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Today'’s topic

In so many examples, we've worried about estimating the effect of some treatment D;
on Y;, but concerned that this estimate will be biased

In circumstances where we had strong ignorability (due to perhaps randomization), we
felt confident that this was not a concern

But what about when this isn’t the case? We need to create “as-if” random variation in
D;

The very popular solution: instrumental variables
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Today'’s topic

- There is a huge amount of material to cover regarding IV
- Today, we will be covering the setup and overview for how to think about IV

- Next class, covering a wide range of practical issues and problems that come up for
researchers working on these topics
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Many faces of Instrumental Variables

- This class is clearly not the first place you've been exposed to IV
- Now so ubiqutous that likely seen multiple times

- More interestingly, you've likely seen it in many forms

- To start class, we'll discuss what an IV approach can mean or looks like in the three
types of tools we discussed way back in Lecture 1

1. First, we'll try to define what we mean by an instrumental variable, initially using the DAG
notation
2. Then, we'll discuss the classic structural econometrics modeling form, and link it to GMM

- Moments!
3. Finally, we'll discuss the potential outcomes or design-based setup
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What is an instrumental variable?

Instrumental Variables and the Search
for Identification: From Supply and
Demand to Natural Experiments

Joshua D. Angrist and Alan B. Krueger
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What is an instrumental variable?

he method of instrumental variables is a signature technique in the

econometrics toolkit. The canonical example, and earliest applications, of

instrumental variables involved attempts to estimate demand and supply
curves.! Economists such as P.G. Wright, Henry Schultz, Elmer Working and
Ragnar Frisch were interested in estimating the elasticities of demand and supply
for products ranging from herring to butter, usually with time series data. If the
demand and supply curves shift over time, the observed data on quantities and
prices reflect a set of equilibrium points on both curves. Consequently, an ordinary
least squares regression of quantities on prices fails to identify—that is, trace
out—either the supply or demand relationship.
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What is an instrumental variable?

P.G. Wright (1928) confronted this issue in the seminal application of instru-
mental variables: estimating the elasticities of supply and demand for flaxseed, the
source of linseed oil.? Wright noted the difficulty of obtaining estimates of the
elasticities of supply and demand from the relationship between price and quantity
alone. He suggested (p. 312), however, that certain “curve shifters”—what we would
now call instrumental variables—can be used to address the problem: “Such
additional factors may be factors which (A) affect demand conditions without
affecting cost conditions or which (B) affect cost conditions without affecting
demand conditions.” A variable he used for the demand curve shifter was the price
of substitute goods, such as cottonseed, while a variable he used for the supply curve
shifter was yield per acre, which can be thought of as primarily determined by the

weather.
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What is an instrumental variable?

Studying agricultural markets in the 1920s, the father and son research team of Phillip and Sewall
Wright were interested in a challenging problem of causal inference: how to estimate the slope of supply
and demand curves when observed data on prices and quantities are determined by the intersection of these
two curves. In other words, equilibrium prices and quantities—the only ones we get to observe—solve these
two stochastic equations at the same time. Upon which curve, therefore, does the observed scatterplot of
prices and quantities lie? The fact that population regression coefficients do not capture the slope of any
one equation in a set of simultaneous equations had been understood by Phillip Wright for some time. The

IV method, first laid out in Wright (1928), solves the statistical simultaneous equations problem by using

variables that appear in one equation to shift this equation and trace out the other. The variables that do

the shifting came to be known as instrumental variables (Reiersol, 1941).

- Variables that do the shifting!
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The curve shifting example

Consider a simple supply and demand curve setup

quantityy = aq + priceys + Wity + uy (1)
quantitys = ap + priceys + Woto + Uo (2)

Equilibrium values of price and quantity are such that these equations equal

- These can vary due to many various regions - they can be specific to demand or supply,
or happen to both

The observed values of price and quantity will give a cloud of points with no real
interpretation as either demand or supply curve coefficients (elasticities)

What we need is shifters of these curves to create variation that traces out either
supply or demand

- Notably, this traces out only a local part of the curve!
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What is an instrumental variable?

