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Today’s topic

- In so many examples, we’ve worried about estimating the effect of some treatment Di
on Yi , but concerned that this estimate will be biased

- In circumstances where we had strong ignorability (due to perhaps randomization), we
felt confident that this was not a concern

- But what about when this isn’t the case? We need to create “as-if” random variation in
Di

- The very popular solution: instrumental variables
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Today’s topic

- There is a huge amount of material to cover regarding IV

- Today, we will be covering the setup and overview for how to think about IV

- Next class, covering a wide range of practical issues and problems that come up for
researchers working on these topics
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Many faces of Instrumental Variables

- This class is clearly not the first place you’ve been exposed to IV
- Now so ubiqutous that likely seen multiple times

- More interestingly, you’ve likely seen it in many forms

- To start class, we’ll discuss what an IV approach can mean or looks like in the three
types of tools we discussed way back in Lecture 1

1. First, we’ll try to define what we mean by an instrumental variable, initially using the DAG
notation

2. Then, we’ll discuss the classic structural econometrics modeling form, and link it to GMM
- Moments!

3. Finally, we’ll discuss the potential outcomes or design-based setup
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What is an instrumental variable?
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What is an instrumental variable?

- Variables that do the shifting!
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The curve shifting example
- Consider a simple supply and demand curve setup

quantityd = α1 + priceγ1 + W1τ1 + u1 (1)
quantitys = α2 + priceγ2 + W2τ2 + u2 (2)

- Equilibrium values of price and quantity are such that these equations equal
- These can vary due to many various regions – they can be specific to demand or supply,

or happen to both

- The observed values of price and quantity will give a cloud of points with no real
interpretation as either demand or supply curve coefficients (elasticities)

- What we need is shifters of these curves to create variation that traces out either
supply or demand

- Notably, this traces out only a local part of the curve!
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What is an instrumental variable?

- “Curve-shifting variable” is not a particularly
extensible concept

- Let’s start with the definition in the context of a
DAG

- Consider an effect we are interested in
identifying: D on Y

- In this setting, we know it is not identifiable

D Y

U
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What is an instrumental variable?

- Now, we have a variable Z which can identify two
effects:

- Z on D
- Z on Y

- What is the content of this instrumental variable,
Z?

- It affects Y (Relevance)
- It only affects Y through D (Exclusion)

- Without further assumptions, it won’t be possible
to identify the effect of D on Y using this, but it
highlights the features of an IV

- We’ll discuss why shortly

D Y

U

Z
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Structural version of instruments - GMM and 2SLS

- The canonical setup with an IV:

Yi = Di β + Wi γ1 + ϵi

Di = Zi π + Wi γ2 + ui

with Wi are a set of exogeneous controls

- A couple notable features about this setup:
- We’ve assumed a very parametric model for Yi
- In particular, we’ve assumed a constant effect of Di on Yi

- The necessary assumptions to identify Di in this setting are straightforward:
- Relevance: π ̸= 0
- Exclusion: E(ϵiZi |Wi ) = 0
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Structural version of instruments - GMM and 2SLS

- The exclusion restriction can be slightly opaque
- The ϵi captures the set of “other” things that can happen
- But can be harder to map into a counterfactual way of discussing outcomes

- One useful result: let Z ∗
i = Zi − E(Zi |Wi)

- Then the exclusion restriction can be viewed as saying that E(ϵiZ ∗
i ) = 0

- That is, the variation in Zi above and beyond Wi has to be exogeneous for ϵi

- Why is this often written as a system of linear equations?
- Historical precedent is part of it – linear demand systems
- But, it turns out it is “optimal” in a particular sense
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Structural version of instruments - GMM and 2SLS

- In GMM, there’s just a more general statement – ignore the first stage for a moment
- We still maintain the linear second stage – the “structural model”
- To write this compactly, let D̃i = (Di ,Wi ) and Z̃i = (Zi ,Wi )

- Recall that the exclusion restriction gives us a set of K moments.
- E((Yi − Di β − Wi γ)Zi ) (excluded instruments)
- E((Yi − Di β − Wi γ)Wi ) (exogeneous instruments)
- Or compactly, g(β,γ) = E((Yi − D̃i β̃)Z̃i )

- Then, recall that given these K moments, for a K × K positive-definite weight matrix
Ω, we can define our linear GMM estimator as the solution to the following problem:

(β0,γ0) = argmin
β,γ

g(β,γ)′Ωg(β,γ) (3)
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Structural version of instruments - GMM and 2SLS
- Fortunately, because g is linear, solving for the minimizer is analytically tractable

- More non-linear second stages are solveable as well, but typically need numerical
solutions

- Our general solution is a function of our choice of Ω:

ˆ̃β =
D̃′Z̃ ΩZ̃ ′Ỹ
D̃′Z̃ ΩZ̃ ′D̃

- Turns out that if the exclusion restriction holds (and relevance, such that the
denominator isn’t zero), it really doesn’t matter what Ω is – your estimator will
converge

- If there’s no unobserved heterogeneity in β!

