/(1 − hjj)

2)u2
j W ′

i Wi(W′W)−1 (HC3)
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Uncertainty – what is it?

- How should we be thinking about inference anyway? What’s the error in ϵ mean
anyway?

- The thought experiment typically comes from a sampling perspective – we consider
that this is a small sample from a broader population, and uncertainty comes from
whether the estimates reflect the true underlying population

- Note that this contrasts with our design-based thought experiment!

- This starts to get very confusing when thinking about some settings.
- E.g., How do we think about sampling “new states” when we have all 50 states?
- What if we have access to all the census data?

- We still think we have uncertainty here when we do estimates. That’s because there’s
uncertainty driven by the fundamental problem of causal inference!
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Combining Sampling and Design Based uncertainty (Abadie et al.
(2020))

- Consider now two sources of uncertainty. There exists a population of size N and a
sample of size n ≤ N .

- Ri = {0,1} denotes whether or not an observation is in the sample

- There is also potential outcomes Y ∗(Di), driven by the causal variable.

- Now we have both sampling uncertainty (e.g. does our sample reflect the population)
and design uncertainty (e.g. does the causal comparison reflect the true causal effect)

- But what is amazing is that we can combine the two – e.g. design uncertainty within a
sample, versus within the population (internal validity vs. external validity)
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Combining Sampling and Design Based uncertainty
- Will focus on just binary case, but paper considers full regression setting

- Three estimands (apologies in advance, my n,N are reversed from the paper):
1. θdescr = N−1

1 ∑N
i=1 DiYi − N−1

0 ∑N
i=1(1 − Di )Yi

2. θcausal,sample = n−1 ∑N
i=1 Ri (Y ∗

i (1)− Y ∗
i (0))

3. θcausal = N−1 ∑N
i=1(Y

∗
i (1)− Y ∗

i (0))

- We have a single estimator we can consider:

θ̂ = n−1
1

N

∑
i=1

RiDiYi − n−1
0

N

∑
i=1

Ri(1 − Di)Yi

- Key point of paper – the variance of this estimator depends on:
1. We condition on D – e.g. focus on sampling uncertainty
2. We condition on R – e.g. focus on causal uncertainty within sample
3. We allow for both variances
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Combining Sampling and Design Based uncertainty

- What are these variances?
1. Sampling: E(Var (θ̂|D,n1,n0)|n1,n0) =

S2
1

n1

(
1 − n1

N1

)
+

S2
0

n0

(
1 − n0

N0

)
,

2. Design: E(Var (θ̂|R,n1,n0)|n1,n0) =
S2

1
n1

+
S2

0
n0

− S2
θ

n1+n0

3. Both: Var (θ̂|n1,n0) =
S2

1
n1

+
S2

0
n0

− S2
θ

N1+N0

The S2
θ term is what we usually ignore (because not feasibly estimable)

- Thought experiments:
1. Let n get small relative to N .
2. Not obvious which of Sampling and Design is bigger
3. Ignoring finite sample features will lead us to overstate variance!
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Combining Sampling and Design Based uncertainty

Key takeaways from paper:
1. Design-based uncertainty can be smaller than traditional estimates, especially when

the sample is large relative to the population
2. Defining the relevant estimand is important for your variance estimates (e.g. causal

estimates within sample, or causal estimates across populations)
- This is particularly true when your sample is a convenience sample
- Or, when the given sample makes sense – e.g. 50 states

3. If you have a finite sample that is a non-trivial share of the population, you can
improve your standard errors (see the paper)

4. Don’t get confused by the idea of having uncertainty in your estimates when using the
population. This comes from design-based uncertainty, not sampling uncertainty
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Clustering and generalizing Ω
- This ignored any sort of unusual correlation structure in Ω, and assumed random

assignment.

- In many cases, we don’t have that. Instead, Ω has a clustering structure

- This can get quite complex. Let’s start with the simple case of known clusters
- E.g. units are people, and clusters are cities, counties or states
- For today, we’re ignoring the very important quesiton of panel data
- We’re going to discuss this! Just not today

- Let Ci denote unit i ’s cluster assignment. A very simple version of Ω is now

Ωij =


σ2 if i = j

ρσ2 if Ci = Cj & i ̸= j
0 if Ci ̸= Cj & i ̸= j

- Can also be more unstructured – e.g. flexible block diagonal with Ωij = σij if Ci = Cj .
Key issue – asymptotics (see Hansen (2007))
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Start with the traditional model-based approach
- Let the number of clusters be K . In this case, the estimator for the

variance of β̂ (this comes from Liang and Zeger (1986)) is

V̂(β̂|Wn,Cn)LZ = (W′
nWn)