- “Curve-shifting variable” is not a particularly
extensible concept

- Let's start with the definition in the context of a
DAG
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- Consider an effect we are interested in
identifying: Don Y
- In this setting, we know it is not identifiable
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What is an instrumental variable?

- Now, we have a variable Z which can identify two
effects:

U
-ZonD
-ZonY l
> D >

- What is the content of this instrumental variable, Z
Z?
- It affects Y (Relevance)
- It only affects Y through D (Exclusion)

- Without further assumptions, it won'’t be possible
to identify the effect of D on Y using this, but it
highlights the features of an IV

- We'll discuss why shortly
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Structural version of instruments - GMM and 2SLS

- The canonical setup with an IV:

Yi=Dip+ Wir1 +e€
D; = Zimt + Wiy + u;
with W, are a set of exogeneous controls
- A couple notable features about this setup:
- We've assumed a very parametric model for Y;
- In particular, we've assumed a constant effect of D, on Y;
- The necessary assumptions to identify D; in this setting are straightforward:

- Relevance: m # 0
- Exclusion: E(e;Z;|W;) =0
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Structural version of instruments - GMM and 2SLS

- The exclusion restriction can be slightly opaque

- The €; captures the set of “other” things that can happen
- But can be harder to map into a counterfactual way of discussing outcomes

- One useful result: let Z* = Z; — E(Z|W))
- Then the exclusion restriction can be viewed as saying that E(¢;Z*) = 0
- That is, the variation in Z; above and beyond W, has to be exogeneous for ¢;

- Why is this often written as a system of linear equations?

- Historical precedent is part of it - linear demand systems
- But, it turns out it is “optimal” in a particular sense
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Structural version of instruments - GMM and 2SLS

- In GMM, there’s just a more general statement - ignore the first stage for a moment

- We still maintain the linear second stage - the “structural model”
- To write this compactly, let D; = (D;, W;) and Z; = (Z;, W)

- Recall that the exclusion restriction gives us a set of K moments.
- E((Y; — Dip — W;y)Z;) (excluded instruments)
- E((Y; — DiB — Wiy)W,;) (exogeneous instruments)
- Or compactly, g(B,v) = E((Yi — DiB)Z)

- Then, recall that given these K moments, for a K x K positive-definite weight matrix
), we can define our linear GMM estimator as the solution to the following problem:

(Bo.70) = arg ?wg(ﬁﬂ)’ﬂg(ﬁﬂ) (3)
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Structural version of instruments - GMM and 2SLS

- Fortunately, because g is linear, solving for the minimizer is analytically tractable

- More non-linear second stages are solveable as well, but typically need numerical
solutions

- Our general solution is a function of our choice of ():
j_Dz0zv
D'zOZ'D
- Turns out that if the exclusion restriction holds (and relevance, such that the

denominator isn’t zero), it really doesn’t matter what Q) is - your estimator will
converge

- If there’s no unobserved heterogeneity in g!
A~ -~ DZOZ'e
D'zOZ' D
- All thanks to E(Ze) = 0
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Structural version of instruments - GMM and 2SLS

- Where does 25SLS come in? Contrast the formula for 2SLS and this GMM estimator:

DZ(Z2) 12V

Pests = 577272
5 _Dzozy
M = 5702

- 2SLS is a special GMM setting with the weight matrix equal to the inverse of the
covariance of the instruments

- Recall that in GMM, there are ways to get “better” weight matrices to minimize the
variance of the estimator (e.g. 2-step GMM,, iterated GMM, etc.)
- However, it turns out 2SLS weight matrix is optimal under homoskedasticity!
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Some useful features of 2SLS

