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Today's topic: duration models

- First question is: what's a duration model?
- Second question: why do we care?

- Third question: what are ways to estimate them? What
are estimands that are identified in these settings?
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What's a duration model?

- A duration model is just what is sounds like - a model relating to duration of an
event

- Why would we need a special model for this?
1. Data measurement: measuring durations accurately is challenging!

2. Estimation: the mapping between theory and estimation can require more
sophisticated models

- We'll start by just discussing what's special about durations
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First, some examples

Lancaster (1979) - unemployment spells
- t = 0: unemployment begins
- Spell ends: employment

Galiani, Gertler and Schargrodsky (2005) - privatizing water service
- t = 0: the year 1990
- Spell ends: water service privatized

Palmer (2015) - mortgage default
- t = 0: Mortgage origination
- Spell ends: mortgage default

Rose (2020) - supervised release

- t = 0: Release
- Spell ends: New arrest or revocation
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More examples

- Engle and Russell (1998) - Irregularly spaced transaction data

- {to, t1, ..., tn, ...} denote arrival times of transactions
- Condition on previous events - “autoregressive conditional duration” models

- Carlson et al. (2015) - bankruptcy

- t = o retirement from NFL
- Spell ends: bankruptcy filing

- Goldsmith-Pinkham & Gilbukh (2021) - moving houses

- t=o0buyahome
- Spell ends: buy a new home
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Running example

- One very common duration is the duration of tenure in housing

- Let Y; denote the length of time that individual i lives in their home.
- If we have better data, we can even consider Y to be the length of time that
individual i lives in their home in spell s
- Multiple spells, e.g. panel data

- A number of notable things could affect this tenure:
- Age of the individuals
- The housing cycle
- The business cycle
- Whether or not they are homeowners
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Types of Duration Data we observe

- The “truth”: A single duration observed for person i, Y; € [0, T]

- In theory, the duration could be unbounded T = o0, but could be maximally bounded
(e.g. max lifetime of human)

- What kind of data do we observe?

- First example is best case but given unbounded nature of T, unrealistic for everything
- For a given observation, we see spell start and spell end

Case Start End
|
Full to t, ! !
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Types of Duration Data we observe

- Sometimes we can’t see everything — sampling costs, or limitations on time
- You may write your paper before people decide to move!

- This can create a form of right-censoring

- For a given observation, we see spell start and spell end for most individuals
(observed before c, or c;)

- For those who have not had their spell end by c or ¢;, we only observe the censoring
period

- If this censoring can be viewed as random, this is (parametrically) addressable

Case Start End

Full to t | | |
Right-Censor  t,  min{t;,c} t=0 t=g t=T
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Types of Duration Data we observe
- Sometimes it's even less information in our sampling scheme

- We know when the spells began, but can only identify whether or not exits occured
as of period ¢;

- Easy to envision data sampling like this — checking in on a pool of individuals, and
identifying whether they stuck around

- This leaves us with less information, but so long as the censoring (e.g. the time of
check-in) is sufficiently random, also addressable

Case Start End

Full to t [
Right-Censor  t,  min{ty, ¢} t :' o t :' C; t :I T
Indicator to 1(Y; < ¢) '
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Stock Sampling vs. Flow Sampling
- In these cases so far, we observe when the start of the duration begins
- This is called flow sampling

- An alternative sampling procedure samples from the stock of existing individuals
- E.g. Stock sampling

- What issues does this create? Two scenarios:
- If we observe how long the duration lasted at time of sampling (e.g. the start time), we
still need to account for the sample selection from stock sampling
- If we don't observe the start time, creates a version of left-censoring

- Left-censoring creates serious problems - need to make stronger assumptions

Sampling Case Start End Adjustment
Flow Full to tq No
Flow Right-Censor to min{t, ¢;} Yes
Flow Indicator to 1(Y; < c) Yes
Stock Full to tq Yes
Stock Right-Censor to min{t, ¢;} Yes

Stock Indicator to min{tq, ¢;} Yes
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Key takeaway

Understanding the sampling structure of your data is always important
- Particularly important with duration data

However, censoring problems are not unique to duration data
- E.g., wage data can be censored/truncated due to reservation wages or survey
measurement
- However, in duration data, right-censoring is quite common

These are important features to consider for understanding the data generating
process for your sample (and the population)

However, a more important question is what are you interested in?
- E.g. what is your estimand?
- Effect of a treatment on average length of duration? Median duration?
- Consider Y; = a + T;8 + ¢; - this is well-defined when T; is randomly assigned, but
censoring still causes issues
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Consider the example of housing

