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Today’s topic - penalized regression, e.g. Lasso

- Today: Machine learning methods of a particular kind

- Specifically, we will be focus on linear models that use penalization
to select relevant right hand side variables

- Will mainly focus on Lasso (Least Absolute Shrinkage and Selection
Operator ), coined by Tibshiriani in 1996

- Key concept underlying these methods – model selection
- This is typically not a topic great for causal inference

- Ends up being very valuable in causal estimation!
- In select circumstances
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What’s the big idea?

- There are many circumstances when we have a problem like the following:
1. Many variables (too many) that we would like to use as regressors
2. A unknown and potentially complicated function of many variables

- Two simple versions of this, in a setting where we have data (Yi ,Xi), and the
dimension of Xi is p

1. Yi = Xi,0β0 + ϵi , where Xi,0 is a vector of p0 ≤ p covariates, but you don’t know which
variables in your data Xi are Xi,0.

2. Yi = f (Xi ) + ϵi ,, and we want to approximate f as best we can — we can do complicated
functions of Xi to approximate it (a la semiparametrics) but this gets hard when p grows.

- A key idea which will come up in our later results is sparsity – e.g. p0 is small, or for f
that is can be approximated by a small number of variables (combinations of X )
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What is Lasso? Tibshiriani (1996)
- What is Lasso? Let’s stay in our simple linear model , and ignore issues of endogeneity

- Recall that the “true” model (which we prespecified) had only a subset of non-zero
entries

- E.g., there are irrelevant regressors
- We would like to know which are the true right ones for purposes of interpretation

- As our dataset grows, if p stays fixed, OLS will eventually figure out which β are zeros
- But it’s not immediate – only in the limit do the (“wrong”) estimates converge to zero!
- Worse yet, if the variables are correlated or noisy, it’s hard to get good estimates that

don’t make the model poorly fit!

- In finite samples, we would like to have an approach that selects the “right” variables
to focus on , and fits the outcome well

- This is a model selection problem
- It’s also a regularization problem
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What is Lasso? Tibshiriani (1996)
- Tibshiriani (1996) proposed Lasso to do both things – identify the non-zero covariates

and shrink estimates accordingly

- Let’s compare OLS and Lasso’s objective functions:

min
β

n−1
n

∑
i=1

(Yi − Xi β)
2 (OLS)

min
β

n−1
n

∑
i=1

(Yi − Xi β)
2 + λ

p

∑
k=1

|βk | (Lasso)

- In essence, Lasso added one “thresholding” penalty, where λ is a tuning parameter
chosen by the researcher.

- Lasso will choose to push coefficient values down to minimize objective
- Most importantly, due to the L1 norm, this will tend to push coefficients to zero
- Why? Intuitively, if it was worth decreasing βk slightly, it will continue to be worthwhile

until it hits zero
5 / 28



What is Lasso? Graphically

- Note that the first term in
the minimization

n−1
n

∑
i=1

(Yi − Xi β)
2

is equivalent to

(β− βols)
′X ′X (β− βols)+C

- Hence given a λ constraint
we’re finding the isoquant
closest to βols

6 / 28



What’s so great about Lasso? A quick aside on MSE

- Well, it (and modified versions of it) have two very nice properties:
- very efficient estimators – they predict Y well
- pick a subet of covariates, making model interpretation easier!

- A quick aside on regularized estimators. Recall that for a given estimator θ̂ of θ, we
care a lot about the mean squared error, MSE(θ̂), especially for predictors

- Recall that MSE(θ̂) = Var (θ̂) + Bias(θ̂, θ)2

- In most estimation, we’ve cared a lot about Bias being zero (or being small!)
- Regularized estimators give up a little bit of bias in order to reduce overall MSE

- So a nice feature of Lasso is that is has lower MSE than OLS in most cases, but the
terms can be biased

- This is true of ML approaches generally
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The magical Oracle property of Lasso

- One particularly interesting property of
Lasso (and derivative approaches) is that
it has what is called the “oracle property”
under certain conditions

- In essence, we get the “right” model and
asymptotic normality!

- Your reaction may be “this seems too
good to be true”

- Don’t worry, it is
- But it still does well!

Zou (2006):
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An aside on Pointwise vs. Uniform convergence

- Recall that all our asymptotic results are about approximations to finite sample
distributions

- In fact, Penalized and ML methods improve finite sample performance!
- OLS does very well with infeasibly infinite data

- Recall from your econometrics courses the pointwise convergence of an estimator
- Given a true estimand θ0, we can consider the convergence of θ̂ to that θ0

- But, this holds fixed our value of θ0 – we typically want uniform convergence
- E.g. the convergence can be done across all values of θ0 simultaneously

- Why does this matter? Uniform convergence matters for our asymptotic
approximations to do a good job in approximating finite samples
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Leeb and Potscher (2008)
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Back to lasso’s oracle property

- Leeb and Potscher (2005, 2008) say: “Wait, hold on.” (They are
much punchier than that)

- The implication is that we should not rely heavily on the oracle
property of Lasso (and other penalized methods).