−1

(
K

∑
k=1

W′
k ,nϵ̂k ,nϵ̂′

k ,nW k ,n

)
(W′

nWn)
−1

(4)

- Historically, clustering in this setting has focused the structure of Ω.
Why? Well, take the simple case from last slide. In this case,

V(β̂) = Vhomoskedastic ×
(

1 + ρϵρW
n

Kn

)
, (5)

where ρϵ and ρW are the within-cluster correlations of each r.v.
- This makes you think that these are the main terms that matter, and

more generally it’s about getting the structure of Ω right.
- E.g., better to err on the conservative side 17 / 26



Clustering is about correlation between treatment and error
- However this intuition is not correct. (Abadie et al. (2017)) Can

generate an example with tiny within-cluster correlation, and large
clusters (with many clusters) where:

- V̂(β̂)LZ is large
- V̂(β̂)EHW is small

- Why? It’s all about the correlation between W and ϵ, and
heterogeneity in our effects across clusters.

- In Abadie et al example:
- Pop = 10M, 100 equal sized clusters. Binary W with equal prob. = 0.5
- However, heterogeneous effects – some clusters have positive effect,

some have negative. Overall ATE is 0.

- What does that mean intuitively? If there is heterogeneity in effects,
it causes correlation between treatment and residual

- Why do the two standard errors vary so much?
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Abadie et al
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Takeaways from paper

- Key takeaways:
1. Cluster your regression at the unit of randomization
2. Being conservative can be quite bad! It depends on what you are

trying to do.
3. The traditional advice of being as conservative as necessary is likely

misguided
4. Fixed effects do NOT remove need for clstering

- We’ll revisit this in panel settings. However, a question: what is the
“unit of randomization” in a case like Card and Krueger (1993)?

- Not totally obvious. Likely impossible to say something truly causal
without strong assumptions about simultaneous shocks
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Spatial and network error

- Things get more complicated with more general error structures.

- Consider two additional cases:
- Spatial correlation = ρij = f (dij ), where dij is a function of some

economic distance.
- Social network correlation = ρij = f (dij ), where dij is a function of

path length in a network

- This can matter especially when SUTVA is violated

- However, Barrios et al. (2012) show that, under SUTVA, if
treatments are randomly assigned at a given cluster level, we can
ignore the broader spatial correlations
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Conley (1999) distances

- Conley (1999) provides a flexible way to consider clustering on
spatial distances.

- Consider our matrix Ω again. Now, Ωij is a function of the distance,
dij , between each person. Unfortunately, this means that every
person can be correlated.

- Key assumption – the correlation declines with distance. Hence, far
away distances matter less in practice. Hence, when we estimate
this, we “window” our estimator (this is exactly the same as
Newey-West estimators). Then we allow correlation as in the
Liang-Zeger estimator, as a function of distances.

- This estimator is consistent for general forms of spatial correlation
- Estiators available in both Stata and R

22 / 26



Consequences of ignoring spatial correlation

- Spatial correlation can be a big deal. Consider the analogy to time
series.

- A big rule: worry about highly autocorrelated data! Can inflate your
t-statistics substantially

- Why? Because if we treat observations as independent, we will infer
more information than actually exists

- Kelly (2019) claims that spatial correlation in outcomes can cause
this same issue. Consider a regression of some modern outcome,
e.g. city income, on a historical characteristic, such as colonial
boundaries

- Claim in Kelly (2019) is that t-statistics in these types of regressions
are grossly amplified by spatial correlation

- Fixable with Conley standard errors
- This is a huge deal for a lot of literatures (economic history especially)

– matters for corporate governance literature too (LLSV)
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Final thoughts

- This stuff is hard. We are doing the simplest case (linear regression)
and still have lots of questions

- As always, asking what the knowable estimand is can be very helpful

- Next, if you are unsure, it is very useful to consider simulating data
- In many cases, there is not an obvious “best” answer, and simulating

your data is the best solution
- This is because many results are asymptotic in nature, and hence

approximations

- Ok, so how to do simulations?
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Final thoughts

- Goal is to generate data that matches your dataset’s distributions

- However, for very simple simulations, you’ll have to make
parametric assumptions that may not match your actual data

- Athey et al. (2020) propose a method for matching the data as
closely as possible, using a Generative Adverserial Network

- In other words, construct distributions that match the “true” data as
closely as possible

- Computationally expensive, but great way to evaluate performance
- Code is available here: https://github.com/gsbDBI/ds-wgan
- Docs are here: https://github.com/gsbDBI/ds-wgan
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Final thoughts

- However this stuff is really hard to
implement.

- If you intuitively know the issue, try
doing something simple with normals

- Or try bootstrapping!
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