- Length of time between
housing transactions

- Sample is drawn in 2017m8,
but we see every transaction
- Implication: data is

censored at 2017m8, which
creates different censoring
horizons depending on
when the home was last
bought

- We can first examine full
distribution of durations
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Consider the example of housing

- Length of time between
housing transactions

- Sample is drawn in 2017m8,
but we see every transaction
- Implication: data is

censored at 20177m8, which
creates different censoring
horizons depending on
when the home was last
bought

- If we focus on 2010+ cohorts,
truncation problem is obvious,
but shape is not

Distribution of housing duration for 2010+ cohort
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Consider the example of housing

- Length of time between
housing transactions

- Sample is drawn in 2017mS8,
but we see every transaction
- Implication: data is

censored at 20177m8, which
creates different censoring
horizons depending on
when the home was last
bought

- If we focus on 2005+ cohorts,
it's clear there's heterogeneity

0125 Distribution of housing duration for 2005+ cohort
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Consider the example of housing

_ Length Of t| me betwee n Distribution c;foggusing duration for 2000—2;)3)? cohorts -
housing transactions Zj
o ;l ‘_J g_l
- Sample is drawn in 2017mS8, 00
but we see every transaction 06 i 2 200e
- Implication: data is 04
censored at 2017m8, which zz I
creates different censoring ' 2006 2007 2008

horizons depending on Zj
when the home was last 02
bought 00
0 5 10 15 20

- Censoring issue is very
apparently within a given year
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Consider the example of housing

- Can we calculate the average duration,
without further assumptions?

- Purely non-parametrically? No. Even
with random sampling, we don't know
the DGP and the average could be
completely unbounded

- Can explore this further in partial
identification

- If we are willing to make more
assumptions (next), then yes!

- Before we do that — worth recognizing
that there are other estimands that we
can identify

- E.g., the quantiles - for 2000 cohort,
the median

0.00

Distribution of housing duration for 2000-2008 cohorts
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Pivoting to hazard models

- We'll now discuss some parametric ways that papers address these problems

- Duration modeling is, in many cases, focused on hazard modeling. Why?

- Hazard has natural economic theory tie-ins
- Adjusts appropriately for the “survival” of individuals

- There is nothing more powerful in these settings than anything else we've studied -

by using parametric models, you are able to account for data issues, but require
additional assumptions
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Quick aside: some formal definitions

Let F(y) = Pr(Y <) be the probability of a duration no longer than y, and f(y) the
corresponding density

Then, S(y) = 1— F(y) is known as the survival function (the probability you'll
survive until y)

This lets us define the hazard function h(y) = %, which is the probability of an

event occuring, condition on surviving until y.

Key features of the hazard:

- Conditions on the population surviving until y (rather than everyone)
- Can be time varying
- Summarizes all characteristics of F

Effectively think of it as a transformation of the distribution
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Why the hazard function? (Van Den Berg (2001))

- So why use a hazard model?
E.g. extra structure

- Van Den Berg lays out some
reasons in his Handbook
chapter on duration modeling

- The hazard is a concise way
to summarize the state of
the remaining sample

The hazard function is the focal point of econometric duration models. That is,
properties of the distribution of 7" are generally discussed in terms of properties of 6.

There are two major reasons for this. First, and most importantly, this approach is
dictated by economic theory. In general, theories that aim at explaining durations focus
on the rate at which the subject leaves the state at duration # given that he has not done
so yet. In particular, they explain the hazard at ¢ in terms of external conditions at ¢ as
well as the underlying economic behavior of the subjects that are still in the state at 7.
Theoretical predictions about a duration distribution thus run by way of the hazard of
that distribution. It is obvious that if the completion of a spell is at least partly affected
by external conditions that change over time (e.g., due to external shocks), and if one
attempts to describe behavior of the subject over time in a changing environment, then
it is easier to think about the rate of leaving at ¢ given that one has not done so than
to focus on the unconditional rate of leaving at ¢. In the next section we provide some
examples of such theories.
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Why the hazard function? (Van Den Berg (2001))

- So why use a hazard model?
E.g. extra structure

- Van Den Berg lays out some
reasons in his Handbook
chapter on duration modeling

- The hazard is a concise way
to summarize the state of
the remaining sample

- More effectively captures
time-varying characteristics

- Deals well with
right-censoring

It is often stated that a major advantage of using the hazard function as a basic
building block of the model is that it facilitates the inclusion of time-varying covariates.
This is, of course, part of the argument of the previous paragraph; it reformulates the
issue from the point of view of a builder of reduced-form models.