ˆ̃β − β̃ =
D̃′Z̃ ΩZ̃ ′ϵ

D̃′Z̃ ΩZ̃ ′D̃
→ 0

- All thanks to E(Z̃ ϵ) = 0
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Structural version of instruments - GMM and 2SLS

- Where does 2SLS come in? Contrast the formula for 2SLS and this GMM estimator:

ˆ̃β2SLS =
D̃′Z̃ (Z̃ ′Z̃ )−1Z̃ ′Ỹ
D̃′Z̃ (Z̃ ′Z̃ )−1Z̃ ′D̃

ˆ̃βGMM =
D̃′Z̃ ΩZ̃ ′Ỹ
D̃′Z̃ ΩZ̃ ′D̃

- 2SLS is a special GMM setting with the weight matrix equal to the inverse of the
covariance of the instruments

- Recall that in GMM, there are ways to get “better” weight matrices to minimize the
variance of the estimator (e.g. 2-step GMM, iterated GMM, etc.)

- However, it turns out 2SLS weight matrix is optimal under homoskedasticity!
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Some useful features of 2SLS

ˆ̃β2SLS =
D̃′Z̃ (Z̃ ′Z̃ )−1Z̃ ′Ỹ
D̃′Z̃ (Z̃ ′Z̃ )−1Z̃ ′D̃

- Recall the projection matrix PZ = Z̃ (Z̃ ′Z̃ )−1Z̃ ′

- Important property: idempotency – e.g. PZ PZ = PZ

ˆ̃β2SLS =
D̃′PZ PZ Ỹ
D̃′PZ PZ D̃

=
ˆ̃D
′ ˆ̃Y

ˆ̃D
′ ˆ̃D

- Hence it’s really the projection of D onto Z , and the projection of Y onto Z
- So the numerator is the covariance of the predicted pieces, and the denominator is the

variance of the predicted endogeneous variable

- This is exactly what our curve shifter had in mind – we need variation in the predicted
values
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Structural version of instruments - GMM and 2SLS

- This approach is focusing on a parameteric specification, but the important
assumption is that E(ϵiZi) = 0 and E(DiZi) ̸= 0. Note that this is much weaker than
random assignment!

- But, it is kind of wonky to assume mean independence and not assume full
independence

- Why? Well, consider transforming the outcome Y by taking a log (or some other
nonlinear transformation). With only mean indpeendence, our instrument is not
necessarily valid anymore.

- That seems like a undesirable property!
- Unfortunately, comparable to our discussion of difference-in-difference!
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The necessary assumptions so far

- So far, we need the following assumptions (and this is what you should always discuss
when writing a paper on IV):

1. relevance E(DiZi )
2. exclusion E(Zi ϵi )

- Tricky part starts now. Two issues with this setup:
- we have assumed homogeneous effects. E.g. β is the same for all individuals.

- This is fixable in the model, but question is what estimand do we have?
- It’s not a very coherent “design-based” setup. In other words, it’s challenging to think

about the shifter Z in terms of the potential outcomes of the outcomes
- This can make it hard to suss out the validity of the design!

- Large literature in the 1990s (and continuing forward) focused on taking the
Neyman-Rubin Casual Model (NRCM) with potential outcomes and mapping it to IV

- Pushed by Josh Angrist, Guido Imbens, and Don Rubin
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Imbens and Angrist (1994)

- Start by focusing on the simplest of cases: binary instrument Z , binary treatment D,
and no controls

- Potential outcomes framework needs to be extended to allow an instrument!
- Define Yi (Di (Zi ),Zi ) and Di (Zi ) as two forms of potential outcomes
- The exclusion restriction here is that Yi (Di (Zi ),Zi ) = Yi (Di (Zi )), e.g. Zi only has an effect

on Yi through Di
- Relevance is that P(w) = E(Di |Zi = w) varies across w

- Key point is the Yi(1)− Yi(0) can be different for every individual
- Unlike in the structural models we wrote before, where β was constant

- We’ll assume that Z is completely randomly assigned relative to the potential
outcomes of Y and D
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No ATE is guaranteed - Imbens and Angrist (1994)

- Key point: consider E(Yi |Zi = 1)− E(Yi |Zi = 0) (where P(1) > P(0))

E(Yi |Zi = 1)− E(Yi |Zi = 0) = E(Di(1)Yi(1) + (1 − Di(1))Yi(0)|Zi = 1)
− E(Di(0)Yi(1) + (1 − Di(0))Yi(0)|Zi = 0)
= E((Di(1)− Di(0))(Yi(1)− Yi(0)))