- This ability to select elements can be misleading

- This is not a new fact, and one that econometricians/statisticians
should have been aware of

- E.g. Hodges’ Estimator
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Example with Hodges’ Estimator

- Consider an estimator θ̂n for θ. Now we construct
our new estimator,

- θ̂n,hodge = θ̂n if |θ̂n| ≥ n−1/4

- θ̂n,hodge = 0 if |θ̂n| < n−1/4

- This is a quasi-shrunk estimator, with
superefficient convergence of the estimator when
θ = 0 and normal asymptotic convergence
everywhere else

- But, the convergence is not uniform, and creates
very weird properties near zero

- Blue = n = 5, purple = n = 50, olive = n = 500

12 / 28



Irrepresentability
- Important note – the convergence results for Lasso hold under an important condition

known as the irrepresentability condition.

- Many regressions have collinear regressors, as this is a natural feature of lots of
statistical problems

- One very awkward property of Lasso is that having right-hand side variables that are
highly correlated can create very weird problems

- If the covariates that should be excluded are correlated with the relevant covariates in
a meaningful way, then it’s possible that lasso will pick the irrelevant covariate, even
for large sample

- This problem is very solveable – simply orthogonalize the covariates manually!
- But that kind of defeats the “interpretability” point...
- But this is fixable!
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Puffer Transformation (Jia and Rohe (2015))
- Key insight in linear model is that for a given n × n matrix F , we can premultiply and

estimate
FY = FX β + F ϵ vs. Y = X β + ϵ

- Notatbly this will give us the β. However, if we use the appropriate tranformation
(preconditioning) matrix, we can ensure that the consistency of the estimates hold

- Let F = UD−1U ′ be the Puffer transformation, where U and D come from the Singular
Value Decomposition of X = UDV ′.

- Under this transformation, we can ensure consistent estimates of β, and most important,
it’s the same β

- If we had orthogonalized our X , we woudl have a different linear combination of the
underlying β

- The tradeoff with this method is it can increase variance of the estimators. See the
paper for details on implementation
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The Geometry of Puffer
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Punchline for Lasso

- Remember, asymptotics are approximations. Uniformity matters a lot! The
thresholding criterion for Lasso creates weird behavior that can be unsmooth

- E.g. there’s no free lunch!

- Or is there?? Key point that we will revisit shortly – Lasso wanted to find all effects, no
matter how small. What if we relax this?

- E.g., what if our goal is not the parameters themselves, but to approximate something in a
way that does not create issues?
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Generalizations + Sparsity

- There are a number of other types of linear regularization
methods

- We’ll cover more non-linear methods later in the course

- These include Ridge regression, Group Lasso, Elastic Net,
Others

- These all revolve around methods to shrink with either L1
or L2 norms

- Many are dealing with highly correlated regressors

- Today, will continue to focus on Lasso, which has been a
major focus on econometrics research

- Why? Model selection aspect of Lasso + Sparsity
assumption is very powerful

Other Linear Methods:
- Ridge Regression
- Elastic Net
- Group Lasso
- Fused Lasso
- Adaptive Lasso
- Bridge regression
- Bayesian Lasso
- Prior Lasso
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So what? How does an applied economist use this?

- With that under our belt, let’s discuss applications.

- Most direct historical purposes have been for prediction
- Prediction is extremely useful!

- Mullanaithan and Spiess (2017) discuss various uses of general ML
- Prediction in decision problems, e.g. bail decisions (or lending, Fuster,

Goldsmith-Pinkham, Ramadorai and Walther (2020))
- Prediction in forecasting – e.g. asset pricing. (For example, see Feng, Giglio and Xiu)
- Testing a model or predictor – e.g. creating an ML benchmark

- What we’ll discuss rest of today: how Lasso methods can be used in causal inference
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Lasso and Nuisance Parameters

- Concise way to remember the relative merits of LASSO/ML vs.
standard model: ŷ vs β̂ (Mullanaithan and Spiess (2017))

- Lasso is best for constructing a lower MSE estimate of something.
- You shouldn’t always trust it for particular estimates of all the

underlying parameters in the model (and inference can be challenging
for all of them without sparsity assumptions)

- Remember the problem of semiparametric models and nuisance
parameters? Turns out this is a great problem for us to solve!

- We have a function we need to estimate
- We don’t care about the parameters of the function per se

Lasso vs. OLS

ŷ vs. β̂
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Partial linear model

- Consider a partially additive model:

Yi = Di τ + g0(Xi) + Ui

where Di is randomly assigned, and X are pre-treatment covariates , and g0 is some
unknown function.

- A simpler version of this could be

Yi = Di τ + Xi,0β + Ui

where we don’t know which Xi are in the model

- Note that the estimation of g0 (or the β) are nuisance parameters – we’d like them to
get good / better estimates of τ, but we don’t care about them per se
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Partial linear model and causal inference

- There are a lot of results in this space, heavily influenced by Victor Chernozhukov.

