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Today’s topic: duration models

- First question is: what’s a duration model?

- Second question: why do we care?

- Third question: what are ways to estimate them? What
are estimands that are identified in these settings?
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What’s a duration model?

- A duration model is just what is sounds like – a model relating to duration of an
event

- Why would we need a special model for this?
1. Data measurement: measuring durations accurately is challenging!
2. Estimation: the mapping between theory and estimation can require more

sophisticated models

- We’ll start by just discussing what’s special about durations
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First, some examples

- Lancaster (1979) - unemployment spells
- t = 0: unemployment begins
- Spell ends: employment

- Galiani, Gertler and Schargrodsky (2005) - privatizing water service
- t = 0: the year 1990
- Spell ends: water service privatized

- Palmer (2015) - mortgage default
- t = 0: Mortgage origination
- Spell ends: mortgage default

- Rose (2020) - supervised release
- t = 0: Release
- Spell ends: New arrest or revocation
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More examples

- Engle and Russell (1998) – Irregularly spaced transaction data
- {t0, t1, . . . , tn, . . .} denote arrival times of transactions
- Condition on previous events – “autoregressive conditional duration” models

- Carlson et al. (2015) - bankruptcy
- t = 0 retirement from NFL
- Spell ends: bankruptcy filing

- Goldsmith-Pinkham & Gilbukh (2021) - moving houses
- t = 0 buy a home
- Spell ends: buy a new home

5 / 30



Running example

- One very common duration is the duration of tenure in housing

- Let Yi denote the length of time that individual i lives in their home.
- If we have better data, we can even consider Yis to be the length of time that

individual i lives in their home in spell s
- Multiple spells, e.g. panel data

- A number of notable things could affect this tenure:
- Age of the individuals
- The housing cycle
- The business cycle
- Whether or not they are homeowners
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Types of Duration Data we observe

- The “truth”: A single duration observed for person i, Yi ∈ [0, T]
- In theory, the duration could be unbounded T = ∞, but could be maximally bounded

(e.g. max lifetime of human)

- What kind of data do we observe?
- First example is best case but given unbounded nature of T, unrealistic for everything
- For a given observation, we see spell start and spell end

Case Start End

Full t0 t1 t = 0 t = T

7 / 30



Types of Duration Data we observe
- Sometimes we can’t see everything – sampling costs, or limitations on time

- You may write your paper before people decide to move!

- This can create a form of right-censoring
- For a given observation, we see spell start and spell end for most individuals

(observed before c, or ci)
- For those who have not had their spell end by c or ci, we only observe the censoring

period

- If this censoring can be viewed as random, this is (parametrically) addressable

Case Start End

Full t0 t1
Right-Censor t0 min{t1, c} t = 0 t = Tt = ci
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Types of Duration Data we observe

- Sometimes it’s even less information in our sampling scheme

- We know when the spells began, but can only identify whether or not exits occured
as of period ci

- Easy to envision data sampling like this – checking in on a pool of individuals, and
identifying whether they stuck around

- This leaves us with less information, but so long as the censoring (e.g. the time of
check-in) is sufficiently random, also addressable

Case Start End

Full t0 t1
Right-Censor t0 min{t1, ci}
Indicator t0 1(Yi < c)

t = 0 t = Tt = ci
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Stock Sampling vs. Flow Sampling
- In these cases so far, we observe when the start of the duration begins

- This is called flow sampling

- An alternative sampling procedure samples from the stock of existing individuals
- E.g. Stock sampling

- What issues does this create? Two scenarios:
- If we observe how long the duration lasted at time of sampling (e.g. the start time), we

still need to account for the sample selection from stock sampling
- If we don’t observe the start time, creates a version of left-censoring

- Left-censoring creates serious problems – need to make stronger assumptions
Sampling Case Start End Adjustment

Flow Full t0 t1 No
Flow Right-Censor t0 min{t1, ci} Yes
Flow Indicator t0 1(Yi < c) Yes
Stock Full t0 t1 Yes
Stock Right-Censor t0 min{t1, ci} Yes
Stock Indicator t0 min{t1, ci} Yes

10 / 30



Key takeaway
- Understanding the sampling structure of your data is always important

- Particularly important with duration data

- However, censoring problems are not unique to duration data
- E.g., wage data can be censored/truncated due to reservation wages or survey

measurement
- However, in duration data, right-censoring is quite common

- These are important features to consider for understanding the data generating
process for your sample (and the population)

- However, a more important question is what are you interested in?
- E.g. what is your estimand?
- Effect of a treatment on average length of duration? Median duration?
- Consider Yi = α + Tiβ + ϵi – this is well-defined when Ti is randomly assigned, but

censoring still causes issues
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Consider the example of housing

- Length of time between
housing transactions

- Sample is drawn in 2017m8,
but we see every transaction

- Implication: data is
censored at 2017m8, which
creates different censoring
horizons depending on
when the home was last
bought

- We can first examine full
distribution of durations
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Consider the example of housing
- Can we calculate the average duration,

without further assumptions?
- Purely non-parametrically? No. Even

with random sampling, we don’t know
the DGP and the average could be
completely unbounded

- Can explore this further in partial
identification

- If we are willing to make more
assumptions (next), then yes!

