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A brief refresher on OLS (and GMM)

- Recall that OLS is the “least-squares” method – it can be defined as
the method that minimizes the sum of squared “errors”

- These errors are the residuals from say, our linear model:

E(yi |xi ) = xi β, β̂ls = argmin
β

∑
i
(yi − xi β)

2 = argmin
β
(Y−Xβ)′(Y−Xβ)

- No surprise – the least squares method is finding the “least” of the
squares. In particular, we can use calculus to get our analytic solution,
since we’re trying to minimize an objective function:

−X′(Y− Xβ̂) = 0 − X′Y + X′Xβ̂ = 0 β̂ = (X′X)−1X′Y

- The least squares does a lot of work for us by creating a nice
objective function

- Beyond that, what does a quadratic obj. function do?
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A brief refresher on OLS (and GMM)

- Key features of OLS:
- Squared loss function leads to heavily penalization from big outliers
- Local approximation to the conditional expectation function – OLS

finds the closest linear fit to the CEF
- In context of treatment effects, gives us approximation to the ATE

- Most important feature of OLS for today: it characterizes features
of the mean of our outcome variable, conditional on covariates (e.g.
treatments)

- What if we care about other things?
- What are some properties of means that are problematic?

- Very sensitive to outliers!
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Quantiles - some definitions
- First, recall that for any r.v. X we can define its CDF and

inverse CDF:

F (x) = Pr (X ≤ x), F−1(τ) = inf{x : F (x) ≥ τ}

- The infimum deals with ties
- τ = 0.5 is the median!

- Consider now the following loss function:

ρτ(u) = uτ1(u > 0)+u(τ−1)1(u < 0) = u(τ−1(u < 0))

- τ = 0.5 −→ ρτ(u) = 0.5|u|

- We can talk about expected loss (a la OLS):

E(ρτ(X − µ̂)) = τ
∫ ∞

µ̂
(x − µ̂)dF (x)+ (1− τ)

∫ µ̂

−∞
(x − µ̂)dF (x)
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Quantiles as solutions

E(ρτ(X − µ̂)) = τ
∫ ∞

µ̂
(x − µ̂)dF (x) + (1− τ)

∫ µ̂

−∞
(x − µ̂)dF (x)

→ µ̂ = F−1(τ)

- This problem naturally lends itself to generalization. Let
Qτ(Y |X ) ≡ inf{y : FY (y |X ) ≥ τ} be the conditional quantile function,
analogous to the conditional expectation function

- This function minimizes the ρτ distance between some function of X and Y :

Qτ(Y |X ) = arg min
q(X )

E(ρτ(Y − q(X )))

- Just as we denoted approximated the conditional expectation function with a
linear model, we can approximate the Qτ(Y |X ) with a linear model!
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Quantiles as solutions

- Consider now our linear model minimizer:

β(τ) ≡ argmin
β

E(ρτ(Y − X ′β))

- This is the best linear predictor under the ρ loss function
- But how does it map to the true Qτ(Y |X )?

- Key result from Angrist et al. (2006): this linear model is the weighted least
squares approximation to the unknown CQF

β(τ) = argmin
β

E
[
wτ(X , β)∆2

τ(X , β)
]
, ∆τ(X , β) = X ′β−Qτ(Y |X ),

where the wτ are importance weights, and average over the difference
between the true CQF and the linear approximation.
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How is it solved?

- Unlike OLS, there is no direct analytic solution for β(τ)
- This implies that the problem needs to be solved numerically

- Key insight: you can redefine the minimization problem of

β̂(τ) = argmin
β

n

∑
i=1

ρτ(Yi − X β)

as a linear programming problem.

- We’re not going to get into the details of this – others have suffered for us
- See Chapter 6 of Koenker (2005) or appendix of Koenker and Bassett (1978)
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Variance properties
- Let’s walk through thinking about the variance of a quantile. Let ξτ = F−1(τ), with

density f (ξ)
- E.g. this is a quantile estimate
- How can we talk about its limiting properties?

- Key trick: as we move around our estimate of ξτ , we can think about the contribution
that this has to our objective function (e.g. the gradient):

gn(ξ) = n−1 ∑
i

1(Yi < ξ)− τ)

- As a result, you can think about the variability in our estimate coming from a series of
coinflips on whether the data point is above or below the quantile estimate

- Convergence of the estimate is implied by the convergence of the empirical CDF to the
true CDF

- Normality is a side benefit, and under iid data:
√

n(ξ̂τ − ξτ)→ N (0, τ(1− τ)f−2(ξτ))
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Variance properties

- The non-i.i.d. error form of the limiting distribution for β̂(τ) is familiar:
√

n(β̂(τ)− β(τ))→ N (0, τ(1− τ)H−1
n JnH−1

n

Jn(τ) = n−1 ∑
i

x ′i xi

Hn(τ) = n−1 ∑
i

x ′i xi fi(ξi(τ))

- The asymptotic variance of the estimator relies on knowledge of the density function

- That makes it harder (and slower!) to compute

- τ(1− τ) is smaller in the tails, but fi is poorly estimated there, which tends to
dominate.
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Properties of Quantile Regressions (and sometimes OLS)
Equivariance (Koenker and Basset (1978) Consider a linear model y = xβ + epsilon

1. Scale equivariance:
- scaling y by some constant a implies that β̂→ aβ̂

2. Shift equivariance
- adding to y some amount X γ implies that β̂→ β̂ + X γ

3. equivariance to reparametrization of design
- Linear combinations of regressors leads to linear combinations of coefficients

4. equivariance to monotone transformations
- Let h(·) be monotone function
- Qh(Y )(τ) = h(QY (τ))

- E.g. the median of log(Y) is the log of the median of Y !
- Something OLS does not have

5. The influence function of quantile regression is bounded with respect to y
- This is not the case for OLS (outliers can have unlimited influence)
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Practically, why are these properties useful?