D2(22)'2'V

Pesis = B2(22)12D

- Recall the projection matrix Py = Z(Z2'Z)~'Z'
- Important property: idempotency - e.g. PP, = P>
~ ~ ala
A DP,P;Y DYy

Basis = BP.PD 55

- Hence it’s really the projection of D onto Z, and the projection of Y onto Z
- So the numerator is the covariance of the predicted pieces, and the denominator is the
variance of the predicted endogeneous variable

- This is exactly what our curve shifter had in mind - we need variation in the predicted

values
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Structural version of instruments - GMM and 2SLS

- This approach is focusing on a parameteric specification, but the important
assumption is that E(€;Z;) = 0 and E(D;Z;) # 0. Note that this is much weaker than
random assignment!

- But, it is kind of wonky to assume mean independence and not assume full
independence

- Why? Well, consider transforming the outcome Y by taking a log (or some other
nonlinear transformation). With only mean indpeendence, our instrument is not
necessarily valid anymore.

- That seems like a undesirable property!
- Unfortunately, comparable to our discussion of difference-in-difference!
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The necessary assumptions so far

- So far, we need the following assumptions (and this is what you should always discuss
when writing a paper on IV):
1. relevance E(D;Z;)
2. exclusion E(Ze;)

- Tricky part starts now. Two issues with this setup:
- we have assumed homogeneous effects. E.g. § is the same for all individuals.
- This is fixable in the model, but question is what estimand do we have?

- It's not a very coherent “design-based” setup. In other words, it's challenging to think
about the shifter Z in terms of the potential outcomes of the outcomes

- This can make it hard to suss out the validity of the design!
- Large literature in the 1990s (and continuing forward) focused on taking the

Neyman-Rubin Casual Model (NRCM) with potential outcomes and mapping it to IV
- Pushed by Josh Angrist, Guido Imbens, and Don Rubin

17/27



Imbens and Angrist (1994)

Start by focusing on the simplest of cases: binary instrument Z, binary treatment D,
and no controls

- Potential outcomes framework needs to be extended to allow an instrument!
- Define Y;(D;(Z;), Z;) and D;(Z;) as two forms of potential outcomes
- The exclusion restriction here is that Y;(D;(Z;), Z;) = Y;(D;i(Z;)), e.g. Z; only has an effect
on Y; through D;
- Relevance is that P(w) = E(D;|Z; = w) varies across w

Key point is the Y;(1) — Y;(0) can be different for every individual
- Unlike in the structural models we wrote before, where B was constant

We'll assume that Z is completely randomly assigned relative to the potential
outcomes of Y and D
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No ATE is guaranteed - Imbens and Angrist (1994)

- Key point: consider E(Y;|Z; = 1) — E(Y;|Z; = 0) (where P(1) > P(0))

E(Yi|Zi=1) - E(Yi|Z;=0) = E(Di(1)Yi(1) + (1 = D;i(1))Y;(0)|Z = 1)
— E(Di(0)Y;(1) + (1 = D;(0)) Yi(0)|Z; = 0)
= E((Di(1) — Di(0))(Yi(1) — Yi(0)))

= Pr(D;(1) — D;(0) = 1)< E(Y;(1) — Y;(0))[D;(1) — D;(0) = 1)

—Pr(Di(1) — D;i(0) = —=1)xE(Y;(1) — Y;(0))|Di(1) — Di(0) = —1)

- There’s a lot to unpack here.
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No ATE is guaranteed - Imbens and Angrist (1994)

E(Yj|Zi=1)-E(Y||Z=0) =
= Pr(D;(1) — D;(0) = 1)< E(Y;(1) — Y;(0))[Di(1) — D;i(0) = 1)
—Pr(D;(1) — D;(0) = —1) x E(Yi(1) = Y;(0))| Di(1) — D;i(0) = —1)

- First, note that while we assumed that the propensity score was increasing, it does not
imply that it’s increasing for everyone