- Before we do that – worth recognizing
that there are other estimands that we
can identify

- E.g., the quantiles – for 2000 cohort,
the median
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Pivoting to hazard models

- We’ll now discuss some parametric ways that papers address these problems

- Duration modeling is, in many cases, focused on hazard modeling. Why?
- Hazard has natural economic theory tie-ins
- Adjusts appropriately for the “survival” of individuals

- There is nothing more powerful in these settings than anything else we’ve studied –
by using parametric models, you are able to account for data issues, but require
additional assumptions
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Quick aside: some formal definitions
- Let F(y) = Pr(Y ≤ y) be the probability of a duration no longer than y, and f (y) the

corresponding density

- Then, S(y) = 1 − F(y) is known as the survival function (the probability you’ll
survive until y)

- This lets us define the hazard function h(y) = f (y)
S(y) , which is the probability of an

event occuring, condition on surviving until y.

- Key features of the hazard:
- Conditions on the population surviving until y (rather than everyone)
- Can be time varying
- Summarizes all characteristics of F

- Effectively think of it as a transformation of the distribution
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Why the hazard function? (Van Den Berg (2001))

- So why use a hazard model?
E.g. extra structure

- Van Den Berg lays out some
reasons in his Handbook
chapter on duration modeling

- The hazard is a concise way
to summarize the state of
the remaining sample

- More effectively captures
time-varying characteristics

- Deals well with
right-censoring
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Simple hazard example
- Imagine that people move houses because of life events, and they arrive randomly

with a random rate θ(t),
- the expected number of life events in a short time period is θ(t)dt
- For now, assume it’s constant – e.g. θ = θ(t)

- This implies a distribution of life events that is expontential with mean 1/θ:

f (y) = θ exp(−yθ) for y > 0, F(y) = 1 − e−θy

- This distribution is extremely nice, since it has the lack of memory property, e.g.

E(Y − c|Y > 0) = 1/θ,

irrespective of c

- Hence, the hazard rate is exactly θ!
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Hazard modeling data sampling
- We can use this setup to study our duration cases previously

- Consider our data sampling and the likelihood:
- With fully observed flow sampling, the likelihood is

L(θ) =
n

∏
i=1

f (yi|θ) =
n

∏
i=1

h(yi|θ)S(yi|θ)

=
n

∏
i=1

θe−θy under exponential

- With right censoring (not censored → di = 1) and flow sampling, the likelihood is

L(θ) =
n

∏
i=1

f (yi|θ)diS(ci|θ)1−di =
n

∏
i=1

h(yi|θ)diS(yi|θ)diS(ci|θ)1−di
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Hazard modeling data sampling
- With stock sampling, where you sample from the stock of individuals (rather than

the flow)
- A given draw is sampled to have lived for si periods

- Then, the likelihood is

L(θ) =
n

∏
i=1

f (yi|θ)
S(si|θ)

=
n

∏
i=1

h(yi|θ)
S(yi|θ)
S(si|θ)

- With right censoring (not censored → di = 1) such that we do not track the
observations, the likelihood is

L(θ) =
n

∏
i=1

(
f (yi|θ)
S(si|θ)

)di
(S(si|θ))

(1−di)
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Non-parametric estimations of survival with censoring
- In the full sample of the housing

example, we were plotting the density
of the variable ti = min{yi, ci}

- e.g., the true failure time or when it is
censored

- However there’s a lot of censoring in
this full sample. How accurately does
this map to the probability of someone
staying in a home?

- E.g. can I use this to estimate
S(t) = Pr(Yi > t)?

- Short answer: not directly. Need to
adjust for censoring and can do so
non-parametrically

- We’ll use the Kaplan-Meier estimator
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Kaplan-Meier: non-parametric estimations of surival
- Kaplan-Meier estimator exploits the fact that the survival up to

period t, S(t), can be thought of as the joint probability of t
non-exits in a row: S(t) = ∏t

j=1(1 − h(j))

- Then, this implies that f (t) = ht ∏t−1
j=1(1 − h(j)) and f (1) = h(t).

- We need to just estimate h(·) for every time period. Let
aj = ∑i 1(Yi ≥ t), ej = ∑i 1(Yi = j∩ Yi ≤ ci)

L(h) =
n

∏
i=1

f (yi)diS(ci)1−di

= ∏
j
hejj (1 − hj)aj−ej

- Our MLE is ĥj = ej/aj
- Can consider standard errors and testing around these estimates
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Kaplan-Meier: non-parametric estimations of surival

- Ignoring the
censoring makes a
big difference
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Hazard modeling data sampling
- Clearly, ignoring the censoring will bias your estimates - either of θ in a

parameterized model, or of h(t) in non-parametric estimates
- There are two ways one could naively ignore it – toss any data that’s censored, or treat

the censoring as real data
- Both will give over-estimates of θ in the exponential case

- To see the intuition, let ti = min(yi, ci), and note the likelihood.