= Pr (Di(1)− Di(0) = 1)×E(Yi(1)− Yi(0))|Di(1)− Di(0) = 1)
−Pr (Di(1)− Di(0) = −1)×E(Yi(1)− Yi(0))|Di(1)− Di(0) = −1)

- There’s a lot to unpack here.
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No ATE is guaranteed - Imbens and Angrist (1994)

E(Yi |Zi = 1)− E(Yi |Zi = 0) =
= Pr (Di(1)− Di(0) = 1)×E(Yi(1)− Yi(0))|Di(1)− Di(0) = 1)
−Pr (Di(1)− Di(0) = −1)× E(Yi(1)− Yi(0))|Di(1)− Di(0) = −1)

- First, note that while we assumed that the propensity score was increasing, it does not
imply that it’s increasing for everyone

- Second, we are only identifying the effects of D (Yi(1)− Yi(0)) for those individuals
who behavior shifted due to the change in Z

- Third, without restrictions on Yi , this effect can be zero or even negative, even if the
true causal effect is positive!

- Those shifted into participating by Z could be exactly cancelled by those who shift out
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Local Average Treatment Effect (LATE)
- Two potential solutions to this issue:

1. In a constant effects world, this problem does not exist!
2. Secondly, if there exists an instrument such that Pr (Di (1)− Di (0) = −1) = 0, then

you’re fine as well (e.g. one sided compliance)

- Key innovation: with monotonicity, can identify the Local Average Treatment Effect

- Monotonicity: Di(1) ≥ Di(0)) for all i (or vice versa)
- All effects must be monotone in the same direction
- This is fundamentally untestable! (also suffers from fundamental problem of causal

inference)

- Conditional on assuming monotonicity, then the Wald ratio estimates the LATE:

τLATE =
E(Yi |Zi = 1)− E(Yi |Zi = 0)
E(Di |Zi = 1)− E(Di |Zi = 0)

=
Pr (Di(1)− Di(0) = 1)× E(Yi(1)− Yi(0))|Di(1)− Di(0) = 1)

E(Di |Zi = 1)− E(Di |Zi = 0)
= E(Yi(1)− Yi(0))|Di(1)− Di(0) = 1)
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What does this mean?

- Fundamentally, this means that an IV strategy only identifies (non-parametrically) the
effect of a treatment for those who respond to the treatment.

- Monotonicity ensures that the responders all go in one direction

- Language used to describe these groups:
- Always-takers: Di (1) = Di (0) = 1
- Never-takers: Di (1) = Di (0) = 0
- Compliers: Di (1)− Di (0) = 1
- Defiers: Di (1)− Di (0) = −1

- Monotonicity ensures that only one of the compliers or defiers exists
- The compliers can be very different! This is a particular subgroup
- Important to understand potential differences
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Loosening restrictiveness + 2SLS

- This setup is very specific (two binary measures) but it is straightforward to generalize
to a multi-valued instrument

- Slightly more challenging (notationally) to generalize to a multivalued treatment in a
non-parametric way

- Key concept is an average causal reponse curve – effectively a combination of weighted
derivatives, depending on where the instrument shifts participation

- Angrist + Imbens (1995, JASA)
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Average Causal Response Curve

- Consider a regression of (log) weekly earnings (Yi ) on years of schooling (Si ) with
controls Wi , where we use the quarter-of-birth (Zi ) to instrument for schooling

Yi = Wi γ + Si τ + ϵi

- Recall the potential outcome notation for years of schooling ∈ {0, . . . , J}
- We can then consider relative comparisons: τj,j−1 = E(Yi (j)− Yi (j − 1))
- Note that if this were a linear effect, τj,j−1 = 0.5τj,j−2, etc.

- Now consider the potential years of schooling defined by Zi : Si(Zi)
- Can consider this binary (first quarter vs. later)
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Average Causal Response Curve

- Under independence assumptions and monotonicity (Si(1)− Si(0) ≥ 0 or vice versa)
for each person,

E(Yi |Zi = 1)− E(Yi |Zi = 0)
E(Si |Zi = 1)− E(Si |Zi = 0)

=
J

∑
j=1

ωjE(Yi(j)− Yi(j − 1)|Si(1) ≥ j > Si(0))

where
ωj =

Pr (Si(1) ≥ j > S0)

∑J
i=1 Pr (Si(1) ≥ i > S0)

.

- ωj can be consistently estimated using the data

- Key takeaway: weighting up non-parametric treatments as a function of where the
instrument induces response

25 / 27



Average Causal Response Curve weights
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Next class

- Monotonicity is a powerful tool for ensuring the weighted averages
- but a remarkably strong assumption in some places!

- If it fails, it doesn’t mean that there isn’t a causal effect identified, but researchers
should be careful

- Next class, will discuss sensitivities and other issues

- An important note: the IV estimate is just a rescaled reduced form estimate
- If Z is truly randomly assigned, the reduced form is a valid estimate
- Do you inherently need the rescaled estimate?
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