- Second, we are only identifying the effects of D (Y;(1) — Y;(0)) for those individuals
who behavior shifted due to the change in Z

- Third, without restrictions on Y;, this effect can be zero or even negative, even if the
true causal effect is positive!
- Those shifted into participating by Z could be exactly cancelled by those who shift out
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Local Average Treatment Effect (LATE)

- Two potential solutions to this issue:
1. In a constant effects world, this problem does not exist!
2. Secondly, if there exists an instrument such that Pr(D;(1) — D;(0) = —1) = 0, then
you're fine as well (e.g. one sided compliance)

- Key innovation: with monotonicity, can identify the Local Average Treatment Effect

- Monotonicity: D;(1) > D;(0)) for all i (or vice versa)
- All effects must be monotone in the same direction
- This is fundamentally untestable! (also suffers from fundamental problem of causal
inference)
- Conditional on assuming monotonicity, then the Wald ratio estimates the LATE:
e EVIZi=1) ~ E(Yi|Z = 0)
E(Dj|Z;=1) - E(Di|Z=0)
_ Pr(Di(1) — D;(0) = 1) x E(Yi(1) — Yi(0))|Di(1) — Di(0) = 1)
E(Di|Z;=1) - E(Dj|Z = 0)
= E(Yi(1) = ¥i(0))|D,(1) — Dy(0) = 1)
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What does this mean?

- Fundamentally, this means that an IV strategy only identifies (non-parametrically) the
effect of a treatment for those who respond to the treatment.

- Monotonicity ensures that the responders all go in one direction

- Language used to describe these groups:
- Always-takers: D;(1) = D;(0) =1
- Never-takers: D;(1) = D;(0) =0
- Compliers: D;(1) — D;(0) =1
- Defiers: D;(1) — D;(0) = —1

- Monotonicity ensures that only one of the compliers or defiers exists

- The compliers can be very different! This is a particular subgroup
- Important to understand potential differences
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Loosening restrictiveness + 2SLS

- This setup is very specific (two binary measures) but it is straightforward to generalize
to a multi-valued instrument

- Slightly more challenging (notationally) to generalize to a multivalued treatment in a
non-parametric way

- Key concept is an average causal reponse curve - effectively a combination of weighted
derivatives, depending on where the instrument shifts participation
- Angrist + Imbens (1995, JASA)
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Average Causal Response Curve

- Consider a regression of (log) weekly earnings (Y;) on years of schooling (S;) with
controls W;, where we use the quarter-of-birth (Z) to instrument for schooling

Yi= Wy +St+e
- Recall the potential outcome notation for years of schooling € {0, ..., J}

- We can then consider relative comparisons: 7;;_1 = E(Yi(j) — Yi(j — 1))
- Note that if this were a linear effect, Tjj—1 = 0.57; o, etc.

- Now consider the potential years of schooling defined by Z;: S;(Z))
- Can consider this binary (first quarter vs. later)
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Average Causal Response Curve

- Under independence assumptions and monotonicity (S;j(1) — S;(0) > 0 or vice versa)
for each person,

AT A 17 J
Eglizli_iglizg /;wa Yi(j—1)I8i(1) > j > Si(0))

where
Pr(Si(1) >j > Sp)

ST Pr(S(1) =i > So)
i=1 i = O)

- wj can be consistently estimated using the data

- Key takeaway: weighting up non-parametric treatments as a function of where the
instrument induces response
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Average Causal Response Curve weights
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Next class

- Monotonicity is a powerful tool for ensuring the weighted averages
- but a remarkably strong assumption in some places!

- If it fails, it doesn’t mean that there isn't a causal effect identified, but researchers
should be careful
- Next class, will discuss sensitivities and other issues

- An important note: the IV estimate is just a rescaled reduced form estimate

- If Zis truly randomly assigned, the reduced form is a valid estimate
- Do you inherently need the rescaled estimate?

27/27