L(θ) =
n

∏
i=1

h(ti|θ)diS(ti|θ)

- Now assume the exponential and solve for the MLE θ̂ = d/t. Consider how the
estimates change if you either throw out data, or mislabel the censoring

- If you ignore the censoring, d→ 1, and t doesn’t change. Upward bias in θ̂
- If you drop the censored obs, then the MLE is θ̄ = ∑ di/ ∑ diti Note that the numerator

remains unchanged, but the denominator decreases. Upward bias in θ̂
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Value of hazard modeling

- So far, the main value of the modeling is to add parametric structure to capture the
univariate features of duration

- E.g., we want to know the properties of a censored random variable

- However, in many cases we want to know the effect of some variable on the
duration

- E.g. Y = Dβ + ϵ

- What is the downside of simply running a regression like above? As Van Den Berg
discusses above:

- Hazard rate will more concisely capture a meaningful characteristic
- Time-varying characteristics are more easily accomodated (e.g., how does the above

linear regression incorporate a changing minimum wage schedule?)
- The simple linear regression approach doesn’t deal with censoring well
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A defense of regression
- An aside in defense of a simple linear regression approach

- While hazard modeling is tightly connected to economic models, it can feel
non-transparent (as many non-linear models do)

- Simple linear regression models can address censoring in two ways:
- Indicators of “survived to year K” , so long as year K is not censored
- quantile regression

- It is possible to use these combinations to do a number of robust analyses
- In fact, I would highly recommend that any hazard modeling done is also supported by

simple linear regression as well

- However any linear regression needs to be extremely aware of the data sampling
process
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The workhorse of hazard modeling - Proportional Hazard
- In some settings, there is theory driving the hazard modeling, and that should

determine your approach
- in more reduced form settings, you need a workhorse model that is flexible

- In hazard models, this model is the Cox proportional hazards model:
θ(t|x) = ϕ(t)θ0(x), (1)

where θ0 = exp(xβ) usually. ϕ(t) is the baseline hazard, and gives the underlying
shape of the hazard function.

- The characteristics of individuals x, move around the level of the hazard curve, but
do not change the overall shape (e.g. θ0 is not directly a function of time, other
than through x)

- In more complicated settings, we can allow for unobserved heterogeneity v in what
is known as the mixed proportional hazards model:

θ(x|t, v) = ϕ(t)θ0(x)v (2)
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Unobserved heterogeneity

θ(x|t, v) = ϕ(t)θ0(x)v (3)
- Key result from Lancaster that is easy to understand - hazard rate could be time

varying (which is interesting from a theoreteical point) or it could be unobserved
heterogeneity

- Consider the following example. Suppose there are two types of people in the
population, “movers” and “stayers”, movers are share p and stayers 1 − p. Movers
have a of θm = 2. Stayers have a lower lower rate of λs = 1.

- As time goes on, the share of each in the remaining population changes, shifting
the overall hazard rate

- However, it’s not that hazard rates are changing, but instead a compositional impact of
unobserved heterogeneity

- Using multi-spell data is a way to address this issue, similar to panel data with
unobserved heterogeneity

- See Van Den Berg (2001) and Rose (2020) for details on cites
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Estimation
- This approach, as with the simple hazard model, uses likelihood methods

- The key complications are:
- The baseline hazard model
- The heterogeneity

- How to deal with the baseline hazard? λ(t) is a nuisance parameter for the
estimation of the θ0.

- The Cox approach (v = 1) for the nuisance parameter exploits the proportionality:
at any given event, the partial likelihood for unit i that fails at period t is

Li(β) =
ϕ(t)θ0(Xiβ)

∑j:Yj>Yi ϕ(t)θ0(Xjβ)

=
θ0(Xiβ)

∑j:Yj>Yi θ0(Xjβ)

(this is analogous to the solution in conditional logit)
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Simplifying the intuition
- In the case on a

non-time-varying
treatment (e.g. a
baseline covariate)
that is binary (or
discrete), we don’t
need to get quite so
complicated

- What if we just
compared
Kaplan-Meier survival
functions?

- Let’s compare
boom and bust
houses
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Simplifying the intuition

- Very intuitive and
straightforward to
compare hazards

- Doesn’t look like
proportional hazards
is a reasonable
assumption

- This is a standard
model fit check

- Key downside:
doesn’t accomodate
unobserved
heterogeneity, nor
time-varying
characteristics
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Sometimes you have to get complicated
- Sometimes a more complicated model is worthwhile, and you can’t do a

simple comparison
- Time-varying treatments being an obvious case

- Key tension (discussed in Abbring and Van Den Berg (2003)) – when is the
timing of the time-varying treatments?

- Anticipation of treatments will confound your estimates

- Additional complicating factor: competing risks
- What if there are multiple simultaneous states one could transition to?
- e.g. Unemployment could go to employment, or leaving the labor force
- e.g. Mortgage could go to default or prepayment
- Our strategies above ignore this and assume the risks are independent

- This is clearly a strong assumption

- See Honore and Lleras-Muney (2006) for a discussion on the fundamental
identification issue in competing risks
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