The second major advantage of using the hazard function as the basic building block
of the model is entirely practical. Real-life duration data are often subject to censoring
of high durations. In that case it does not make sense to model the duration distribution
for those high durations.
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Simple hazard example

Imagine that people move houses because of life events, and they arrive randomly
with a random rate 6(t),

- the expected number of life events in a short time period is 6(t)dt

- For now, assume it's constant - e.g. 6 = 6(t)

This implies a distribution of life events that is expontential with mean 1/6:

f(y) =0exp(—yd) fory >0, Fly)=1—e %

This distribution is extremely nice, since it has the lack of memory property, e.g.
E(Y —clY >0) =1/6,

irrespective of ¢

Hence, the hazard rate is exactly 6!
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Hazard modeling data sampling

- We can use this setup to study our duration cases previously

- Consider our data sampling and the likelihood:
- With fully observed flow sampling, the likelihood is

n

L(0) = TTFil6) = T Th(l0)S(;10)

i=1

n
= [T6e™® under exponential
i=1
- With right censoring (not censored — d; = 1) and flow sampling, the likelihood is

n

L(6) = T TF0)% ()% = [ Th(yl0)%S(yi]6)s(cilo)™

i=1 i=1
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Hazard modeling data sampling

- With stock sampling, where you sample from the stock of individuals (rather than
the flow)

- A given draw is sampled to have lived for s; periods

- Then, the likelihood is

~—

L(0) = H’;ﬁﬁ‘,g; - ﬂh(y,we)igj;g

~—

- With right censoring (not censored — d; = 1) such that we do not track the
observations, the likelihood is

n . d;
o) =TT (E48) stsiton ™
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Non-parametric estimations of survival with censoring

Distribution of housing duration

- In the full sample of the housing
example, we were plotting the density
of the variable t; = min{y;, ¢;}

- e.g., the true failure time or when it is
censored
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Non-parametric estimations of survival with censoring

Survival probability

- In the full sample of the housing
example, we were plotting the density
of the variable t; = min{y;, ¢;}
- e.g, the true failure time or when it is
censored 050
- However there’s a lot of censoring in 02

this full sample. How accurately does
this map to the probability of someone
staying in a home? ’ " Duratoninyears ”
- E.g. can | use this to estimate
S(t) = Pr(Y; > t)?

- Short answer: not directly. Need to
adjust for censoring and can do so
non-parametrically

- We'll use the Kaplan-Meier estimator
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Kaplan-Meier: non-parametric estimations of surival

Kaplan-Meier estimator exploits the fact that the survival up to
period t, S(t), can be thought of as the joint probability of t
non-exits in a row: S(t) = [T_,(1 - h(j))

Then, this implies that f(t) = hIT_}(1 — h(j)) and f(1) = h(t).

We need to just estimate h(-) for every time period. Let
a=Y1Y;>t),e=y1(Y;=jnY; <¢)

n

L(h) =T Tf%s(c) 4

i=1

=TT1h(1—hpas

j

Our MLE is h; = ¢;/q;
- Can consider standard errors and testing around these estimates
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Kaplan-Meier: non-parametric estimations of surival

- Ignoring the
censoring makes a
big difference

Survival probability
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Hazard modeling data sampling

- Clearly, ignoring the censoring will bias your estimates - either of 6 in a
parameterized model, or of h(t) in non-parametric estimates
- There are two ways one could naively ignore it - toss any data that's censored, or treat
the censoring as real data
- Both will give over-estimates of 0 in the exponential case

- To see the intuition, let t; = min(y;, ¢;), and note the likelihood.

n

L(0) = [T h(tl0)%s(t;]0)

i=1

- Now assume the exponential and solve for the MLE § = d/t. Consider how the
estimates change if you either throw out data, or mislabel the censoring

- If you ignore the censoring, d — 1, and t doesn’t change. Upward bias in 8
- If you drop the censored obs, then the MLE is = Y"d;/ ¥_d;t; Note thgt the numerator
remains unchanged, but the denominator decreases. Upward bias in 6
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Value of hazard modeling

- So far, the main value of the modeling is to add parametric structure to capture the
univariate features of duration

- E.g., we want to know the properties of a censored random variable

- However, in many cases we want to know the effect of some variable on the
duration