- Going to touch on two points:
1. How did they address the Leeb and Potscher issue
2. How to address the bias variance problem if interested in causal parameters?

- Many of the insights here carry over into the linear IV case
- Today, we’ll focus on exogeneous regressors (e.g. random experiment)

- This discussion riffs heavily on Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey and Robins (2017,2018) and Belloni, Chernozhukov, and Hansen (2014)
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Why would we need ML if RCT?

Regarding ML and RCTs:

- Subsequent discussion regards subgroup analysis – a topic for our ML discussion at the
end of the course!

- In essence, what if you have lots of treatment combinations / groups?
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The DML (Double/De-biased) Machine Learning Cookbook

Yi = Di τ + g0(Xi) + Ui , Di ,Xi are demeaned

- Will first outline the approach, then we can discuss details

- Key ingredients / assumptions:
1. Sparsity; estimation error in g0 is orthogonal to the moments that help estimate Di
2. Oracle condition is not assumed
3. Sample splitting; account for the overfitting bias from high-dimensional approaches

- Start with a “naive” approach
1. Split the sample in half
2. Estimate ĝ0 using one half of the sample using the regression
3. Use this estimate ĝ0 in the second half of the sample to construct:

τ̂ =

(
n−1 ∑

i
D2

i

)−1(
n−1 ∑

i
Di (Yi − ĝ(Xi )

)
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The DML (Double/De-biased) Machine Learning Cookbook

τ̂ =

(
n−1 ∑

i
D2

i

)−1(
n−1 ∑

i
Di(Yi − ĝ(Xi)

)

- What happens here? If Di = m(Xi) + Vi , and m is a nontrivial function, then
|
√

n(τ̂ − τ)| → ∞

- Why?

√
n(τ̂ − τ) =

(
n−1 ∑

i
D2

i

)−1(
n−1/2 ∑

i
DiUi

)

+

(
n−1 ∑

i
D2

i

)−1(
n−1/2 ∑

i
Di(g0 − ĝ0)

)
︸ ︷︷ ︸

This term can blow up
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The DML (Double/De-biased) Machine Learning Cookbook
- In a correctly specified RCT, this term shouldn’t matter. However, in finite samples (or

with issues with controls), this could create poor performance (e.g. imbalance in
treatment)

- Belloni, Chernozhukov, and Hansen (2014) discuss results where you can use lasso to
directly choose the relevant controls

- I don’t encourage this approach in cases where you don’t have a positive story for
identification – an exclusively data-driven approach to choosing your controls is
challenging for causal inference

- What’s the solution? Double lasso! In this setting, we need to do Frisch-Waugh style
orthogonalization. E.g., also estimate m̂(Xi)

- E.g. V̂i = Di − m̂(Xi ) and then

τ̂ =

(
n−1 ∑

i
V̂iDi

)−1(
n−1 ∑

i
V̂i (Yi − ĝ(Xi )

)
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What are the pieces of the DML estimator?

- Three pieces to this estimator in the limiting distribution
1. The standard distribution
2. Regularization bias – assumed to small
3. Remainder term – sample splitting helps here

- How does this estimator get around the Leeb and Potscher critique?
- Estimation is not about nailing every piece of g(Xi ) or m(Xi )
- Instead, uniformity in τ̂ is achieved by having the estimation error in g and m be
orthogonal to θ̂’s estimation

- The key crucial (untestable) assumption: sparsity

- Chernozhukov and co-authors also emphasize that the sample splitting is very
effective at ensuring that many types of data processes can be incorporated

- Can simply sample split many times and then average over the estimates
- This is not necessary if you make stronger assumptions
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The DML (Double/De-biased) Machine Learning Cookbook

- We’ll now walk through a simple example of estimation following Belloni,
Chernozhukov and Hansen (2014):

- A fully exogeneous binary treatment
- Set of controls
- Lasso estimation of g(X ) and m(X )
- No splitting

- If you want a different estimator, consult Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, Newey and Robins (2018)
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Simple lasso approach w/o splitting

The approach, straight out of Belloni, Chernozukhov, and Hansen (2014)
1. Estimate lasso of Di on the control set X and identify the controls selected by the

procedure (don’t lasso on the constant). Call this set of Xi I1
- Note – choice of penalization term matters. Discussed in Appendix A of Belloni (2012)
- I just use the rlasso package in R, or rlasso in Stata (lassopack)

2. Estimate lasso of Yi on the control set X and identify the controls selected by the
procedure (don’t lasso on the constant). Call this set of Xi I2

3. Rerun OLS with Di and the union of I1 and I2 as controls (you can add in other
variables too if they’re not too big)

4. That’s it! Interpret the coefficient on Di as you will
- Note from Wuthrich and Zhu (2020) – can be finite sample issues. Make sure your results

are robust to shifting your tuning parameters
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