- Skewed variables– no more worrying about logs or outliers in the outcome variable

- Censoring – in many datasets, our outcome variables are top-coded or bottom-coded
- Note that given the influence function results, this is not a problem – we can still identify

(some) of the quantile functions

- Let’s look at an example
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Quantile regression

- Education + Income
gradient

- Clear
heteroskedasticity
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Interpreting Quantile Coefficients

- There are some very nice features of this setup.
- Very robust

- However, interpreting these coefficients from a structural model standpoint is
challenging

- Even Koenker’s book punts on this issue – instead pointing out that the OLS interpretions
are probably wrong!

- Why is it so hard? Let’s dig into this.
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Interpreting Quantile Regressions
- Consider a binary treatment variable Di – in fact,

let’s use the NSW program from Lalonde

- Consider the very simple OLS verison testing this
model using the experimental data:

yi = α + Di β + εi

- Recall that this will estimate our ATE for the
treatment

- What is the interpretation of this affect?
- E(Yi (1))− E(Yi (0)) – in other words, the

expected change in the outcome for a person
moving from untreated to treated

- That’s a useful metric!

Estimate Point Est. SE
βOLS 1794.3 (632.9)
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Interpreting Quantile Regressions

- Now consider if I did quantile regression
instead? What is that doing?

- Previously, we were comparing means of
the two distribiutions – e.g. Y (1) and
Y (0). We did not need to specify
anything about the joint distribution of
Y (1),Y (0)

- Why does this matter?
- Consider a person sitting in the control

group at the 75 percentile e.g. Y0.75(0)
- What is their relevant treatment effect?
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Interpreting Quantile Regressions

- Types of treatment effects can focus on verisons:
1. Just comparing parts of the distribution: q1,τ − q0,τ (e.g.

Firpo (2005))
2. Assume rank invariance – e.g. that individuals’ rank in the

distribiution does not change in moving from control to
treatment (e.g. Chernozhukov and Hansen (2005))

- The second approach is very strong, and gets you a lot of
mileage (e.g. extremely useful for IVQR)

- The first approach requires weaker assumptions, but then
we cannot say anything about what the effect of a policy is
on a person in a given part of the distribiution.

- Instead, our policy takeaways are integrated over changes
in the full shape
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Interpreting Quantile Regressions

- Now we can look at the effect of NSW
across the distributions

- Remarkably homogeneous

- 20% of distributions had zero income, so
degenerate effects. However, can trace
out distributional effects for large groups
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Interpreting Quantile Regressions

- How does this compare efficiency-wise?

- Much noisier – compare median, 75th
percentile and 95th

- Important to be holistic about estimates
in this setting; b/c of joint estimation
problem of density and quantiles,
different quantiles can be better
estimated

Estimate Point Est. SE
βOLS 1794.3 (632.9)
β0.5 1038.3 (872.3)
β0.75 2342.5 (893.4)
β0.95 2992.2 (2973.0)
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A result from Firpo (2005)

- An analagous IPW estimator which we used for efficient estimation of ATE can be
used for estimating QTE: βτ = q̂1,τ − q̂0,τ

q̂j,τ = argmin
q

n

∑
i=1

ω̂j,i ρτ(Yi − q), ω̂1,i =
Ti

np̂(Xi)
ω̂0,i =

1− Ti

n(1− p̂(Xi))

- Indeed, this estimator is the best semiparametric estimator (Firpo (2005))

- Note that this follows the same procedure as with the ATE – using IPW to identify the
quantiles of each underyling distribution
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Comparing distributions
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Last example

- Ok so what? While estimating the range of effects is interesting, it is
- noisier
- challenging to interpret in an intuitive way

- However, if you have underyling theory that has implications for distribiution, quantile
regression is the empirical approach for you

- A nice paper highlighting this point: Bitler, Gelbach and Hoynes (2006)
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Bitler, Gelbach and Hoynes (2006)
- Comparing the “Jobs First” and AFDC

programs in CT

- Key difference between programs was
significantly more generous tax
treatment in Jobs First (shifting budget
line out)

- How does implementation of policy
affect income?

- Implications:
1. Very bottom earners will have no effect
2. Very top is zero or negative
3. In between, JF should have positive

effect
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Bitler, Gelbach and Hoynes (2006) impact on income
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The Upsides of Quantile Regression

- Allows you to characterize the distribution
- When considering welfare, can be very useful
- This can be important for more complicated models
- We will revisit when considering hierarchical models

- Robust to:
- issues of functional form (e.g. log)
- censoring/truncation
- outliers

- Worth using in your toolkit along with OLS in many applications
- Easy to plug in
- qreg in Stata and quantreg in R

28 / 29



Issues with Quantile Regression

- Not that fast– linear programming problem and standard errors

- Not additively combinable. E.g., if Y = Y1 + Y2, not possible to decompose and have
the effects be comparable.

- This can create issues with fixed effects

- Can be challenging to interpet as structural parameters
- Shift focus from parameters to understading how the shape of the distribution changes

with changes in covariates
- Change your estimand!

- Standard errors can be wonky – asymptotic theory is less developed, although
clustering finally exists! (See Hagemann (2017), also Parente and Santos Silva (2016))
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