-EgY=DB+e

- What is the downside of simply running a regression like above? As Van Den Berg
discusses above:
- Hazard rate will more concisely capture a meaningful characteristic
- Time-varying characteristics are more easily accomodated (e.g., how does the above
linear regression incorporate a changing minimum wage schedule?)
- The simple linear regression approach doesn’'t deal with censoring well
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A defense of regression

An aside in defense of a simple linear regression approach

While hazard modeling is tightly connected to economic models, it can feel
non-transparent (as many non-linear models do)

Simple linear regression models can address censoring in two ways:

- Indicators of “survived to year K", so long as year K is not censored
- quantile regression

It is possible to use these combinations to do a number of robust analyses

- In fact, | would highly recommend that any hazard modeling done is also supported by
simple linear regression as well

However any linear regression needs to be extremely aware of the data sampling
process
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The workhorse of hazard modeling - Proportional Hazard

- In some settings, there is theory driving the hazard modeling, and that should
determine your approach

- in more reduced form settings, you need a workhorse model that is flexible

- In hazard models, this model is the Cox proportional hazards model:

0(tlx) = ¢(t)6o(x), (1)

where 6, = exp(xB) usually. ¢(t) is the baseline hazard, and gives the underlying
shape of the hazard function.

- The characteristics of individuals x, move around the level of the hazard curve, but

do not change the overall shape (e.g. 6, is not directly a function of time, other
than through x)

- In more complicated settings, we can allow for unobserved heterogeneity v in what
is known as the mixed proportional hazards model:

0(x|t,v) = ¢(t)0o(x)v (2)
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Unobserved heterogeneity

0(x|t,v) = $(t)0o(x)V (3)
- Key result from Lancaster that is easy to understand - hazard rate could be time

varying (which is interesting from a theoreteical point) or it could be unobserved
heterogeneity

- Consider the following example. Suppose there are two types of people in the
population, “movers” and “stayers”, movers are share p and stayers 1 — p. Movers
have a of 6, = 2. Stayers have a lower lower rate of As = 1.

- As time goes on, the share of each in the remaining population changes, shifting
the overall hazard rate
- However, it's not that hazard rates are changing, but instead a compositional impact of
unobserved heterogeneity

- Using multi-spell data is a way to address this issue, similar to panel data with
unobserved heterogeneity

- See Van Den Berg (2001) and Rose (2020) for details on cites i
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Estimation
- This approach, as with the simple hazard model, uses likelihood methods

- The key complications are:
- The baseline hazard model
- The heterogeneity

- How to deal with the baseline hazard? A(t) is a nuisance parameter for the
estimation of the 6,.

- The Cox approach (v = 1) for the nuisance parameter exploits the proportionality:
at any given event, the partial likelihood for unit i that fails at period t is

(py . P()6(XiB)
Li(B) oy, ¢ (D80 (X;B)
_60B)
Yjvi>v, 0o (XiB)

(this is analogous to the solution in conditional logit)
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Simplifying the intuition

- In the case on a Survival probability
non-time-varying "
treatment (e.g. a
baseline covariate)
that is binary (or
discrete), we don't
need to get quite so o
complicated
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- What if we just

compared o
Kaplan-Meier survival ' Boom - 2000-2006
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Duration in years
- Let's compare
boom and bust
houses
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Simplifying the intuition

- Very intuitive and Hazard rate
straightforward to .
compare hazards

- Doesn't look like 0.006
proportional hazards

is a reasonable
assumption 0.004

- This is a standard
model fit check
- Key downside:
doesn’t accomodate

0.002

uno bserved 0.000 I I 1§ust -2007-2010 1soom -2000-2006
heterogeneity, nor Duration in years
time-varying

characteristics
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Sometimes you have to get complicated

Sometimes a more complicated model is worthwhile, and you can’t do a
simple comparison

- Time-varying treatments being an obvious case

Key tension (discussed in Abbring and Van Den Berg (2003)) - when is the
timing of the time-varying treatments?

- Anticipation of treatments will confound your estimates

Additional complicating factor: competing risks
- What if there are multiple simultaneous states one could transition to?
e.g. Unemployment could go to employment, or leaving the labor force
e.g. Mortgage could go to default or prepayment
- Our strategies above ignore this and assume the risks are independent
- This is clearly a strong assumption

See Honore and Lleras-Muney (2006) for a discussion on the fundamental

identification issue in competing risks
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